帳號:guest(3.149.250.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯明亜
作者(外文):Ko, Ming-Ya
論文名稱(中文):從受眾反應探討多媒體對社群與個人影響: 電影票房預測和個人化情緒分析
論文名稱(外文):Learning Impact of Multimedia on Society and Individuals from Audience Reactions to Videos: Box Office Prediction and Personalized Affective Analysis
指導教授(中文):李祈均
指導教授(外文):Lee, Chi-Chun
口試委員(中文):胡敏君
林嘉文
林彥宇
口試委員(外文):Hu, Min-Chun
Lin, Chia-Wen
Lin, Yen-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061524
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:43
中文關鍵詞:多媒體電影票房預測受眾反應分析鑲嵌表徵學習
外文關鍵詞:multimediabox office predictionaudience reaction analysisembedding learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:374
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
隨著科技的發展,多媒體的資訊量與日俱增,成為一種傳遞訊息與想法的重要通訊管道,對個人與社會帶來各方面的影響,個人而言,在接收端的我們因為不同的人格特質、喜好,可能誘發出不同的情緒感受;對社會而言,多媒體可以創造商業價值,或用來增加社會議題的討論,因此能同時了解多媒體富含的意義與受眾的反應,更能達到多媒體傳輸的目的,人工智慧技術的興起,使得我們可以多面向、量化的討論多媒體與個人、社會的關係。
在此篇研究中我們探討觀看影片時受眾的即時反應,在兩個實驗中分別以社群與個人的角度進行研究,實驗一利用電影預告的內容與受眾觀看預告時臉部表情的反應建立電影票房預測模型,並提出基於電影種類的鑲嵌表徵學習架構(Intra-genre projection)以提升票房預測準確率。實驗二我們更深入研究影片內容與觀眾反應的關係,考慮到個人的差異,建立個人化的情緒反應預測模型,並結合推薦系統(Recommendation System)的概念,運用基於影片資訊的方法與實驗一提出的種類鑲嵌表徵學習架構,在即使只有一個人少量的資訊下驗證可行性。總結實驗一與實驗二可以發現人的反應因為影片的類型而有差異,且在影片的設計上為了激發不同的情緒,各類型的影片會有不同的特徵,因此透過以類型為基礎的鑲嵌表徵學習架構,先區分出不同的類型,再進行票房或情緒反應可以增進預測準確率。
With the improvement in technology, multimedia contents increase rapidly. Multimedia is a communication medium for people convey certain concepts or emotion, and effects individuals and society. For individuals, we experience certain emotion or feelings while interacting with media contents. Induced feelings and emotion are often varying due to individual difference. As for society, multimedia makes impacts to economics and politics. It can also make some social issues bring to public attention. As the rise of artificial intelligence, people use machine learning methods to analyze large-scale and comprehensive multimedia content and human behaviors.
In this work, we learn people’s just-in-time reaction while watching video clips. We design two experiments for learning the impact of multimedia on society and individuals respectively. In the first experiment, we utilize trailers content and audience reaction to build a box office prediction model. We propose a novel intra-genre embedding which project raw features to another latent space considering the genre to improve predictive power. In the second experiment, we further investigate the relation between audience and content. Considering individual differences, we build personalized models. Their natural reaction during video watching can be regarded as certain ratings or preference. Motivated by the concept of Recommendation System, we propose content-based methods using the similar genre-based projection in experiment 1 to learn personalized reaction and deal with lack of data problems. Summarizing experiment 1 and experiment 2, we find that genre plays an important role in shaping the trailer content and viewer response. By appropriately projecting content and expression features onto a minimal intra-genre representation space, it effectively mitigates the unwanted variability in the original feature space and, hence, enhances their discriminatory power in box office prediction and personalized reaction prediction.
摘要....................................................I
ABSTRACT...............................................II
誌謝....................................................IV
CONTENTS................................................V
CHAPTER 1 INTRODUCTION..................................1
1.1 RELATED WORK.......................................3
CHAPTER 2 DATABASE: REACTION VIDEOS.....................6
CHAPTER 3 EXPERIMENT1: BOX OFFICE PREDICTION USING TRAILER CONTENT AND VIEWERS’ REACTION...................................8
3.1 METHODOLOGY........................................8
3.1.1 Dataset: Movie Trailer and Reactors.............8
3.1.2 Features........................................9
3.1.3 Network Architecture: Intra-Genre Projection...14
3.2 EXPERIMENTS & RESULTS.............................16
3.3 DISCUSSION & ANALYSIS.............................18
CHAPTER 4 EXPERIMENT2: PERSONALIZED REACTION MODEL.....20
4.1 DATASET...........................................20
4.1.1 Features Extraction and Label Setting..........22
4.2 METHODOLOGY.......................................24
4.2.1 Deep Neural Network (DNN)......................25
4.2.2 Recommender System Model.......................25
4.2.3 High Order SVD (HOSVD).........................26
4.2.4 Deep Matrix Factorization (DMF)................28
4.2.5 Deep Variational Matrix Factorization (VDMF)...29
4.3 EXPERIMENTS & RESULTS.............................31
4.4 DISCUSSION & ANALYSIS.............................33
4.4.1 Model Comparison...............................33
4.4.2 Person and Genre...............................34
4.4.3 Content and Genre..............................35
CHAPTER 5 CONCLUSION...................................38
REFERENCE..............................................40
[1] Anne Bartsch, Peter Vorderer, Roland Mangold and Reinhold Viehoff, “Appraisal of Emotions in Media Use: Toward a Process Model of Meta-Emotion and Emotion Regulation” in Media Psychology, vol. 11, no. 1, pp. 7-27, 2008
[2] Adelaar, Thomas, et al. "Effects of media formats on emotions and impulse buying intent." in Journal of Information Technology, 18.4, pp. 247-266, 2003
[3] Doyle, Gillian. “Understanding media economics.” SAGE Publications Limited, 2013.
[4] Gitlin, Todd. "Media sociology." Theory and society 6.2 (1978): 205-253.
[5] Y. Lin et al., "EEG-Based Emotion Recognition in Music Listening," in IEEE Transactions on Biomedical Engineering, vol. 57, no. 7, pp. 1798-1806, July 2010.
[6] M. Soleymani, M. Pantic and T. Pun, "Multimodal Emotion Recognition in Response to Videos," in IEEE Transactions on Affective Computing, vol. 3, no. 2, pp. 211-223, April-June 2012
[7] Douiji yasmina, Mousannif Hajar, Al Moatassime Hassan, “Using YouTube Comments for Text-based Emotion Recognition,” in Procedia Computer Science, vol. 83, pp. 292-299, 2016,
[8] Deng, Zhiwei, et al. "Factorized variational autoencoders for modeling audience reactions to movies." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[9] Vonderschmitt, Kaitlin. "The growing use of social media in political campaigns: How to use Facebook, Twitter and YouTube to create an effective social media campaign." (2012).
[10] Wühr, Peter, Benjamin P. Lange, and Sascha Schwarz. "Tears or fears? Comparing gender stereotypes about movie preferences to actual preferences." Frontiers in psychology 8 (2017): 428.
[11] Saeed, Henna, et al. "Gazed representation: Analysis of gender portrayal in Hindi and English music videos." Journal of Media Studies 28.2 (2019).
[12] Jeffrey S. Simonoff and Ilana R. Sparrow, “Predicting movie grosses: Winners and losers, blockbusters and sleepers,” CHANCE, vol. 13, no. 3, pp. 15–24, 2000. [13] Byeng-Hee Chang and Eyun-Jung Ki, “Devising a practical model for predicting theatrical movie success: Focusing on the experience good property,” Journal of Media Economics, vol. 18, no. 4, pp. 247–269, 2005.
[14] Ramesh Sharda and Dursun Delen, “Predicting boxoffice success of motion pictures with neural networks,” Expert Systems with Applications, vol. 30, no. 2, pp. 243–254, 2006.
[15] T. G. Rhee and F. Zulkernine, “Predicting movie box office profitability: A neural network approach,” in 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Dec 2016, pp. 665–670.
[16] Y. Hou, T. Xiao, S. Zhang, X. Jiang, X. Li, X. Hu, J. Han, L. Guo, L. S. Miller, R. Neupert, and T. Liu, “Predicting movie trailer viewer’s “like/dislike” via learned shot editing patterns,” IEEE Transactions on Affective Computing, vol. 7, no. 1, pp. 29–44, Jan 2016
[17] A. Tadimari, N. Kumar, T. Guha, and S. S. Narayanan,“Opening big in box office? trailer content can help,” in 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2016, pp. 2777–2781.
[18] Gilad Mishne and Natalie Glance, “Predicting movie sales from blogger sentiment,” AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, pp. 155–158, Jan 2006.
[19] Andrei Oghina, Mathias Breuss, Manos Tsagkias, and Maarten de Rijke, “Predicting imdb movie ratings using social media,” in Advances in Information Retrieval, Berlin, Heidelberg, 2012, pp. 503–507, Springer Berlin Heidelberg.
[20] S. Asur and B. A. Huberman, “Predicting the future with social media,” in 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Aug 2010, vol. 1, pp. 492–499.
[21] M´arton Mesty´an, Taha Yasseri, and J´anos Kert´esz, “Early prediction of movie box office success based on wikipedia activity big data,” PLOS ONE, vol. 8, no. 8, pp. 1–8, Aug 2013.
[22] Hee Lin Wang and Loong-Fah Cheong, “Affective understanding in film,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 6, pp. 689– 704, June 2006.
[23] Hamann, Stephan, and Turhan Canli. "Individual differences in emotion processing." Current opinion in neurobiology 14.2 (2004): 233-238.
[24] Norman, Jonathan. "PERSONALITY TYPES AND THE ENJOYMENT OF HORROR MOVIES." Journal of Social & Psychological Sciences 11.1 (2018).
[25] Zhao, Sicheng, et al. "Predicting personalized emotion perceptions of social images." Proceedings of the 24th ACM international conference on Multimedia. 2016.
[26] Yeh, Chan-Chang, et al. "Building a personalized music emotion prediction system." Pacific-Rim Conference on Multimedia. Springer, Berlin, Heidelberg, 2006.
[27] Zhao, Sicheng, et al. "Personality-Aware Personalized Emotion Recognition from Physiological Signals." IJCAI. 2018.
[28] T. Guha, N. Kumar, S. S. Narayanan, and S. L. Smith, “Computationally deconstructing movie narratives: An informatics approach,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, pp. 2264–2268.
[29] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. Andr´e, C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan, and K. P. Truong, “The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective computing,” IEEE Transactions on Affective Computing, vol. 7, no. 2, pp. 190–202, Apr 2016.
[30] Florian Eyben, Martin W¨ollmer, and Bj¨orn Schuller, “opensmile – the munich versatile and fast open-source audio feature extractor,” in Proc. ACM Multimedia (MM), Oct 2010, pp. 1459–1462.
[31] Patricia Valdez and Albert Mehrabian, “Effects of color on emotions,” Journal of Experimental Psychology, vol.123, no. 4, pp. 394–409, 1994.
[32] H. Wang, A. Kl¨aser, C. Schmid, and C. Liu, “Action recognition by dense trajectories,” in CVPR 2011, Jun 2011, pp. 3169–3176.
[33] Jorge Sanchez, Florent Perronnin, Thomas Mensinka, and Jakob Verbeek, “Image classification with the fisher vector: Theory and practice,” International Journal of Computer Vision, vol. 105, no. 3, pp. 222–245, Dec 2013.
[34] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L. Morency, “Openface 2.0: Facial behavior analysis toolkit,” in 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), May 2018, pp.59–66.
[35] Zhang, Ying, and Huchuan Lu. "Deep cross-modal projection learning for image-text matching." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
[36] Lucey, Patrick, et al. "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression." 2010 ieee computer society conference on computer vision and pattern recognition-workshops. IEEE, 2010.
[37] Hug, Nicolas, "Surprise, a Python library for recommender systems", http://surpriselib.com, 2017
[38] Mnih, Andriy, and Russ R. Salakhutdinov. "Probabilistic matrix factorization." Advances in neural information processing systems. 2008.
[39] S. Funk, “Netflix Update: Try This At Home”, http://sifter.org/˜simon/journal/20061211.html, 2006.
[40] Koren, Yehuda. "Factorization meets the neighborhood: a multifaceted collaborative filtering model." Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining. 2008.
[41] Karatzoglou, Alexandros, et al. "Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering." Proceedings of the fourth ACM conference on Recommender systems. 2010.
[42] Lian, Defu, et al. "Regularized content-aware tensor factorization meets temporal-aware location recommendation." 2016 IEEE 16th international conference on data mining (ICDM). IEEE, 2016.
[43] Xue, Hong-Jian, et al. "Deep Matrix Factorization Models for Recommender Systems." IJCAI. Vol. 17. 2017.
[44] Yi, Baolin, et al. "Deep matrix factorization with implicit feedback embedding for recommendation system." IEEE Transactions on Industrial Informatics 15.8 (2019): 4591-4601.
[45] Shen, Xiaoxuan, et al. "Deep Variational Matrix Factorization with Knowledge Embedding for Recommendation System." IEEE Transactions on Knowledge and Data Engineering (2019).
[46] Ming-Ya Ko, Jeng-Lin Li, Chi-Chun Lee, "Learning Minimal Intra-Genre Multimodal Embedding from Trailer Content and Reactor Expressions for Box Office Prediction", in Proceedings of the IEEE International Conference on Multimedia & Expo (ICME), 2019
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 透過語音特徵建構基於堆疊稀疏自編碼器演算法之婚姻治療中夫妻互動行為量表自動化評分系統
2. 基於健保資料預測中風之研究並以Hadoop作為一種快速擷取特徵工具
3. 一個利用人類Thin-Slice情緒感知特性所建構而成之全時情緒辨識模型新框架
4. 應用多任務與多模態融合技術於候用校長演講自動評分系統之建構
5. 基於多模態主動式學習法進行樣本與標記之間的關係分析於候用校長評鑑之自動化評分系統建置
6. 透過結合fMRI大腦血氧濃度相依訊號以改善語音情緒辨識系統
7. 結合fMRI之迴旋積類神經網路多層次特徵 用以改善語音情緒辨識系統
8. 針對實體化交談介面開發基於行為衡量方法於自閉症小孩之評估系統
9. 一個多模態連續情緒辨識系統與其應用於全域情感辨識之研究
10. 整合文本多層次表達與嵌入演講屬性之表徵學習於強健候用校長演講自動化評分系統
11. 利用聯合因素分析研究大腦磁振神經影像之時間效應以改善情緒辨識系統
12. 利用LSTM演算法基於自閉症診斷觀察量表訪談建置辨識自閉症小孩之評估系統
13. 利用多模態模型混合CNN和LSTM影音特徵以自動化偵測急診病患疼痛程度
14. 以雙向長短期記憶網路架構混和多時間粒度文字模態改善婚 姻治療自動化行為評分系統
15. 透過表演逐字稿之互動特徵以改善中文戲劇表演資料庫情緒辨識系統
 
* *