帳號:guest(18.224.60.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱 瀚
作者(外文):Chiu, Han
論文名稱(中文):網絡攻擊下基於網絡安全觀測器的隨機四旋翼無人機系統之追蹤控制
論文名稱(外文):Networked Security Observer-based Tracking Control of Stochastic Quadrotor UAV System Under Cyber-Attacks
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):黃志良
李征衛
吳建鋒
吳常熙
口試委員(外文):Huang, Chih-Liang
Li, Cheng-Wei
Wu, Chien-Feng
Wu, Chang-Xi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061545
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:29
中文關鍵詞:網絡控制系統惡意攻擊線性矩陣不等式參考追蹤控制非線性隨機系統
外文關鍵詞:network control systemmalicious attacklinear matrix inequalitiesreference tracking controlnonlinear stochastic system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:459
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文針對隨機四旋翼無人機系統受到系統狀態和傳感器的惡意攻擊,提出了一種網絡安全跟踪控制方案。通過新穎的離散平滑模型,可以導出攻擊信號模型,並用四旋翼無人機模型進行擴充。通過常見的Luenberger觀測器,可以同時估算攻擊信號以及四旋翼系統狀態。這樣,就可以避免攻擊信號導致四旋翼無人機網絡控制系統損壞。為了使四旋翼無人機的網絡控制系統能夠在外部干擾以及執行器和傳感器攻擊下跟踪任何種類的所需軌跡,並完成其任務,參考模型被利用來生成四旋翼無人機的所需路徑。為了消除外部干擾和內在波動的影響,引入了基於H_∞觀測器的魯棒跟踪控制方案,以減弱它們對四旋翼無人機網絡控制系統的影響。此外,可以將強健的H_∞基於觀察者的參考跟踪控制設計轉換為等效的非線性功能不等式。由於非線性函數不等式不易用解析或數值方法求解,因此採用Takagi-Sugeno(T-S)模糊插值技術通過一組模糊局部線性局部系統對非線性隨機四旋翼網絡控制系統進行插值。然後,可以將非線性函數不等式轉換為一組線性矩陣不等式。通過MATLAB中線性矩陣不等式的工具箱,可以得到線性矩陣不等式的解,並且可以輕鬆實現所提出的基於強健模糊觀測器的四旋翼無人機NCS跟踪控制器。一個模擬的例子被提供來驗證了所提方法的有效性。
In this study, a networked security tracking control scheme is proposed for the stochastic quadrotor unmanned aerial vehicle (UAV) system under malicious attacks on the system state and sensor. By a novel discrete smoothed model, the model of attack signals can be derived and augmented with the quadrotor UAV model. Through a conventional Luenberger observer, attack signals as well as the quadrotor system state can be simultaneously estimated. Then, the corruption of the quadrotor UAV network control system (NCS) under attack signals can be avoidable. To make the NCS of quadrotor UAV be able to track any kinds of desired trajectory under external disturbances and actuator and sensor attack to complete its tasks, a reference model is utilized to generate the desired path of quadrotor UAV. For eliminating the influence from external disturbance and intrinsic fluctuation, a robust H_∞ observer-based tracking control scheme is introduced to attenuate their effects on the NCS of quadrotor UAV. Further, the robust H_∞ observer-based reference tracking control design can be transformed to an equivalent nonlinear functional inequality. Since the nonlinear functional inequality is not easy to be solved analytically or numerically, the Takagi-Sugeno (T-S) fuzzy interpolation technique is employed to interpolate the nonlinear stochastic quadrotor NCS by a set of linear local systems via fuzzy bases. Then, the nonlinear functional inequality can be converted to a set of linear matrix inequalities (LMIs). By the MATLAB LMI TOOLBOX, LMIs can be solved and the proposed robust fuzzy observer-based tracking controller of quadrotor UAV NCS can be easily implemented. A simulation example is provided to validate the effectiveness of the proposed method.
Contents
摘要.........................................................i
Abstract....................................................ii
誌謝........................................................iii
Contents....................................................iv
I. Introduction..............................................1
II. System description and preliminaries.....................2
A. Dynamic model of quadrotor UAV....................2
B. Network control system............................3
C. Problem formulation...............................7
III. H_∞ networked observer-based security tracking control design of stochastic quadrotor UAV..................................7
IV. T-S fuzzy networked H_∞ observer-based security tracking control for nonlinear stochastic quadrotor UAV system under cyber-attack.......................................................9
V. Simulation results.......................................14
VI. Conclusion..............................................17
Appendix....................................................18
Reference...................................................29
[1] M. Zhu, X. Du, X. Zhang, H. Luo, and G. Wang, “Muti-UAV rapid-assessment task-assignment problem in a post-earthquake scenario,” IEEE Access,
vol. 7, pp. 74542-74557, Jun. 2019.
[2] N. Chen, N. Ni, P. Kapp, J. Chen, A. Xiao, and H. Li, “Structural analysis of the hero range in the Qaidam Basin, Northwestern China, using integrated
UAV, Terrestrial LiDAR, Landsat 8, and 3-D seismic data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.
8, no. 9, pp. 4581 - 4591, Sep. 2015.
[3] D. Orfanus, E. P. de Freitas, and F. Eliassen, “Self-organization as a supporting paradigm for military UAV relay networks,” IEEE Communication letters,
vol. 20, no. 4, pp. 804-807, Apr. 2016.
[4] M. E. Campell, and W. W. Whitacre, “Cooperative tracking using vision measurements on SeaScan UAVs,” IEEE Trans. on Control Systems Technology,
vol. 15, no. 4, pp. 613-626, Jun. 2007.
[5] H. Zhou, H. Kong, L. Wei, D. Creighton, and S. Nahavandi, “Efficient road detection and tracking for unmanned aerial vehicle,” IEEE Trans. on
Intelligent Transportation Systems, vol. 16, no. 1, pp. 297-309, Feb. 2015.
[6] F. Liao, R. Teo, J. L. Wang, X. Dong, F. Lin, and K. Peng, “Distributed formation and reconfiguration control of VTOL UAVs,” IEEE Trans. on Control
Systems Technology, vol. 25, no. 1, pp. 270-277, Jan. 2017.
[7] Y. Zeng, and R. Zhang, “Energy-efficient UAV communication with trajectory optimization,” IEEE Trans. on Wireless Communications, vol. 16, no. 6,
pp. 3747-3760, Jun. 2017.
[8] F. Wu, D. Yang, L. Xiao, and L. Cuthbert, “Energy consumption and completion time tradeoff in rotary-wing UAV enabled WPCN,” IEEE Access, vol.
7, pp. 79617-79635, Jun. 2019.
[9] Y. Shi, and B. Yu, “Output feedback stabilization of networked control systems with random delays modeled by Markov chains,” IEEE Trans. on
Automatic Control, vol. 54, no. 7, pp. 1668-1674, Jul. 2009.
[10] G. P. Liu, Y. Xia, D. Rees, and W. Hu, “Design and stability criteria of networked predictive control systems With random network delay in the feedback
channel,” IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 2, pp. 173-184, Mar. 2007.
[11] H. Gao, and T. Chen, “Network-based H1 output tracking control,” IEEE Trans. on Automatic Control, vol. 53, no. 3, pp. 655-667, Apr. 2008.
[12] B. Xue, S. Li, and Q. Zhu, “Moving horizon state estimation for networked control systems with multiple packet dropouts,” IEEE Trans. on Automatic
Control, vol. 57, no. 9, pp. 2360-2366, Sep. 2012.
[13] R. Lu, Y. Xu, and R. Zhang, “A new design of nodel predictive tracking control for networked control system under random packet loss and uncertainties,”
IEEE Trans. on Industrial Electronics, vol. 63, no. 11, pp. 6999-7007, Nov. 2016.
[14] B. Genge, P. Haller, and I. Kiss, “Cyber-security-aware network design of industrial control systems,” IEEE Systems Journal, vol. 11, no. 3, pp. 1373-1384,
Sep. 2017.
[15] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal DoS attack scheduling in wireless networked control system,” IEEE Trans. on Control Systems
Technology, vol. 24, no. 3, pp. 843-852, May 2016.
[16] N. Liu, J. Zhang, H. Zhang, and W. Liu, “Security assessment for communication networks of power control systems using attack graph and MCDM,”
IEEE Trans. on Power Delivery, vol. 25, no. 3, pp. 1492-1500, Jul. 2010.
[17] H. Yang, and S. Yin, “Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults,” IEEE Trans. on Automatic
Control, vol. 64, no. 8, pp. 3370-3377, Aug. 2019.
[18] Q. Jia, W. Chen, Y. Zhang, and H. Li, “Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems
with time delays,” IEEE Trans. on Industrial Electronics, vol. 62, no. 6, pp. 3885-3895, Jun. 2015.
[19] Z. Gao, and S. X. Ding, “Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer
design,” IET Control Theory & Applications, vol. 1, no. 5, pp. 1208-1218, Sep. 2007.
[20] T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. SMC-15, no. 1, pp. 116-132, Jan.-Feb. 1985.
[21] X. Xhang, Y. Wang, G. Zhu, X. Chen, Z. Li, C. Wang, and C. Y. Su, “Compound adaptive fuzzy quantized control for quadrotor and its experimental
verification,” IEEE Trans. on Cybernetics, to be published, DOI:10.1109/TCYB.2020.2987811.
[22] B. S. Chen, and C. F. Wu, “Robust scheduling filter design for a class of nonlinear stochastic Poisson signal systems,” IEEE Trans. on Signal Processing,
vol. 63, no. 23, pp. 6245-6257, Dec.1, 2015.
[23] P. E. Kloeden, and R. A. Pearson, “The numerical solution of stochastic differential equations,” The ANZIAM Journal, vol. 20, no. 1, pp. 8-12, Jun.
1977.
[24] X. Luan, P. Shi, and F. Liu, “Stabilization of networked control systems with random delays,” IEEE Trans. on Industrial Electronics, vol. 58, no. 9, pp.
4323-4330, Sep. 2011.
[25] B. S. Chen, M. Y. Lee, and X. H. Chen, “Security-enhanced filter design for stochastic systems under malicious attack via smoothed signal model and
multiobjective estimation method,” IEEE Trans. on Signal Processing, vol. 68, pp. 4971-4986, Aug 2020.
[26] C. S. Tseng, “Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay,” IEEE Trans. on Fuzzy
Systems, vol. 14, no. 1, pp. 58-70, Feb. 2006.
[27] B. S. Chen, C. P. Wang, and M. Y. Lee, “Stochastic robust team tracking control of multi-UAV networked system under Wiener and Poisson random
fluctuations,” IEEE Trans. on Cybernetics, to be published, DOI:10.1109/TCYB.2019.2960104.
[28] W. Zhang, L. Xie, and B. S. Chen, Stochastic H2=H1 Control : A Nash Game Approach. Boca Raton, FL, USA: CRC Press, 2017.
[29] C. S. Tseng, and B. S. Chen, “Robust fuzzy observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances,”
IEEE Trans. on Fuzzy Systems, vol. 17, no. 3, pp. 711-723, Jul. 2008.
[30] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H1
control Theory, and linear matrix inequalities,” IEEE Trans. on Fuzzy Systems, vol. 4, no. 1, pp. 1-13, Feb. 1996.
[31] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. on Fuzzy
Systems, vol. 4, no. 1, pp. 14-23, Feb. 1996.
[32] J. Liang, Z. Wang, Y. Liu, and X. Liu, “Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks,” IEEE Trans.
on Neural Networks, vol. 19, no. 11, pp. 1910-1921, NOV. 2008.
[33] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM, 1994.
[34] B. S. Chen, M. Y. Lee and H. Chiu, Supplementary Materials. HsinChu, Taiwan, Available:https://drive.google.com/file/d/
17zwjETKgADP3vmmhsdEprfUmmAMCfC8h/view?usp=sharing
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *