帳號:guest(3.147.140.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂心禾
作者(外文):Lu, Hsin-Ho
論文名稱(中文):永磁同步馬達驅動風渦輪機模擬器及風力切換式磁阻發電機之開發
論文名稱(外文):DEVELOPMENT OF A PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVEN WIND TURBINE EMULATOR AND A WIND SWITCHED-RELUCTANCE GENERATOR
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):鐘太郎
陳盛基
曾萬存
口試委員(外文):Jong, Tai-Lang
Chen, Seng-Chi
Tseng, Wan-Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061512
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:104
中文關鍵詞:風渦輪機模擬器風力發電機永磁同步馬達切換式磁阻發電機升壓式轉換器三相切換式整流器最大功率點追蹤
外文關鍵詞:wind turbine emulatorwind generatorPMSMswitched-reluctance generatorboost converterthree-phase SMRmaximum power point tracking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:789
  • 評分評分:*****
  • 下載下載:34
  • 收藏收藏:0
本論文旨在開發一以永磁同步馬達為主之風渦輪機模擬器與切換式磁阻風力發電機系統。首先,為利於研究進行,探究微電網、風力發電機、永磁同步馬達與切換式磁阻馬達之ㄧ些關鍵事務及常用介面轉換器。接著提出所建永磁同步馬達為主之風渦輪機模擬器。在適當設計之轉矩控制下,特定風渦輪機之轉矩-轉速與功率-轉速曲線得以忠實產出。此外,將永磁同步馬達操作在定速模式,所開發之風渦輪機模擬器成為傳統發電機之渦輪機。為使風渦輪機模擬器由市電供電,本論文設計製作一模組化三角接三相切換式整流器。
接著,開發一由非對稱橋式轉換器供電之切換式磁阻風力發電機,以作為對風渦輪機模擬器之測試負載。經適當建構其組成,包括外加激磁架構、換相架構、電壓及電流控制器,可得到良好發電特性。在一般定速發電下,切換式磁阻發電機可輸出良好調節之電壓;而於變速風力發電下,應用擾動觀察法可穩定達成最大功率點追蹤。
最終,設計一直流/直流升壓式介面轉換器,由切換式磁阻發電機之輸出建立400V之微電網直流鏈。經由所設計之電流及電壓控制架構,可達成在切換式磁阻發電機輸出電壓變化與負載變動下,均有良好之電壓調節特性。所建所有功率級之正常操作與性能,皆以實測結果驗證。
This thesis develops a permanent-magnet synchronous motor (PMSM) based wind turbine emulator (WTE) and a wind switched-reluctance generator (SRG) system. First, the fundamentals concerning micro-grid, wind generator, key issues of PMSM and switched-reluctance machine (SRM), and interface converters are explored. Then, the proposed PMSM based WTE is established. Under the properly designed torque control scheme, the designed torque-speed and power-speed curves of specified wind turbine can be faithfully generated. Besides, by operating the PMSM drive in constant-speed mode, the developed WTE can also be served as a conventional generator turbine. To let the WTE be powered from the mains, a modularly delta-connected three-phase switch-mode rectifier (SMR) is designed and implemented.
Next, a wind SRG with asymmetric bridge converter is developed to perform the loading test for the WTE system. Good generating characteristics are achieved via properly constructing its main constituted parts, including external excitation scheme, commutation scheme, current and voltage controllers. Under conventional generation, well-regulated SRG output voltage is obtained; While working as a wind SRG, the maximum power point tracking (MPPT) is stably achieved using the perturb and observe (P&O) method.
Finally, a DC/DC boost interface converter is designed to establish a 400V micro-grid DC-link from the SRG. Good voltage regulation characteristics against the wind SRG output voltage variation and load change are accomplished by the well-designed current and voltage control schemes. The normal operations and performances of all the developed power stages are verified experimentally.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xiv
LIST OF SYMBOLS xv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 CONCEPTS OF WIND GENERATORS AND THE EMPLOYED ELECTRIC MACHINES 5
2.1 Introduction 6
2.2 Micro-grid Systems 6
2.3 Wind Generator System 7
2.3.1 Structure of Wind Turbine 7
2.3.2 Governing Equation 9
2.3.3 Power Characteristics 10
2.3.4 Typical Variable-speed Wind Generator Systems 2.3.3 Power Characteristics 10 11
2.3.5 Maximum Power Point Tracking (MPPT) Control 2.3.3 Power Characteristics 10 12
2.4 Permanent Magnet Synchronous Machine 13
2.4.1 Structures 13
2.4.2 Physical Modeling 15
2.4.3 Measurement of Motor Parameters 17
2.4.4 Key Issues of PMSM Drive 20
2.5 Switched-reluctance Machines 20
2.5.1 Motor Structure 20
2.5.2 Physical Modeling 21
2.5.3 Dynamic Modeling 23
2.5.4 SRM Converters 23
2.5.5 Key Issues of Switched-reluctance Generator 26
2.6 Interface Converters and Switch-mode Rectifiers 27
2.6.1 DC/DC Converters 27
2.6.2 AC/DC Converters 28
CHAPTER 3 PERMANENT-MAGNET SYNCHRONOUS MOTOR BASED WIND TURBINE EMULATOR 31
3.1 Introduction 31
3.2 Basic Permanent-magnet Synchronous Motor Drive 31
3.2.1 Power Circuit 31
3.2.2 Control Scheme 31
3.2.3 Interfacing and Sensing Circuits 31
3.2.4 DSP TMS320F28335 34
3.3 Control Scheme 35
3.3.1 Current Controller 35
3.3.2 Speed Controller Design 36
3.4 Experimental Result of the Established SPMSM Drive 39
3.4.1 Starting Characteristics 39
3.4.2 Speed Dynamic Responses 39
3.5 PMSM Based Wind Turbine Emulator 41
3.5.1 System Configuration 41
3.5.2 Torque Controller 42
3.5.3 Modeling of Wind Turbine Characteristics 42
3.5.4 Measured Torque-speed and Power-speed Curves 46
CHAPTER 4 WIND SWITCHED-RELUCTANCE GENERATOR SYSTEM 48
4.1 Introduction 48
4.2 Switched-Reluctance Generator 48
4.2.1 Governing Equations 48
4.2.2 Voltage and Current Ripples 49
4.3 Control Schemes 51
4.3.1 Current Controller 51
4.3.2 Voltage Controller 52
4.3.3 Dynamic Commutation Shift Control (DCSC) 55
4.4 MPPT Control strategy of the Wind Turbine Emulator Driven SRG 57
4.4.1 Introduction of Maximum Power Point Tracking Control
Algorithms 57
4.4.2 Control Scheme 57
4.4.3 Experimental Evaluation 59
4.4.4 Dynamic Characteristic 61
4.5 SRG Interface Boost Converter 63
4.5.1 Boost Converter 64
4.5.2 Design of Boost Converter Circuit Components 67
4.5.3 Controller Design 67
4.5.4 Experimental Performance Evaluation 71
CHAPTER 5 THREE-PHASE DELTA-CONNECTED SMR POWERED SPMSM DRIVEN WIND TURBINE EMULATOR 75
5.1 Introduction 75
5.2 General Concept of SMR 76
5.2.1 System Configuration 76
5.2.2 Key Issues of SMR 76
5.3 Three-phase Delta-connected SMR 77
5.3.1 Schematic of The Established SMR using Modified
Single-phase Boost SMR 77
5.3.2 Control Scheme 79
5.3.3 Circuit Operation 80
5.3.4 Circuit Component Design 80
5.3.5 Controller Design 82
5.4 Performance Evaluation 84
5.4.1 Simulated Result 84
5.4.2 Measured Result 86
5.5 Fault-tolerant Operation 89
5.6 Experimental Evaluation for the Developed Wind Turbine Emulator Driven Generator System 90
CHAPTER 6 CONCLUSIONS 96
REFERENCES 97

REFERENCES
A. Micro-grids and Wind Generators
[1] K. A. Alobeidli, M. H. Syed, M. S. El Moursi, and H. H. Zeineldin, “Novel coordinated voltage control for hybrid micro-grid with islanding capability,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1116-1127, 2015.
[2] Olivares, and E. Daniel, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no.4, pp. 1905-1919, 2014.
[3] I. Askarian, S. Eren, M. Pahlevani, and A. M. Knight, “Digital real-time harmonic estimator for power converters in future micro-grids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6398-6407, 2018.
[4] E. Alizadeh, A. M. Birjandi, and M. Hamzeh, “Decentralized power sharing control strategy in LV microgrids under unbalanced load conditions,” IET Gener. Transm. Distrib., vol. 11, no. 7, pp. 1613-1623, 2017.
[5] W. Kohn, Z. B. Zabinsky, and A. Nerode, “A micro-grid distributed intelligent control and management system,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 2964-2974, 2015.
[6] T. Surinkaew and I. Ngamroo, “Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 823-833, 2014.
[7] J. Ekanayake and N. Jenkins, “Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency,” IEEE Trans. Energy Convers., vol. 19, no. 4, pp. 800-802, 2004.
[8] M. H. Zamani, G. H. Riahy, and M. Abedi, “Rotor-speed stability improvement of dual stator-winding induction generator-based wind farms by control-windings voltage oriented control,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5538-5546, 2016.
[9] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
[10] Y. Chen, P. Pragasen, and K. Azeem, “PM wind generator topologies,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1619-1626, 2005.
[11] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: state-of-the-art and emerging technologies,” in Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015.
B. Front-end AC/DC Converter
Single-phase SMRs
[12] B. R. Lin and C. H. Huang, “Single-phase switching-mode rectifier with capacitor-clamped topology,” in IEE Proc. Electr. Power Appl., vol. 152, no. 1, pp. 9-16, 2005.
[13] K. S. B. Muhammad and D. D. Lu, “ZCS bridgeless boost PFC rectifier using only two active switches,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2795-2806, 2015.
[14] T. Yoshida, O. Shizuka, O. Miyashita, and K. Ohniwa, “An improvement technique for the efficiency of high-frequency switch-mode rectifiers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1118-1123, 2000.
[15] H. Sepahvand, J. Liao, M. Ferdowsi, and K. A. Corzine, “Capacitor voltage regulation in single-DC-source cascaded H-bridge multilevel converters using phase-shift modulation,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3619-3626, 2013.
[16] H. C. Chen, “Duty phase control for single-phase boost-type SMR,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1927-1934, 2008.
[17] M. A. Al-Saffar, E. H. Ismail, and A. J. Sabzali, “Integrated buck–boost–quadratic buck PFC rectifier for universal input applications,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2886-2896, 2009.
[18] H. Y. Kanaan and K. Al-Haddad, “Modeling techniques applied to switch-mode power converters: application to the boost-type single-phase full-bridge rectifier,” in Proc. IEEE Int. Conf. control Appl., 2008, pp. 979-983.
Three-phase SMRs
[19] N. Haryani, B. Sun, and R. Burgos, “A novel soft switching ZVS, sinusoidal input boundary current mode control of 6-switch three phase 2-level boost rectifier for active and active + reactive power generation,” in Proc. IEEE APEC, 2018, pp. 8-15.
[20] N. B. H. Youssef, K. Al-Haddad, and H. Y. Kanaan, “Real-time implementation of a discrete nonlinearity compensating multiloops control technique for a 1.5-kw three-phase/switch/ level vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1225-1234, 2008.
[21] R. Foroozeshfar, E. Adib, and H. Farzanehfard, “New single-stage, single-switch, soft- switching three-phase SEPIC and cuk-type power factor correction converters,” IET Power Electron., vol. 7, no. 7, pp. 1878-1885, 2014.
[22] B. N. Singh, A. Chandra, P. Rastgoufard, and K. Al Haddad, “Single-phase switch mode boost rectifier: an improved design/control applied to three phase AC-DC converters to power up telecommunication system,” in Proc. INTELEC, 2002, pp. 611-618.
[23] S. H. Li, H. Y. Tsai, and C. M. Liaw, “Three-phase switch-mode rectifier constructed using single-phase modules,” in Proc. IEEE TENCOM '02, 2002, pp. 2003-2006.
C. Wind Turbine Emulator and MPPT Algorithm
[24] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020.
[25] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017.
[26] I. Moussa, A. Bouallegue, and A. Khedher, “New wind turbine emulator based on DC machine: hardware implementation using FPGA board for an open-loop operation,” IET Circuits, Devices Syst., vol. 13, no. 6, pp. 896-902, 2019.
[27] F. Lin, L. Teng, P. Shieh, and Y. Li, “Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN,” IEE Proc. Electr. Power Appl., vol. 153, no. 4, pp. 608-618, 2006.
[28] M. Karabacak, L. M. Fernández-Ramírez, T. Kamal, and S. Kamal, “A new hill climbing maximum power tracking control for wind turbines with inertial effect compensation,” IEEE Trans. Ind. Electron., vol. 66, no. 11, pp. 8545-8556, Nov. 2019.
[29] L. Wang, L. Cao, and L. Zhao, “Non-linear tip speed ratio cascade control for variable speed high power wind turbines: a backstepping approach,” IET Renew. Power Gener., vol. 12, no. 8, pp. 968-972, 2018.
[30] D. Li, Y. Song, Z. Gan, and W. Cai, “Fault-tolerant optimal tip-speed-ratio tracking control of wind turbines subject to actuation failures,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7513-7523, 2015.
[31] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” in Proc. 20th Conf. Elect. Power Distrib. Netw. Conf., 2015, pp. 184-189.
[32] J. Mishra, M. Pattnaik, and S. Samanta, “Drift-free perturb and observe MPPT algorithm with improved performance for SEIG-based stand-alone wind energy generation system,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 5842-5849, 2020.
[33] Z. M. Dalala, Z. U. Zahid, W. Yu, Y. Cho, and J. Lai, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013.
[34] Y. Xia, K. H. Ahmed, and B. W. Williams, “Wind turbine power coefficient analysis of a new maximum power point tracking technique,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122-1132, 2013.
D. Permanent-Magnet Synchronous Motor Drives
[35] M. Onsal, B. Cumhur, Y. Demir, E. Yolacan and M. Aydin, “Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018.
[36] P. R. Upadhyay and K. R. Rajagopal, “FE analysis and computer-aided design of a sandwiched axial-flux permanent magnet brushless DC motor,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3401-3403, 2006.
[37] Y. Demir and M. Aydin, “A novel dual three-phase permanent magnet synchronous motor with asymmetric stator winding,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1-5, 2016.
[38] A. Boduroglu, M. Gulec, Y. Demir, E. Yolacan, and M. Aydin, “A new asymmetric planar v-shaped magnet arrangement for a linear pm synchronous motor,” IEEE Trans. Magn., vol. 55, no. 7, pp. 1-5, 2019.
[39] W. Zhao, T. A. Lipo, and B. Kwon, “Comparative study on novel dual stator radial flux and axial flux permanent magnet motors with ferrite magnets for traction application,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, 2014.
[40] F. Chai, Y. Li, Y. Pei, and Z. Li, “Accurate modelling and modal analysis of stator system in permanent magnet synchronous motor with concentrated winding for vibration prediction,” IET Electr. Power Appl., vol. 12, no. 8, pp. 1225-1232, 2018.
[41] O. A. Mohammed, S. Liu, and Z. Liu, “Physical modeling of PM synchronous motors for integrated coupling with Machine drives,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1628- 1631, 2005.
[42] K. Lee and H. Son, “Distributed multipole model for design of permanent-magnet-based actuators,” IEEE Trans. Magn., vol. 43, no. 10, pp. 3904-3913, 2007.
[43] T. Marcic, G. Stumberger, B. Stumberger, M. Hadziselimovic, and P. Virtic, “Determining parameters of a line-start interior permanent magnet synchronous motor model by the differential evolution,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4385-4388, 2008.
[44] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, 2006.
[45] P. Niazi and H. A. Toliyat, “Online parameter estimation of permanent-magnet assisted synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 43, no. 2, pp. 609-615, 2007.
[46] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[47] P. A. Dahono, “New hysteresis current controller for single-phase full-bridge inverters,” IET Power Electron., vol. 2, no. 5, pp. 585-594, 2009.
[48] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 109-115, 2004.
[49] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[50] S. S. and M. K. Mishra, “Constant frequency current control using a ramp comparison method for a DSTATCOM application,” in Proc. IEEE Region 10 Conf., pp. 1-6, 2008.
[51] A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors,” IEEE Trans. Ind. Info., vol. 14, no. 4, pp. 1334-1346, 2018.
[52] A. Formentini, A. Trentin, M. Marchesoni, P. Zanchetta, and P. Wheeler, “Speed finite control set model predictive control of a PMSM fed by matrix converter,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6786-6796, 2015.
[53] G. P. Incremona, M. Rubagotti, and A. Ferrara, “Sliding mode control of constrained nonlinear systems,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2965-2972, 2017.
[54] G. Bartolini, E. Punta, and T. Zolezzi, “Approximability properties for second-order sliding mode control systems,” IEEE Trans. Autom. Control, vol. 52, no. 10, pp. 1813-1825, 2007.
[55] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
[56] T. K. Mahmoud, Z. Y. Dong, and J. Ma, “A developed integrated scheme based approach for wind turbine intelligent control,” IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 927-937, 2017.
[57] E. Cerruto, A. Consoli, A. Raciti, and A. Testa, “A robust adaptive controller for PM motor drives in robotic applications,” IEEE Trans. Power Electron., vol. 10, no. 1, pp. 62-71, 1995.
[58] M. N. Uddin, “An adaptive-filter-based torque-ripple minimization of a fuzzy-logic controller for speed control of IPM motor drives,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 350-358, 2011.
[59] A. D. Alexandrou, N. K. Adamopoulos, and A. G. Kladas, “Development of a constant switching frequency deadbeat predictive control technique for field-oriented synchronous permanent-magnet motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 5167-5175, 2016.
[60] F. Mwasilu, H. T. Nguyen, H. H. Choi, and J. Jung, “Finite set model predictive control of interior PM synchronous motor drives with an external disturbance rejection technique,” IEEE/ASME Trans. Mechatroics, vol. 22, no. 2, pp. 762-773, 2017.
[61] T. Tao, W. Zhao, Y. Du, Y. Cheng, and J. Zhu, “Simplified fault-tolerant model predictive control for a five-phase permanent-magnet motor with reduced computation burden,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3850-3858, 2020.
[62] C. K. Lin, T. H. Liu, and S. H. Yang, “Nonlinear position controller design with input-output linearisation technique for an interior permanent magnet synchronous motor control system,” IET Power Electron., vol. 1, no. 1, pp. 14-26, 2008.
[63] H. Grabner, W. Amrhein, S. Silber, and W. Gruber, “Nonlinear feedback control of a bearingless brushless DC motor,” IEEE/ASME Trans. Mechatroics, vol. 15, no. 1, pp. 40-47, 2010.
[64] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE/ASME Trans. Mechatroics, vol. 16, no. 2, pp. 351-360, 2011.
[65] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[66] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, 2012.
[67] S. Kim and J. K. Seok, “Finite-settling-steps direct torque and flux control for torque- controlled interior PM motors at voltage limits,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3374-3381, 2014.
[68] Y. Miao, H. Ge, M. Preindl, J. Ye, B. Cheng, and A. Emadi, “MTPA fitting and torque estimation technique based on a new flux-linkage model for interior-permanent-magnet synchronous machines,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5451-5460, 2017.
[69] A. Mora, Á. Orellana, J. Juliet, and R. Cárdenas, “Model predictive torque control for torque ripple compensation in variable-speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[70] S. Tsotoulidis and A. N. Safacas, “Deployment of an adaptable sensorless commutation technique on BLDC motor drives exploiting zero sequence voltage,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 877-886, 2015.
[71] X. Zhou, X. Chen, F. Zeng, and J. Tang, “Fast commutation instant shift correction method for sensorless coreless BLDC motor based on terminal voltage information,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9460-9472, 2017.
[72] S. Sue and C. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, 2008.
[73] K. Kim, “A novel magnetic flux weakening method of permanent magnet synchronous motor for electric vehicles,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4042-4045, 2012.
[74] F. D. Kieferndorf, M. Forster, and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
[75] W. Zhigan, G. Zhou, and Y. Jianping, “Line adaptive PAM & PWM drive for BLDCM,” in Proc. IEEE IPEMC, 2004, vol. 3, pp. 1263-1267.
E. Switched-reluctance Machine
Switched-reluctance Motor
[76] V. Rallabandi, J. Wu, P. Zhou, D. G. Dorrell, and D. M. Ionel, “Optimal design of a switched reluctance motor with magnetically disconnected rotor modules using a design of experiments differential evolution FEA-based method,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018.
[77] G. Baoming, A. T. de Almeida, and F. J. T. E. Ferreira, “Design of transverse flux linear switched reluctance motor,” IEEE Trans. Magn., vol. 45, no. 1, pp. 113-119, 2009.
[78] G. Z. Cao, J. L. Fang, S. D. Huang, J. A. Duan, and J. F. Pan, “Optimization design of the planar switched reluctance motor on electromagnetic force ripple minimization,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014.
[79] Y. Hasegawa, K. Nakamura, and O. Ichinokura, “Optimization of a switched reluctance motor made of permendur,” IEEE Trans. Magn., vol. 46, no. 6, pp. 1311-1314, 2010.
[80] X. Li and P. Shamsi, “Inductance surface learning for model predictive current control of switched reluctance motors,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 287-297, 2015.
[81] I. Kioskeridis and C. Mademlis, “A unified approach for four-quadrant optimal controlled switched reluctance machine drives with smooth transition between control operations,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 301-306, 2009.
[82] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, 2016.
[83] M. S. Islam and J. Husain, “Torque-ripple minimization with indirect position and speed sensing for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1126-1133, 2000.
[84] C. A. Hudson, N. S. Lobo, and R. Krishnan, “Sensorless control of single switch-based switched reluctance motor drive using neural network,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 321-329, 2008.
[85] A. Loria, G. Espinosa-Perez, and E. Chumacero, “Exponential stabilization of switched- reluctance motors via speed-sensorless feedback,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 1224-1232, 2014.
[86] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched- reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[87] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[88] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, 2015.
[89] F. Sahin, H. B. Ertan, and K. Leblebicioglu, “Optimum geometry for torque ripple minimization of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 15, no. 1, pp. 30-39, 2000.
[90] M. J. Kermanipour and B. Ganji, “Modification in geometric structure of double-sided axial flux switched reluctance motor for mitigating torque ripple,” Can. J. Electr. Comput. Eng., 2015, vol. 38, no. 4, pp. 318-322.
[91] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Electr. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[92] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
Switched-reluctance Generator
[93] W. S. Heglund and S. R. Jones, “Performance of a new commutation approach for switched reluctance generators,” in Proc. IECEC, 1997, vol. 1, pp. 574-579.
[94] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[95] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1452-1459, 2012.
[96] Y. Sozer and D. A. Torrey, “Closed loop control of excitation parameters for high speed switched-reluctance generators,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 355-362, 2004.
[97] A. Takahashi, H. Goto, K. Nakamura, T. Watanabe, and O. Ichinokura, “Characteristics of 8/6 switched reluctance generator excited by suppression resistor converter,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3458-3460, 2006.
[98] E. S. Lopes Oliveira, M. L. Aguiar, and I. Nunes da Silva, “Strategy to control the terminal voltage of a SRG based on the excitation voltage,” IEEE Lat. Am. Trans., vol. 13, no. 4, pp. 975-981, 2015.
[99] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[100] E. Rahmanian, H. Akbari, and G. H. Sheisi, “Maximum power point tracking in grid connected wind plant by using intelligent controller and switched reluctance generator,” IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 1313-1320, 2017.
F. Switched-reluctance Machine Converter
[101] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[102] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[103] M. Anand, V. Arunkumar, K. Krishnamurthy, and B. Meenakshipriya, “Analysis and modeling of different types of converter in switched reluctance motor for reducing the torque ripple,” in Proc. ICIIECS, 2015, pp. 1-6.
[104] E. Afjei, M. Asgar and S. Ataei, “A new modified bifilar drive circuit for switched reluctance motor,” in Proc. Joint Int. Conf. Power Syst. Techol. IEE Power India Conf., 2018, pp. 1-4.
[105] X. D. Xue, K. W. E. Cheng, and Y. J. Bao, “Control and integrated half bridge to winding circuit development for switched reluctance motors,” IEEE Trans. Ind. Info., vol. 10, no. 1, pp. 109-116, 2014.
[106] B. P. Babu and M. V. Jayan, “A high efficiency novel C-dump topology based converter for SRM,” in Proc. IEEE ICPCSI, 2017, pp. 1170-1175.
[107] G. D. Ardine and S. Riyadi, “C-dump converter without inductor for switched reluctance motor drive,” in Proc. IEEE SCOReD, 2018, pp. 1-5.
[108] R. Azhagar and A. Kavitha, “A unified design approach of a direct drive external-rotor switched reluctance motor (Ex-R SRM) and its implementation for a low-speed domestic appliance with r-dump converter,” in Proc. IEEE INTERMAG, 2018, pp. 1-1.
G. DC/DC Converter
[109] L. E. Zubieta and P. W. Lehn, “A high efficiency unidirectional DC/DC converter for integrating distributed resources into DC microgrids,” in Proc. IEEE ICDCM, 2015, pp. 280-284.
[110] M. M. Rahman, M. N. Uddin, and M. K. Islam, “Integration of bi-directional DC-DC converter and highly efficient boost converter for electric vehicles applications,” in Proc. IEEE PEDS, 2015, pp. 687-691.
[111] N. Boujelben, F. Masmoudi, M. Djemel, and N. Derbel, “Design and comparison of quadratic boost and double cascade boost converters with boost converter,” in Proc. SSD, 2017, pp. 245-252.
[112] M. Veerachary, “Design and analysis of a new quadratic boost converter,” in Proc. NPEC, 2017, pp. 307-313.
[113] Y. Yang, “Analysis and design of a current-fed push-pull parallel-resonant converter for cooker magnetrons,” in Proc. IEEE ICSET, 2016, pp. 300-305.
[114] Ananda and B. M. Madhu, “Pre-regulated current fed push pull converter for hybrid energy systems,” in Proc. ICCPEIC, 2016, pp. 566-571.
[115] A. Hasnain and N. Kondrath, “Investigation into component losses and efficiency of a bidirectional full-bridge DC-DC converter,” in Proc. IECON, 2018, pp. 1273-1278.
[116] S. Ikeda and F. Kurokawa, “Boost full bridge DC-DC converter ensuring safe installation of PV energy in data center power management systems,” in Proc. IEEE INTELEC, 2017, pp. 530-534.
[117] M. C. Taneri, N. Genc, and A. Mamizadeh, “Analyzing and comparing of variable and constant switching frequency flyback DC-DC converter,” in Proc. ICPEA, 2019, pp. 1-5.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *