帳號:guest(18.118.195.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林思妤
作者(外文):Lin, Szu-Yu
論文名稱(中文):能帶隙電壓參考電路與三角積分類比數位轉換器應用於智慧型溫度感測器
論文名稱(外文):A Bandgap Circuit and a Delta-Sigma Modulator for Smart Temperature Sensor
指導教授(中文):朱大舜
指導教授(外文):Chu, Ta-Shun
口試委員(中文):王毓駒
吳仁銘
口試委員(外文):Wang, Yu-Jiu
Wu, Jen-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061564
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:107
中文關鍵詞:智慧型溫度感測器能帶隙電壓參考電路三角積分類比數位轉換器
外文關鍵詞:Smart Temperature SensorBandgap Voltage Reference CircuitDelta-Sigma Modulator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:978
  • 評分評分:*****
  • 下載下載:46
  • 收藏收藏:0
隨著半導體產業蓬勃發展,追求效能要高、成本要低以外,對於積體電路變異的控管也十分重要,其中溫度對於積體電路晶片的影響不容小觑。此論文針對應用於智慧型溫度感測器之能帶隙電壓參考電路與三角積分類比數位轉換器做設計。
以能帶隙電壓參考電路作為智慧型溫度感測器的前端溫度感測電路,主要是透過雙極性電晶體(BJT)對於溫度的特性。能帶隙電壓參考電路將溫度轉為電訊號VTemp,並透過正溫度係數與負溫度係數的處理得到不隨溫度變化的參考電位VRef。依溫度範圍分為兩段式的解析度,在-25℃~125℃的情況下,智慧型溫度感測器能夠偵測到0.5℃的解析度,在此情況下的參考電位溫度係數為1.018 PPM/℃,溫度電訊號VTemp的電位範圍有0.7V。而為了加強在晶片運作時的常見溫度範圍27℃~80℃,智慧型溫度感測器能偵測到0.01℃。
而後端對解析度與速度做取捨之後以三角積分類比數位轉換器做溫度電訊號VTemp轉換為數位訊號。此論文以TSMC 65nm CMOS 1P9M製程實現三角積分類比數位轉換器,其輸入頻寬在20kHz以內,取樣頻率為10MHz,在超取樣比率256的情況下,能夠達到解析度15.343 bits。
透過智慧型溫度感測器使得積體電路晶片的溫度校正更加準確,對於晶片內部熱管理也更加完善,能大大降低溫度對於積體電路晶片結果的影響。

With the development of the semiconductor industry, the control of integrated circuit variations is as important as the pursuit of high efficiency and low cost. The influence of temperature variations on integrated circuits cannot be underestimated. This thesis presents a bandgap voltage reference circuit and a discrete-time second-order delta-sigma analog-to-digital converter for the smart temperature sensor.
A bandgap voltage reference circuit, which base on the characteristics of the bipolar transistor (BJT) , is used as the front-end circuit of the smart temperature sensor. The bandgap voltage reference circuit converts the temperature into voltage signal VTemp. At the same time, through the processing of the positive temperature coefficient and the negative temperature coefficient, we can get a temperature-independent voltage reference VRef. The resolution is divided into two stages according to the temperature range. In the case of -25℃ ~ 125℃, the smart temperature sensor can detect the resolution of 0.5℃, and the temperature coefficient of the VRef is 1.018 PPM / ℃, the range of the VTemp is 0.7V. In the case of 27℃ ~ 80℃, which is the common temperature range when the chips is turning, the smart temperature sensor can detect the resolution of 0.01℃.
A discrete-time second-order delta-sigma analog-to-digital converter have been chosen after a trade-off between the resolution and the speed. This thesis presents a discrete-time second-order delta-sigma analog-to-digital converter, and to be implemented with TSMC 65nm 1P9M process. The delta-sigma A/D converter can detect the resolution of 15.343 bits with 20kHz signal bandwidth and oversampling ratio of 256.
By using the smart temperature sensor, we can greatly reduce the influence of temperature on the results of the integrated circuit chip.
中文摘要 i
Abstract(英文摘要) ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 序論 1
1.1 研究動機 1
1.1.1 智慧型溫度感測器 1
1.1.2 理想電流源 2
1.1.3 自偏壓參考電流源 5
1.2 論文章節組織 7
第二章 雙極性接面型電晶體型式溫度感測器 8
2.1 溫度感測器 8
2.1.1 溫度感測器的選擇 8
2.1.2 雙極性接面型電晶體特性 9
2.1.3 溫度電位(VPTAT)與參考電位(VRef) 12
2.2 能帶隙電壓參考電路設計 14
2.2.1 能帶隙電壓參考電路 14
2.2.2 電流值操作範圍 16
2.2.3 雙極性接面型電晶體(BJT)設計 19
2.2.4 PMOS電流鏡設計 21
2.2.5 NMOS電流鏡設計 24
2.2.6 電阻設計 26
2.3 溫度感測器模擬結果 28
第三章 類比數位轉換器 30
3.1 取樣定理 30
3.2 量化定理 33
3.3 類比數位轉換器比較 37
3.4 超取樣(Oversampling) 38
3.5 雜訊整形(Noise Shaping) 42
3.6 三角積分數位類比轉換器之線性模型[12] 53
3.7 交換式電容積分器 57
第四章 三角積分類比數位轉換器設計 63
4.1 電容設計 63
4.2 開關設計 73
4.3 放大器設計 83
4.4 比較器設計 98
4.5 時脈產生器設計 101
4.6 三角積分類比數位轉換器模擬結果 102
第五章 結論與未來工作 105
5.1 結論 105
5.2 未來工作 105
參考文獻 106
[1] M. Pertijs, K. Makinwa and J. Huijsing, "A CMOS temperature sensor with a 3σ inaccuracy of ±0.1°C from −55°C to 125°C," ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005, vol. 1, pp. 238-596, 2005.
[2] S. Tang, S. Narendra and V. De, "Temperature and process invariant MOS-based reference current generation circuits for sub-1V operation," Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03., pp. 199-204, 2003.
[3] S. Shah and S. Collins, "A Model for Temperature Insensitive Trimmable MOSFET Current Sources," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 10, pp. 853-857, 2007.
[4] Mcnamara, A. G. "Semiconductor diodes and transistors as electrical thermometers, " Review of Scientific Instruments, 33.3: 330-333, 1962.
[5] Gray, Paul R., et al. Analysis and design of analog integrated circuits. John Wiley & Sons, 2009.
[6] B. Razavi, Design of Analog CMOS Integrated Circuit. Boston, MA: McGraw-Hill, 2001.
[7] H. Nyquist, "Certain Topics in Telegraph Transmission Theory," in Transactions of the American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617-644, 1928.
[8] C. E. Shannon, "Communication In The Presence Of Noise," in Proceedings of the IRE, vol. 37, no. 1, pp. 10–21, 1949.
[9] Rocío Río Fernández, Fernando Medeiro Hidalgo, Belén Pérez Verdú, and José Manuel Rosa Utrera, CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom. Springer, 2006.
[10] F. Gerfers, and M. Ortmanns, Continuous-Time Sigma-Delta A/D Conversion. Springer 2006.
[11] J-T Wu, Data-Conversion Integrated Circuits. 2018.
[12] 林嗣澄, “應用於生醫訊號之二階三角積分調變器, ” 國立清華大學碩士論文, 2014
[13] http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox
[14] R. Schreier, J. Silva, J. Steensgaard and G. C. Temes, "Design-oriented estimation of thermal noise in switched-capacitor circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, pp. 2358-2368, Nov. 2005.
[15] Haas-Christensen, Jelena, et al. "A 0.8 V, 7uA, Rail-to-Rail Input/Output, Constant Gm Operational Amplifier in Standard Digital 0.18 um CMOS." 23rd NORCHIP Conference. 2005.
[16] Y. Huang, H. Schleifer and D. Killat, "Design and analysis of novel dynamic latched comparator with reduced kickback noise for high-speed ADCs," 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1-4, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *