帳號:guest(18.189.145.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馮揚智
作者(外文):Feng, Yang-Chih
論文名稱(中文):球棒擊球位置偵測
論文名稱(外文):Detection of Hitting Position of Baseball Bat
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsi-Pin
口試委員(中文):蔡佩芸
劉強
口試委員(外文):Tsai, Pei-Yun
Liu, Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061576
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:72
中文關鍵詞:球棒擊球
外文關鍵詞:Hitting positionBaseball bat
相關次數:
  • 推薦推薦:0
  • 點閱點閱:571
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
棒球擊球手為了打擊出更強勁的球,對於揮棒是否擊中甜蜜區很感興趣。本研究提供了一種偵測球與球棒的碰撞位置的方法,該方法將壓電薄膜感測器安裝在球棒的握柄,並在撞擊發生時感測球棒的振動訊號。本研究採用多項式回歸擬和曲線模型和決策樹回歸器模型,並透過特徵頻率以及經驗模態分解演算法提取出來的特徵來檢測擊球位置。在頻域訊號裡得到特徵頻率的峰值和比值,另外也將可以表示時域訊號趨勢的經驗模態分解殘差的斜率及其正負號提取出來作為模型的特徵。為了提高模型的檢測能力,本研究利用特徵重要性和統計方法,分別找出對偵測擊球位置最有影響力以及最高相關係數的特徵。木棒在固定撞擊實驗的平均絕對誤差(MAE)為0.26 公分,誤差容忍度小於1 公分時,準確度為95.4%。鋁棒在固定撞擊實驗的MAE 為0.35 公分,準確度為91.1%。而一般的情況下球棒碰撞的強度是未知的。為了驗證提出的方法具有檢測未知衝擊力的能力,本研究進行了實際擊球的實驗並收集數據。木棒在實際擊球實驗的平均絕對誤差(MAE)為0.71 公分,誤差容忍度小於1 公分時,準確75.6%。鋁棒在固定撞擊實驗的MAE 為0.75 公分,準確度為70.5%。
The baseball batters are interested in whether to hit the sweet zones because it can let the ball fly faster and farther. This study provides a detection method to detect the position of
ball-bat collision. In the proposed method, the piezoelectric vibration sensor is mounted on the knob of the bat, and the vibration signal of the bat is sensed when the impact occurs. In this study, the polynomial regression fitting curve model and the decision tree regressor machine learning model are applied to detect the hitting position via the features which were extracted
from the eigenfrequencies and empirical mode decomposition (EMD) algorithm. The values and the ratios of eigenfrequency peaks are generated in frequency-domain signal. The slope and its sign of the residual the EMD, which contains the directionality, are taken as the trend term of the time-domain signal, so they are treated as the features of the models. To improve the detecting ability of the models, the feature importance and the statistical methods are utilized to find the most important and the highest correlation coefficient for the impact position, respectively. The mean absolute error (MAE) of the stationary experiments of wooden bat is 0.26 cm, and the one of aluminum bat is 0.35 cm. The accuracy was 95.4% when the error tolerance was 1 cm for wooden bat and 91.1% for aluminum bat. In general, the intensity of the ball-bat collision is unknown. In order to confirm that the proposed method has the ability of detecting unknown impact force, the actual batting experimented were carried out and collected some data. The MAE of the actual batting experiments of wooden bat is 0.71 cm, and the one of aluminum bat is 0.75 cm. The accuracy was 75.6% when the error tolerance was 1 cm for wooden bat and 70.5% for aluminum bat.
Abstract i
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Literature Survey and Prerequisites 5
2.1 Sweet Zone of Baseball Bat . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Natural Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Impact Position Effect . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Gripping Method Effect . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Different Methods of Detecting the Bat Hitting Position . . . . . . . . . . . . 11
2.3.1 Trigger Time of Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Feature of Vibration Signal . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Proposed Methodologies for Hitting Position Detection 19
3.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Sensing Component and Equipment . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Force Sensor (A301) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 6-axis Sensor (ICM-20649) . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Piezo Vibration Sensor (LDT0-028K) . . . . . . . . . . . . . . . . . 25
3.2.4 Oscilloscope (TBS2102B) . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 The Largest Peak of the Fundamental Mode . . . . . . . . . . . . . . 27
3.3.2 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . 30
3.3.3 The Peak Values of the Spectrum . . . . . . . . . . . . . . . . . . . 35
3.3.4 The Ratio between the Eigenfrequency Peak Values . . . . . . . . . . 37
3.4 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Independent Sample T Test . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 One-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Decision Tree Regressor (DTR) . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Dataset Collection and Implementation Results 43
4.1 Stationary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Actual Batting Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Conclusion and Future Works 67
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Bibliography 69
[1] A. T. Bahill and D. G. Baldwin, “Mechanics of baseball pitching and batting,” Applied biomedical engineering mechanics, pp. 445–488, 2008.
[2] T. Higuchi, T. Nagami, J. Morohoshi, H. Nakata, and K. Kanosue, “Disturbance in hitting accuracy by professional and collegiate baseball players due to intentional change of target position,” Perceptual and Motor Skills, vol. 116, no. 2, pp. 627–639, 2013.
[3] L. Fallon, J. Sherwood, and M. Donaruma, “An assessment of sensing technologies to monitor the collision of a baseball and bat,” in ISEA Conference, 2008.
[4] T. Osawa, Y. Tanaka, T. Yanai, and A. Sano, “Position estimation of ball impact in baseball batting using pvdf films,” in 2017 IEEE World Haptics Conference (WHC). IEEE, 2017, pp. 442–447.
[5] H. Brody, “Models of baseball bats,” American Journal of Physics, vol. 58, no. 8, pp. 756–758, 1990.
[6] ——, “The sweet spot of a baseball bat,” American Journal of Physics, vol. 54, no. 7, pp. 640–643, 1986.
[7] P. Jaramillo, K. S. Manarky, R. S. Adrezin, R. D. Celmer, J. T. Reinard, and D. Shetty, “Sweet spot or sweet zone? modal analysis of a wooden baseball bat for design optimization,” in ASME International Mechanical Engineering Congress and Exposition, vol. 37130, 2003, pp. 1019–1025.
[8] R. Cross, “Center of percussion of hand-held implements,” American Journal of Physics, vol. 72, no. 5, pp. 622–630, 2004.
[9] G. Vedula and J. Sherwood, “An experimental and finite element study of the relationship amongst the sweet spot, cop and vibration nodes in baseball bats,” The Engineering of Sport, vol. 5, pp. 626–632, 2004.
[10] R. Quabili, P. Diao, and Y. Mou, “The sweet spot: A wave model of baseball bats,” UMAPJournal, p. 105, 2010.
[11] L. Van Zandt, “The dynamical theory of the baseball bat,” American Journal of Physics, vol. 60, no. 2, pp. 172–181, 1992.
[12] R. Cross, “The sweet spot of a baseball bat,” American Journal of Physics, vol. 66, no. 9, pp. 772–779, 1998.
[13] A. M. Nathan, “Dynamics of the baseball–bat collision,” American Journal of Physics, vol. 68, no. 11, pp. 979–990, 2000.
[14] D. A. Russell, “Acoustics and vibration of baseball and soft ball bats,” Acoust Today, vol. 13, no. 4, pp. 35–42, 2017.
[15] R. K. Adair, “Comment on “the sweet spot of a baseball bat,” by rod cross [am. j. phys. 66 (9), 772–779 (1998)],” American journal of physics, vol. 69, no. 2, pp. 229–230, 2001.
[16] R. Brooks, J. Mather, and S. Knowles, “The influence of impact vibration modes and frequencies on cricket bat performance,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 220, no. 4, pp. 237–248, 2006.
[17] A. D. Sutton and J. A. Sherwood, “Using vibrational analysis to investigate the battedball performance of baseball bats,” Procedia Engineering, vol. 2, no. 2, pp. 2687–2692, 2010.
[18] B. S. Boucher, G. J. Mannke, and M. J. McClune, “Vibrational analysis of bat-ball collision,” 2012.
[19] P. Brancazio, “Swinging for the fences: The physics of the baseball bat,” in New England section of the American Physical Society meeting, 1987.
[20] A. M. Nathan, “Characterizing the performance of baseball bats,” American Journal of Physics, vol. 71, no. 2, pp. 134–143, 2003.
[21] A. D. Sutton, “Using modal analysis to investigate bat-ball performance of baseball bats,” University of Massachusetts, Lowell, Lowell, 2008.
[22] G. Weir and P. McGavin, “The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 464, no. 2093, pp. 1295–1307, 2008.
[23] R. Cross, “Measurements of the horizontal coefficient of restitution for a superball and a tennis ball,” American Journal of Physics, vol. 70, no. 5, pp. 482–489, 2002.
[24] ——, “The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls,” American Journal of Physics, vol. 68, no. 11, pp. 1025–1031, 2000.
[25] N. Ravindra, K. Sikha Sushil, and P. Ivan, “Physics of baseball bats—an analysis,” Int. J. Sports Science and Eng, vol. 3, pp. 34–42, 2009.
[26] A. Nathan and L. Smith, “Effect of ball properties on ball-bat coefficient of restitution,” 2010.
[27] A. M. Nathan, L. V. Smith, and W. Faber, “Reducing the effect of the ball on bat performance measurements,” Sports Technology, vol. 4, no. 1-2, pp. 13–18, 2011.
[28] P. J. Drane, J. A. Sherwood, and R. H. Shaw, “An experimental investigation of baseball bat durability,” in The Engineering of Sport 6. Springer, 2006, pp. 5–10.
[29] D. A. Russell, “Bending modes, damping, and the sensation of sting in baseball bats,” in The Engineering of Sport 6. Springer, 2006, pp. 11–16.
[30] ——, “Flexural vibration and the perception of sting in hand-held sports implements,” in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 2012, no. 3. Institute of Noise Control Engineering, 2012, pp. 8213–8221.
[31] A. Kaveh and A. Zolghadr, “Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm,” 2011.
[32] D. De Klerk and R. Visser, “Characterization of measurement errors in experimental frequency based substructuring,” ISMA 2010 Including USD2010, pp. 1881–90, 2010.
[33] K. Mali and P. Singru, “Study on the effect of the impact location and the type of hammer tip on the frequency response function (frf) in experimental modal analysis of rectangular plates,” MS&E, vol. 330, no. 1, p. 012102, 2018.
[34] LDT WITH CRIMPS VIBRATION SENSOR/SWITCH, TE Connectivity, 2017, rev. 1.
[35] FlexiForce®Standard Model A301, Tekscan, 2016, rev. F.
[36] World’s First Wide-Range 6-Axis MEMS MotionTrackingTM Device for Sports and High Impact Applications, InvenSense, Dec. 2016, rev. 1.0.
[37] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903–995, 1998.
[38] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *