帳號:guest(3.144.116.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳永慶
作者(外文):Chen, Yung-Ching
論文名稱(中文):以消除耳機交互調變失真的方法測量人耳之變頻耳聲傳射
論文名稱(外文):Measuring Distortion Product Otoacoustic Emissions in Human Ears Based on an Earphone Intermodulation Distortion Cancellation Method
指導教授(中文):劉奕汶
指導教授(外文):Dr, Liu, Yi-Wen
口試委員(中文):張書銘
陳新
口試委員(外文):Chang, Shu-Ming
Chen, Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061518
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:41
中文關鍵詞:耳聲傳射交互調變失真
外文關鍵詞:Otoacoustic emissionintermodulation distortion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:519
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
變頻耳聲傳射為一種誘發性耳聲傳射,傳統上,變頻耳聲傳射的誘發訊號需要由兩個揚聲器分別發射以避免揚聲器產生失真影響耳聲傳射訊號的正確性。在本篇論文中,首先,我們量測了在不同參數之誘發訊號的揚聲器失真訊號,藉此分析其特性,並且結合文獻中變頻耳聲傳射訊號強度對與誘發訊號的關係,提出了一種新的非線性量測方法,利用揚聲器近似線性的失真成長函數與耳聲傳射的飽和度,使變頻耳聲傳射能夠在僅需一個揚聲器的設備上量測。根據實驗結果,非線性量測方法能克服揚聲器產生的失真,並且得到變頻耳聲傳射訊號; 在空白實驗中,能夠消除大約 25 dB 的揚聲器失真訊號;在耳朵實驗中,非線性量測方式的結果與標準量測方式的結果的相關係數達到 0.61。
The distortion product OAE (DPOAE) is one type of evoked OAEs. Traditionally, DPOAE recording requires two speakers to play the stimulating signals simultaneously to prevent confusion from the distortion generated by the speaker itself. In this research, the relationship between the speaker distortion signals and the stimulation with different parameters was explored. Then combining the property of the DPOAE levels under different situations of the stimulation, we propose a new method, referred to as the nonlinear protocol, to record DPOAEs. The DPOAE signal is obtained with a single speaker by utilizing its saturation property and the approximate linearity of the speaker distortion growth function. Experiment results show that the nonlinear protocol cancels the distortion generated from the speaker and acquires the DPOAEs; in the syringe experiment, the speaker distortion was suppressed about 25 dB; in the ear experiments, the correlation coefficient reaches 0.61 between the result of the nonlinear protocol and the result of the ideal protocol.
1 Introduction 1
1.1 ProblemStatement .......................... 2
1.1.1 IntermodulationDistortion.................. 2
1.1.2 Interference between DPOAEs and Speaker Intermodula- tionDistortion ........................ 3
1.2 RelatedWorks............................. 6
1.3 GoalsandContributions ....................... 8
2 Methods 9
2.1 Procedures............................... 9
2.2 Phase Cancellation of Intermodulation Distortion . . . . . . . . . . 10
2.2.1 Speaker Intermodulation Distortion . . . . . . . . . . . . . 10
2.2.2 DPOAEs ........................... 12
2.3 GrowthFunctionofIMD3 ...................... 13
2.4 NonlinearProtocol .......................... 17
2.4.1 StimulationDesign...................... 19
2.4.2 IMD3Minimization ..................... 19
2.5 IdealProtocol............................. 21
2.6 Extraction of DPOAE Instantaneous Amplitude . . . . . . . . . . . 22
2.6.1 SignalProcessing....................... 22 2.6.2 Onset-DecompositionAlgorithm. . . . . . . . . . . . . . . 23
3 Experiments and Results 26
3.1 IMD3Suppression .......................... 26 3.1.1 IMD3AmplitudeandResidual................ 28
3.2 DPOAEAnalysis ........................... 28 3.2.1 DPOAEAmplitudesandResidual.............. 29
3.2.2 DPOAE Residual with IMD3 interference . . . . . . . . . . 33
4.1 Exploiting the quasi-linearity of IMD3 growth function . . . . . . . 36
4.2 SaturationofDPOAEs ........................ 36
4.3 Phasechangebetweenβf(v1)andf(v2) . . . . . . . . . . . . . . . 37
5 Conclusions ........................ 38
References ........................ 39
[1] A. Li, C. Wong, M. Wong, C. Lee, and M. Au Yeung, “Acute adverse reac- tions to magnetic resonance contrast media–gadolinium chelates,” The British journal of radiology, vol. 79, no. 941, pp. 368–371, 2006.
[2] D. T. Kemp, “Stimulated acoustic emissions from within the human auditory system,” The Journal of the Acoustical Society of America, vol. 64, no. 5, pp. 1386–1391, 1978.
[3] R. Probst, B. L. Lonsbury-Martin, and G. K. Martin, “A review of otoacoustic emissions,” The Journal of the Acoustical Society of America, vol. 89, no. 5, pp. 2027–2067, 1991.
[4] F.Harris,B.Lonsbury-Martin,B.Stagner,A.Coats,andG.Martin,“Acoustic distortion products in humans: Systematic changes in amplitude as a function of f 2/f 1 ratio,” The Journal of the Acoustical Society of America, vol. 85, no. 1, pp. 220–229, 1989.
[5] S. A. Gaskill and A. M. Brown, “The behavior of the acoustic distortion prod- uct, 2 f 1- f 2, from the human ear and its relation to auditory sensitivity,” The Journal of the Acoustical Society of America, vol. 88, no. 2, pp. 821–839, 1990.
[6] P. Boege and T. Janssen, “Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission i/o-functions in normal and cochlear hearing loss ears,” The Journal of the Acoustical Society of America, vol. 111, no. 4, pp. 1810–1818, 2002.
[7] P. Kummer, T. Janssen, and W. Arnold, “The level and growth behavior of the 2 f1- f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss,” The Journal of the Acoustical Society of America, vol. 103, no. 6, pp. 3431–3444, 1998.
[8] P. Kummer, T. Janssen, P. Hulin, and W. Arnold, “Optimal l1- l2 primary tone level separation remains independent of test frequency in humans,” Hearing research, vol. 146, no. 1-2, pp. 47–56, 2000.
[9] T. A. Johnson, S. T. Neely, C. A. Garner, and M. P. Gorga, “Influence of primary-level and primary-frequency ratios on human distortion product otoa- coustic emissions,” The Journal of the Acoustical Society of America, vol. 119, no. 1, pp. 418–428, 2006.
[10] A. M. Brown, F. P. Harris, and H. A. Beveridge, “Two sources of acoustic distortion products from the human cochlea,” The Journal of the Acoustical Society of America, vol. 100, no. 5, pp. 3260–3267, 1996.
[11] N. Schmuziger, J. Patscheke, and R. Probst, “Automated pure-tone threshold estimations from extrapolated distortion product otoacoustic emission (dpoae) input/ output functions,” The Journal of the Acoustical Society of America, vol. 119, no. 4, pp. 1937–1939, 2006.
[12] B. P. Kimberley, I. Hernadi, A. M. Lee, and D. K. Brown, “Predicting pure tone thresholds in normal and hearing-impaired ears with distortion product emission and age.,” Ear and Hearing, vol. 15, no. 3, pp. 199–209, 1994.
[13] A. Vetešník, D. Turcanu, E. Dalhoff, and A. W. Gummer, “Extraction of sources of distortion product otoacoustic emissions by onset-decomposition,” Hearing research, vol. 256, no. 1-2, pp. 21–38, 2009.
[14] J. Heitmann, B. Waldmann, H.-U. Schnitzler, P. K. Plinkert, and H.-P. Zenner, “Suppression of distortion product otoacoustic emissions (dpoae) near 2f 1- f 2 removes dp-gram fine structure—evidence for a secondary generator,” The Journal of the Acoustical Society of America, vol. 103, no. 3, pp. 1527–1531, 1998.
[15] M. Mauermann and B. Kollmeier, “Distortion product otoacoustic emission (dpoae) input/output functions and the influence of the second dpoae source,” The Journal of the Acoustical Society of America, vol. 116, no. 4, pp. 2199– 2212, 2004.
[16] S. Abu-Ghanem, O. Handzel, L. Ness, M. Ben-Artzi-Blima, K. Fait- Ghelbendorf, and M. Himmelfarb, “Smartphone-based audiometric test for screening hearing loss in the elderly,” European archives of oto-rhino- laryngology, vol. 273, no. 2, pp. 333–339, 2016.
[17] Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distor- tion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Optics express, vol. 21, no. 20, pp. 23433– 23440, 2013.
[18] M. Whitehead, M. McCoy, B. Lonsbury-Martin, and G. Martin, “Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. i. effects of decreasing l 2 below l 1,” The Journal of the Acous- tical Society of America, vol. 97, no. 4, pp. 2346–2358, 1995.
[19] M. Mauermann, S. Uppenkamp, P. W. van Hengel, and B. Kollmeier, “Evi- dence for the distortion product frequency place as a source of distortion prod- uct otoacoustic emission (dpoae) fine structure in humans. ii. fine structure for different shapes of cochlear hearing loss,” The Journal of the Acoustical Society of America, vol. 106, no. 6, pp. 3484–3491, 1999.
[20] V. Cizek, “Discrete hilbert transform,” IEEE Transactions on Audio and Elec- troacoustics, vol. 18, no. 4, pp. 340–343, 1970.
[21] E. Feilat, “Detection of voltage envelope using prony analysis-hilbert trans- form method,” IEEE Transactions on power delivery, vol. 21, no. 4, pp. 2091– 2093, 2006.
[22] D. Zelle, J. P. Thiericke, E. Dalhoff, and A. W. Gummer, “Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emis- sions in humans,” The Journal of the Acoustical Society of America, vol. 138, no. 6, pp. 3475–3490, 2015.
[23] S. T. Neely, T. A. Johnson, and M. P. Gorga, “Distortion-product otoacoustic emission measured with continuously varying stimulus level,” The Journal of the Acoustical Society of America, vol. 117, no. 3, pp. 1248–1259, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *