帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳銘恩
作者(外文):Chen, Ming-En
論文名稱(中文):子載波及排列索引調變多重接取之旋轉編碼
論文名稱(外文):Subcarrier and Permutation Index Modulation Multiple Access with Rotation Code
指導教授(中文):吳仁銘
指導教授(外文):Wu, Jen-Ming
口試委員(中文):伍紹勳
桑梓賢
口試委員(外文):Wu, Shao-Xun
Sang, Zi-Xian
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061525
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:54
中文關鍵詞:旋轉編碼索引調變非正交多重接取
外文關鍵詞:Rotation codeIndex modulationNOMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:617
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本篇論文在正交分頻多工子載波及排列索引調變的基礎下提出一種碼域的非正交多重
接取架構,稱為「子載波及排列索引調變多重接取」。索引調變多重接取為索引調變技術
的應用,是一種用編碼簿來調變的非正交多重接取技術。它利用使用的子載波來當作索
引,這些索引可以在調變位元以外傳送額外的位元。
子載波及排列索引調變多重接取使用索引調變多重接取概念並藉著傳送額外的位元來
增進其性能。可區分的模式排列被用來當作索引調變的目的,讓可能傳遞方式有階層式的
增加。傳送額外資訊的索引位元不僅從使用的子載波和未使用的子載波來當作索引,更從
不同的模式排列而獲得,因此它能改善能量和頻譜效率。不僅如此,子載波及排列索引調
變多重接取技術可以透過調整使用的子載波和未使用的子載波來達到不同的頻譜和能量效
率。
為了降低競爭式多重接取技術的位元誤碼率,我們使用了旋轉編碼技術。藉著旋轉編
碼的技術進而增加分集增益,模擬結果也證實此技術應用於子載波及排列索引調變多重接
取技術其位元誤碼率有較佳的性能。在論文中使用最大似然法來分析平均位元誤碼率和位
元誤碼率的上界。簡而言之,此論文提出了一個碼域非正交多重接取技術,且和索引調變
多重接取、稀疏碼分多址以及正交頻分多址相比有更好的頻譜和能量效率。
In this thesis, a code-domain non-orthogonal multiple access (NOMA) scheme called ”
Subcarrier and Permutation Index Modulation Multiple Access” (SPIMMA) scheme under
the basis of Orthogonal Frequency Division Multiplexing-Subcarrier and Permutation Index
Modulation (OFDM-SPIM) is proposed. Index Modulation Multiple Access (IMMA) which
is an application of index modulation (IM) technique is a codebook-based NOMA scheme.
It uses the active subcarriers to make index indices which can carry additional bits besides
the modulation bits.
The proposed scheme - Subcarrier and Permutation Index Modulation Multiple Access (SPIMMA) uses the concept of IMMA and improves it by transmitting additional bits
through different modes. The permutations of distinguishable modes are used for index
modulation purposes, they cause a factorial increase of the number of possible transmission
patterns. Index bits which deliver additional information are not only produced from the
active and inactive subcarriers but also from the different modes permutation. Therefore,
it will improve the performance of energy efficiency (EE) and spectral efficiency (SE). Also,
SPIMMA has the flexibility to achieve different SE and EE by using different combinations.
The rotation code is proposed to solve the problem of inter-user interference (IUI)
in contention based multiple access. Due to the diversity gain from the rotation code,
the simulation results show that the bit error rate (BER) of SPIMMA is improved with
rotation code. Moreover, OFDM-SPIM average bit error rate (ABER) performance with joint maximum likelihood (JML) detection and the ABER error bound are proposed. In
brief, we design a code-domain NOMA scheme that can facilitate grant free random multiple
access, and has better SE, EE than IMMA, OFDMA and SCMA.
摘要 i
Abstract ii
Contents iv
1 INTRODUCTION 1
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contribution and Achievement . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 BACKGROUND 6
2.1 Contention Based and Non-Contention Based Transmission Schemes . . . . . 6
2.2 Grant Based and Grant Free Transmission Schemes . . . . . . . . . . . . . . 8
2.3 Scheduling and Random Transmission Schemes . . . . . . . . . . . . . . . . 9
2.4 Orthogonal Frequency Division Multiplexing (OFDM) . . . . . . . . . . . . 10
2.5 Orthogonal Frequency Division Multiple Access (OFDMA) . . . . . . . . . . 11
2.6 Sparse Code Multiple Access (SCMA) . . . . . . . . . . . . . . . . . . . . . 11
2.7 Spatial Modulation (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Orthogonal Frequency Division Multiplexing-Index Modulation (OFDM-IM) 17
2.9 Multiple-Mode Orthogonal Frequency Division Multiplexing with Index Modulation (MM-OFDM-IM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Rotation Code (RC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 SUBCARRIER and PERMUTATION INDEX MODULATION MULTIPLE ACCESS SCHEME 22
3.1 Orthogonal Frequency Division Multiplexing-Subcarrier and Permutation Index Modulation (OFDM-SPIM) . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 OFDM-SPIM Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Index Modulation Multiple Access (IMMA) . . . . . . . . . . . . . . . . . . 28
3.4 Subcarrier and Permutation Index Modulation Multiple Access (SPIMMA) . 30
3.5 SPIMMA Joint Maximum Likelihood Receiver . . . . . . . . . . . . . . . . . 33
4 SIMULATION RESULTS 35
4.1 BER Performance of Index Modulation Aided OFDM Schemes . . . . . . . . 36
4.2 BER Performance of Index Modulation Multiple Access Schemes . . . . . . . 39
4.3 BER Performance between R-SPIMMA and SCMA . . . . . . . . . . . . . . 41
4.4 Spectral Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 CONCLUSION 49
Bibliography 51

List of Figures
1.1 Different types of transmission scheme under contention based multiple access. 3
2.1 The architecture diagram of different types of transmission schemes for multiple access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The illustration of contention-based NOMA. . . . . . . . . . . . . . . . . . . 8
2.3 The illustration of four-step physical random access channel (PRACH) procedure [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 The illustration of the grant free transmission [2]. . . . . . . . . . . . . . . . 10
2.5 The illustration of the scheduling transmission scheme. . . . . . . . . . . . . 11
2.6 The illustration of the random transmission scheme. . . . . . . . . . . . . . . 12
2.7 The illustration of OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 The illustration of OFDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 SCMA encoding procedure [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 A uplink SCMA system with N = 4, J = 2, K = 6 [4]. . . . . . . . . . . . . 15
2.11 An example of SCMA codebook [5]. . . . . . . . . . . . . . . . . . . . . . . . 16
2.12 SCMA encoding and multiplexing [6]. . . . . . . . . . . . . . . . . . . . . . . 17
2.13 Block diagram of OFDM-IM transmitter [7]. . . . . . . . . . . . . . . . . . . 18
2.14 Block diagram of MM-OFDM-IM transmitter [8]. . . . . . . . . . . . . . . . 19
2.15 The illustration of rotation code [9]. . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Block diagram of the OFDM-SPIM transmitter. . . . . . . . . . . . . . . . . 23
3.2 Constellation diagram of OFDM-SPIM with M = 2, N = 4, J = 3. . . . . . 24
3.3 Comparison of diversity order between errors in index bits and symbol bits. [10] 27
3.4 The schematic diagram of the IMMA codebook with N = 4, J = 3 and K = 2. 29
3.5 The illustration of the SPIMMA codebook with N = 4, J = 3 and K = 2. . 31
3.6 The schematic diagram of the SPIMMA codebook with N = 4, J = 3 and
K = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Example of R-SPIMMA system model. . . . . . . . . . . . . . . . . . . . . . 32
4.1 BER performance comparison among classical OFDM BPSK and different
index modulation aided OFDM schemes with spectral efficiency = 1∼1.25
bits/s/Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 BER performance comparison among classical OFDM BPSK and different
index modulation aided OFDM schemes with spectral efficiency = 2∼2.5 bits/
s/Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 BER performance comparison among different index modulation aided OFDM
multiple access schemes with spectral efficiency = 2∼2.5 bits/s/Hz. . . . . . 40
4.4 BER performance comparison among different index modulation aided OFDM
multiple access schemes with spectral efficiency = 4∼5 bits/s/Hz. . . . . . . 41
4.5 BER performance comparsion for R-SPIMMA with SCMA with spectral efficiency = 6∽6.25 bits/s/HZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 BER performance comparsion for R-SPIMMA with SCMA at 25dB with different spectral efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Spectral Efficiency of SPIMMA for different number of active subcarriers J
with N = 4, M = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Spectral Efficiency improvement ratio comparing SPIMMA with IMMA with
N = 4, M = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Energy Efficiency improvement ratio comparing SPIMMA with SCMA with
N = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

List of Tables
2.1 An example of spatial modulation with NT = 4 and M = 2. . . . . . . . . . 15
2.2 An example of generalized spatial modulation with BPSK modulation, NT =
4 and nT = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 The illustration of the IMMA codebook with N = 4, J = 3. . . . . . . . . . 29
4.1 The simulation parameters between different systems with same energy efficiency for Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 The simulation parameters between different systems with same energy efficiency for Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 The simulation parameters between different systems with same energy efficiency for Figure 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 The simulation parameters between different systems with same energy efficiency for Figure 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 The simulation parameters between different systems with same energy efficiency for Figure 4.5 Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . 42
[1] Z. Yuan, C. Yan, Y. Yuan, and W. Li, “Blind multiple user detection for grant-free
MUSA without reference signal,” IEEE 86th Vehicular Technology Conference (VTCFall), pp. 1–5, Sept. 2017.
[2] N. Ye, W. Aihua, L. Xiangming, and W. Liu, “Rate-adaptive multiple access (rama)
for uplink grant-free transmission,” Wireless Communications and Mobile Computing,
Apr. 2018.
[3] Y. C. et al., “SCMA: A promising non-orthogonal multiple access technology for 5G
networks,” Proc. IEEE 84th Veh. Technol. Conf. (VTC-Fall), pp. 1–6, Sept. 2016.
[4] Nikopour, Hosein, Baligh, and Hadi, “Sparse code multiple access,” IEEE 24th Annual
International Symposium on Personal, Indoor, and Mobile Radio Commun. (PIMRC),
Sept. 2013.
[5] A. I. A. website, “1st 5G algorithm innovation competition-ENV1.0-SCMA,”
Web:http://www.innovateasia.com/5g/en/gp2.html, 2015.
[6] K. A. et al., “Uplink Contention Based SCMA for 5G Radio Access,” IEEE Globecom
2014 Workshop, pp. 900–905, Dec. 2014.
[7] E. Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun.
Mag., vol. 54, no. 7, pp. 168 – 175, Jul. 2016.
[8] Q. L. B. Z. M. Wen, E. Basar and M. Zhang, “Multiple-Mode Orthogonal Frequency Division Multiplexing With Index Modulation,” IEEE Transactions on Communications,
vol. 65, no. 9, pp. 3892–3906, Sept. 2017.
[9] J. Boutros and E. Viterbo, “Signal space diversity: - and bandwidth-efficient diversity
technique for the Rayleigh fading channel,” IEEE Trans. Inform. Theory, vol. 44, pp.
1453–1467, Jul. 1998.
[10] K. G. J. Z. Y. Shi, X. Lu and S. Wang, “Subblocks Set Design Aided Orthogonal
Frequency Division Multiplexing With All Index Modulation,” IEEE Access, vol. 7, pp.
52 659–52 668, 2019.
[11] A. L. T. L. M. F. Boccardi, R. W. Heath Jr and P. Popovski., “Five disruptive technology
directions for 5G,” IEEE Commun., vol. 52, no. 2, p. 74–80, Feb. 2014.
[12] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth,
M. Schellmann, H. Schotten, H. Taoka et al., “Scenarios for 5g mobile and wireless
communications: the vision of the metis project,” IEEE communications magazine,
vol. 52, no. 5, pp. 26–35, 2014.
[13] J. G. A. et al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.
1065–1082, Jun. 2014.
[14] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-orthogonal multiple
access for 5g: solutions, challenges, opportunities, and future research trends,” IEEE
Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015.
[15] S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, “Superposition coding strategies: design and experimental evaluation,” IEEE Trans. on Wireless
Commun., vol. 11, no. 7, pp. 2628–2639, Jul. 2012.
[16] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared access for
Internet of Things,” IEEE Vehicular Technology Conference (VTC Spring), May 2016.
[17] B. Chakrapani, T. L. Narasimhan, and A. Chockalingam, “Generalized space-frequency
index modulation: Low-complexity encoding and detection,” Proc. IEEE Globecom
Workshops (GC Wkshps), pp. 1–6, Dec. 2015.
[18] M. D. R. et al., “Spatial modulation for generalized MIMO: Challenges, opportunities,
and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
[19] M.Taherzadeh, H.Nikopour, A.Bayesteh, and H.Baligh, “SCMA codebook design,” in
Proc. IEEE 80th Vehicular Technology Conference (VTC Fall), Sept. 2014.
[20] E. P. E. Başar, Ü. Aygölü and H. V. Poor, “Orthogonal Frequency Division Multiplexing
With Index Modulation,” IEEE Transactions on Signal Processing, vol. 61, no. 22, pp.
5536–5549, Nov. 2015.
[21] E. Basar, “On multiple-input multiple-output ofdm with index modulation for next
generation wireless networks,” IEEE Transactions on Signal Processing, vol. 64, no. 15,
pp. 3868–3878, Aug. 2016.
[22] E. Başar, “Multiple-input multiple-output ofdm with index modulation,” IEEE Signal
Processing Letters, vol. 22, no. 12, pp. 2259–2263, Dec. 2015.
[23] P. V. D. Tse, “Fundamentals of Wireless Communications,” Cambridge Univ. Press,
2005.
[24] Y. C. Y. Lai and J. Wu, “Index Modulation Multiple Access,” IEEE 29th Annual
International Symposium on Personal, pp. 1–5, 2018.
[25] J. Bao, Z. Ma, and Z. Ding, “On the design of multiuser codebooks for uplink SCMA
systems,” IEEE Commun. Lett., vol. 20, no. 10, pp. 1920–1923, Oct. 2016.
[26] R. H. G. M. Vameghestahbanati, I. D. Marsland and H. Yanikomeroglu, “Multidimensional Constellations for Uplink SCMA Systems—A Comparative Study,” IEEE
Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2169–2194, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *