帳號:guest(3.145.186.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳志誠
作者(外文):Chen, Chih-Cheng
論文名稱(中文):具有製程、電壓、溫度不敏感性電壓-時間-電壓轉換器之十二位元二階雜訊塑形連續漸進式類比數位轉換器
論文名稱(外文):A 12-ENOB Second-Order Noise Shaping SAR ADC with PVT-insensitive Voltage-Time-Voltage Converter
指導教授(中文):謝志成
指導教授(外文):Hsieh, Chih-Cheng
口試委員(中文):李泰成
謝秉璇
陳佳宏
口試委員(外文):Lee, Tai-Cheng
Hsieh, Ping-Hsuan
Chen, Chia-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061546
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:69
中文關鍵詞:過採樣雜訊塑形連續漸進式類比數位轉換器
外文關鍵詞:oversamplingnoise-shapingSAR ADC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:461
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出一個具有製程、電壓、溫度不敏感性電壓-時間-電壓轉換器之十二位元二階雜訊塑形連續漸進式(successive-approximation register, SAR)類比數位轉換器(analog-to-digital converter, ADC)。
本論文使用了電壓-時間-電壓(Voltage-Time-Voltage, V-T-V)轉換器提供了精準的開環增益,由於僅依靠電容與電流比例,其增益本質上對於製成、電壓與溫度(Process-Voltage-Temperature, PVT)具有不敏感性,因此並不需要教正即可實現理想的雜訊轉換函數 (noise transfer function, NTF)。此外,V-T-V轉換器只消耗動態功率。透過使用元件比例設計與動態功耗方式,所提出的ADC具有抵抗PVT變異與良好功率效益的特性。
為了驗證本電路,此架構使用90奈米1P9M互補式金氧半導體製程製作,核心電路面積為429.7 x 90.7um2,在1伏特電源電壓及1千萬赫茲取樣頻率操作下,此晶片在625千赫茲輸入頻寬實現之SNDR為73.8dB,其對應的ENOB為12-bit,功率消耗為71.4微瓦,而等效的Walden figure of merit (FOMW)為14.2fJ/conversion-step,Schreier figure of merit (FOMS)為173.2dB。
This thesis presents a 12-ENOB second-order noise shaping successive-approximation register (NS SAR) analog-to-digital converter (ADC) with PVT-insensitive voltage-time-voltage (V-T-V) converter.
The proposed NS SAR ADC uses the V-T-V converter to provide an accurate open-loop gain stage for active residue process. By relying on the capacitor and current ratio only, the gain of V-T-V converter is inherently PVT-insensitive. Therefore, no calibration is needed and an aggressive noise transfer function (NTF) can be realized. Moreover, the V-T-V converter consumes only dynamic power. By using ratio design and dynamic manner, the proposed ADC is PVT-insensitive and energy efficient.
The prototype was fabricated in 90nm 1P9M CMOS technology with a core area of 429.7 x 90.7um2. At 1V supply voltage and 10MS/s sampling rate, the ADC achieves the SNDR of 73.8dB and the corresponding ENOB is 12-bit at the input bandwidth of 625kHz. It consumes 71.4µW power totally, resulting in the Walden figure of merit (FOMW) of 14.2fJ/conversion-step and Schreier figure of merit (FOMS) of 173.2 dB, respectively.
Abstract-----ii
Content-----iii
List of Figures-----vi
List of Tables-----ix
Chapter 1 Introduction-----1
1.1 Motivation-----1
1.2 Architecture selection-----1
1.3 Target Specifications-----3
1.4 Thesis Organization-----5
Chapter 2 Basic Concept of ADC-----5
2.1 Sampling Theorem-----6
2.2 Resolution-----6
2.3 Quantization Error-----7
2.4 Offset Error-----8
2.5 Gain Error-----9
2.6 Differential Nonlinearity-----10
2.7 Integral Nonlinearity-----11
2.8 Signal-to-Noise Ratio-----12
2.9 Signal-to-Noise and Distortion Ratio-----13
2.10 Spurious-Free Dynamic Range-----13
2.11 Effective Number of Bits-----13
2.12 Figure of Merit-----13
Chapter 3 System Level Overviews of ADCs-----14
3.1 Top level-----14
3.1.1 SAR ADC-----15
3.1.2 Delta Sigma Modulator (DSM)-----16
3.1.3 Noise Shaping SAR ADC (NS SAR ADC)-----17
3.2 Sample and Hold (S/H)-----18
3.2.1 On-Resistance of MOSFET switch-----19
3.2.2 Charge Injection-----20
3.2.3 Clock Feedthrough-----21
3.2.4 kT/C Noise-----21
3.3 Comparator-----22
3.3.1 Input Referred Offset-----23
3.3.2 Kickback Noise-----24
3.4 Capacitive DAC (C-DAC)-----25
3.4.1 Mismatch of Capacitors-----26
3.4.2 Parasitic Capacitance-----27
3.5 Asynchronous SAR Logic-----27
3.6 Structure of Noise Shaping SAR ADC-----28
3.6.1 Cascaded Integrator Feed-Forward (CIFF)-----29
3.6.2 Error-Feedback (EF)-----29
3.7 Implementation of Residue Process-----31
3.8 Summary-----34
Chapter 4 Circuit Design Considerations-----35
4.1 Differential ADC-----35
4.2 Implementation of Noise Shaping-----36
4.2.1 Signal Model-----36
4.2.2 Non-Ideal Effect-----37
4.3 Sample and Hold (S/H)-----38
4.4 Comparator-----39
4.5 CDAC Switching-----40
4.6 Summary-----42
Chapter 5 Circuit Implementation of Proposed Noise Shaping SAR ADC-----42
5.1 Architecture of Proposed NS SAR ADC-----42
5.2 Architecture of Proposed V-T-V converter-----44
5.3 Design of V-T-V converter and SC FIR capacitors-----48
5.4 Design of Sample and Hold (S/H)-----50
5.5 Design of Comparator-----51
5.6 Design of Capacitive DAC (C-DAC)-----52
5.7 Pre-Layout and Post-Layout Simulation-----53
5.8 Summary-----55
Chapter 6 Experimental Results-----55
6.1 Measurement Environment Setup-----55
6.2 Chip Micrograph-----56
6.3 Measurement Results-----56
6.3.1 SAR ADC w/o Noise Shaping-----57
6.3.2 SAR ADC w/ Noise Shaping-----58
6.4 Performance Discussion-----60
6.5 Performance Summary and Comparison-----62
6.6 Summary-----64
Chapter 7 Conclusion and Future Work-----64
7.1 Conclusion-----64
7.2 Future Work-----64
Bibliography-----66
[1] B. Murmann, "ADC Performance Survey 1997-2021," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[2] W. Guo, H. Zhuang and N. Sun, "A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators," 2017 Symposium on VLSI Circuits, 2017, pp. C236-C237.
[3] H. Zhuang et al., "A Second-Order Noise-Shaping SAR ADC With Passive Integrator and Tri-Level Voting," in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1636-1647, June 2019.
[4] Y. Hwang, Y. Song, J. Park and D. Jeong, "A 0.6-to-1V 10k-to-100kHz BW 11.7b-ENOB Noise-Shaping SAR ADC for IoT sensor applications in 28-nm CMOS," 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2018, pp. 247-248.
[5] S. Li, B. Qiao, M. Gandara and N. Sun, "A 13-ENOB 2nd-order noise-shaping SAR ADC realizing optimized NTF zeros using an error-feedback structure," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 234-236.
[6] S. Li, B. Qiao, M. Gandara, D. Z. Pan and N. Sun, "A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3484-3496, Dec. 2018.
[7] J. S. Yoon, J. Hong and J. Kim, "A Digitally-Calibrated 70.98dB-SNDR 625kHz-Bandwidth Temperature-Tolerant 2nd-order Noise-Shaping SAR ADC in 65nm CMOS," 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019, pp. 195-196.
[8] X. Tang et al., "A 13.5b-ENOB Second-Order Noise-Shaping SAR with PVT-Robust Closed-Loop Dynamic Amplifier," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 162-164.
[9] X. Tang et al., "A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier," in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[11] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," in IEEE ISSCC Dig. Tech. Papers, pp. 244-610, Feb. 2008.
[12] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[13] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[14] Z. Chen, M. Miyahara and A. Matsuzawa, "A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016.
[15] Y. Lin, C. Lin, S. Tsou, C. Tsai and C. Lu, "A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 330-332.
[16] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang and N. Sun, "A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 158-160.
[17] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto and K. Sushihara, "A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1-2.
[18] Y. Shu, L. Kuo and T. Lo, "An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016.
[19] L. Jie, B. Zheng, H. Chen, R. Wang and M. P. Flynn, "A 4th-Order Cascaded-Noise-Shaping SAR ADC with 88dB SNDR Over 100kHz Bandwidth," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 160-162.
[20] C. Liu and M. Huang, "A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 466-467.
[21] C. Lillebrekke, C. Wulff and T. Ytterdal, "Bootstrapped switch in low-voltage digital 90nm CMOS technology," 2005 NORCHIP, 2005, pp. 234-236.
[22] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
[23] S. W. M. Chen, R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[24] H. Garvik, C. Wulff and T. Ytterdal, "An 11.0 bit ENOB, 9.8 fJ/conv.-step noise-shaping SAR ADC calibrated by least squares estimation," 2017 IEEE Custom Integrated Circuits Conference (CICC), 2017, pp. 1-4.
[25] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta- Sigma Data Converters, 2nd ed. Piscataway, NJ, USA: IEEE Press, 2017.
[26] J. M. de la Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 1-21, Jan. 2011.
[27] M. A. Ghanad, C. Dehollain and M. M. Green, "Noise analysis for time-domain circuits," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 149-152.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *