帳號:guest(3.145.95.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥丞
作者(外文):Chen, Yan-Cheng
論文名稱(中文):應用混沌產生器於多台分散式發電系統之被動式孤島偵測法
論文名稱(外文):Application of Chaos Generators for Passive Islanding Detection of Multiple Distributed Generations
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-chi
口試委員(中文):洪穎怡
吳有基
連國龍
口試委員(外文):Hong, Ying-Yi
Wu, Yu-Chi
Lian, Kuo-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061509
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:孤島偵測混沌產生器電壓源型換流器多台分散式發電機不可偵測區域
外文關鍵詞:Islanding detectionChaos generatorsVoltage source converterMultiple distributed generatorsNon-detection zone
相關次數:
  • 推薦推薦:0
  • 點閱點閱:438
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本文提出了基於換流器與同步發電機的分散式發電系統之應用混沌產生器被動式孤島偵測法。可惜的是,當實/虛功率不匹配率接近於零時,大多數被動式孤島偵測法都無法偵測到孤島現象。
本文介紹了一種應用混沌產生器於被動式孤島偵測法,該方法能夠偵測出實/虛功率不匹配接近零的孤島狀態,利用責任分界點電壓和頻率偏差量作為混沌產生器的輸入訊號。混沌產生器的主要優點是其混沌運動態與發散運動態之間差異明顯。在混合式分散發電系統情況下,考慮導致系統電壓和頻率暫時偏差的非孤島現象,這些事件包括不同類型的故障,例如:三相接地故障、三相短路故障。此外,對於孤島現象,通過接近零的功率不匹配和基於IEEE Std. 1547標準,對提出的偵測法能力進行了驗證。也透由硬體實驗分別以單台換流器與多台換流器,採用IEEE Std. 929-2000標準反孤島效應保護測試,成功實現準確且快速的孤島偵測。
This paper proposes a passive-based anti-islanding detection method for both inverter and synchronous machine-based distributed generations.
Unfortunately, when the active/reactive power mismatch is near to zero, the majority of passive anti-islanding methods can't detect the islanding condition.
This paper introduces a islanding detection method based on the chaos theory that can detect the islanding condition with near-zero power mismatch. The method uses the modified voltage and frequency of the point of common coupling link as an input signal of chaos generators. The obvious change between chaotic and divergent motions in the chaos generators is its main advantage. The non-islanding transient events, which can cause a significant deviation in the voltage-based and frequency-based input signal of detector, are considered in simulations for hybrid distributed generations. These events include different types of faults, like the three phase to ground (LLLG) and three phases (LLL). Further, for islanding events, the capability of the proposed islanding detection method is verified by near-to-zero power mismatch and IEEE Std. 1547-based. Through the hardware experiments, the anti-islanding effect protection test of IEEE Std. 929-2000 is adopted for a single converter and multiple converters respectively, the accurate and fast islanding detection is successful.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究探討 2
1.3 論文貢獻 5
1.4 論文內容概述 6
第二章 孤島偵測 8
2.1 研究背景 8
2.2 不可偵測區域 8
2.3 孤島偵測方法 13
2.3.1 遠端偵測法 14
2.3.2 分散式發電系統偵測法 15
2.3.3 孤島偵測法比較 16
2.4 孤島現象之相關法規 18
2.4.1 IEEE Std. 929-2000 18
2.4.2 IEEE Std. 1547 19
2.5 本章結論 20
第三章 混沌產生器偵測法 21
3.1 混沌產生器 21
3.1.1 混沌產生器介紹 21
3.1.2 分析混沌產生器 24
3.2 輸入訊號到混沌產生器 27
3.2.1 分析輸入訊號 32
3.2.2 換流器的發電系統 34
3.2.3 同步發電機的發電系統 34
3.3 比較不可偵測區域 37
3.4 本章結論 39
第四章 模擬與實驗結果 40
4.1 模擬平台介紹 40
4.2 硬體平台介紹 41
4.3 案例一:單台併網型換流器 43
4.3.1 測試步驟 44
4.3.2 模擬波形 45
4.3.3 實驗波形 46
4.4 案例二:二台併網型換流器 47
4.4.1 測試步驟 48
4.4.2 模擬波形 49
4.4.3 實驗波形 50
4.5 案例三:混合式分散發電系統 52
4.5.1 孤島現象 55
4.5.2 非孤島現象 63
4.6 本章結論 69
第五章 總結與未來展望 71
5.1 總結 71
5.2 未來展望 72
參考文獻 73

1. IEEE std. 929-2000, “IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,” IEEE standards Coordinating Committee 21 on Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage, IEEE Standard 929-2000, April 2000.
2. Chia-Chi Chu, "Chaotic motions of simple power system models," Proc. 1st International Conference of Control of Oscillations and Chaos, St. Petersburg, no.1, pp.101-104, 1997.
3. H. Vahedi, G. B. Gharehpetian, and M. Karrari, "Application of Duffing Oscillators for Passive Islanding Detection of Inverter-Based Distributed Generation Units," IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 1973-1983, Oct. 2012.
4. D. Reigosa, F. Briz, C. B. Charro, P. Garcia, and J. M. Guerrero, "Active Islanding Detection Using High-Frequency Signal Injection," IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1588-1597, Sept.-Oct. 2012.
5. D. Reigosa, F. Briz, C. Blanco, P. García and, J. Manuel Guerrero, "Active Islanding Detection for Multiple Parallel-Connected Inverter-Based Distributed Generators Using High-Frequency Signal Injection," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1192-1199, March 2014.
6. W. Xu, G. Zhang, C. Li, W. Wang, G. Wang and, J. Kliber, "A Power Line Signaling Based Technique for Anti-islanding Protection of Distributed Generators: Part I: Scheme and Analysis," 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, 2007, pp. 1-1.
7. M. Khodaparastan, H. Vahedi, F. Khazaeli and H. Oraee, "A Novel Hybrid Islanding Detection Method for Inverter-Based DGs Using SFS and ROCOF," IEEE Transactions on Power Delivery, vol. 32, no. 5, pp. 2162-2170, Oct. 2017.
8. S. D. Kermany, M. Joorabian, S. Deilami, and M. A. S. Masoum, "Hybrid Islanding Detection in Microgrid With Multiple Connection Points to Smart Grids Using Fuzzy-Neural Network," IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 2640-2651, July 2017.
9. H. H. Zeineldin, E. F. El-Saadany, and M. M. A. Salama, "Impact of DG interface control on islanding detection and nondetection zones," IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1515-1523, July 2006.
10. A. Pouryekta, V. K. Ramachandaramurthy, N. Mithulananthan, and A. Arulampalam, "Islanding Detection and Enhancement of Microgrid Performance," IEEE Systems Journal, vol. 12, no. 4, pp. 3131-3141, Dec. 2018.
11. Q. Cui, K. El-Arroudi, and G. Joós, "Islanding Detection of Hybrid Distributed Generation Under Reduced Non-Detection Zone," IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5027-5037, Sept. 2018.
12. M. Bakhshi, R. Noroozian, and G. B. Gharehpetian, "Novel Islanding Detection Method for Multiple DGs Based on Forced Helmholtz Oscillator," IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6448-6460, Nov. 2018.
13. S. Kim, J. Jeon, H. Choi, and J. Kim, "Voltage Shift Acceleration Control for Anti-Islanding of Distributed Generation Inverters," IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2223-2234, Oct. 2011.
14. B. Wen, D. Boroyevich, R. Burgos, Z. Shen, and P. Mattavelli, "Impedance-Based Analysis of Active Frequency Drift Islanding Detection for Grid-Tied Inverter System," IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 332-341, Jan.-Feb. 2016.
15. Zhihong Ye, A. Kolwalkar, Yu Zhang, Pengwei Du, and Reigh Walling, "Evaluation of anti-islanding schemes based on nondetection zone concept," IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1171-1176, Sept. 2004.
16. A. F. Hoke, A. Nelson, S. Chakraborty, F. Bell, and M. McCarty, "An Islanding Detection Test Platform for Multi-Inverter Islands Using Power HIL," IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7944-7953, Oct. 2018.
17. Q. Sun, J. M. Guerrero, T. Jing, J. C. Vasquez, and R. Yang, "An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid," IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1821-1830, July 2017.
18. P. Du, Z. Ye, E. E. Aponte, J. K. Nelson, and L. Fan, "Positive-Feedback-Based Active Anti-Islanding Schemes for Inverter-Based Distributed Generators: Basic Principle, Design Guideline and Performance Analysis," IEEE Transactions on Power Electronics, vol. 25, no. 12, pp. 2941-2948, Dec. 2010.
19. Q. Liu, T. Caldognetto, and S. Buso, "Flexible Control of Interlinking Converters for DC Microgrids Coupled to Smart AC Power Systems," IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3477-3485, May 2019.
20. P. Gupta, R. S. Bhatia, and D. K. Jain, "Active ROCOF Relay for Islanding Detection," IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 420-429, Feb. 2017.
21. D. Dong, B. Wen, P. Mattavelli, D. Boroyevich, and Y. Xue, "Modeling and Design of Islanding Detection Using Phase-Locked Loops in Three-Phase Grid-Interface Power Converters," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 1032-1040, Dec. 2014.
22. B. Kim and S. Sul, "Stability-Oriented Design of Frequency Drift Anti-Islanding and Phase-Locked Loop Under Weak Grid," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 2, pp. 760-774, June 2017.
23. X. Wang and W. Freitas, "Influence of Voltage Positive Feedback Anti-Islanding Scheme on Inverter-Based Distributed Generator Stability," IEEE Transactions on Power Delivery, vol. 24, no. 2, pp. 972-973, April 2009.
24. L. A. C. Lopes and H. Sun, “Performance assessment of active frequency drifting islanding detection methods,” IEEE Trans. Energy Convers, vol. 21, no. 1, pp. 171–180, Mar. 2006.
25. X. Wang and W. Freitas, "Impact of Positive-Feedback Anti-Islanding Methods on Small-Signal Stability of Inverter-Based Distributed Generation," IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 923-931, Sept. 2008.
26. A. Cardenas and K. Agbossou, "Experimental Evaluation of Voltage Positive Feedback Based Anti-Islanding Algorithm: Multi-Inverter Case," IEEE Transactions on Energy Conversion, vol. 27, no. 2, pp. 498-506, June 2012.
27. X. Wang, W. Freitas, and W. Xu, "Dynamic Non-Detection Zones of Positive Feedback Anti-Islanding Methods for Inverter-Based Distributed Generators," IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 1145-1155, April 2011.
28. X. Chen and Y. Li, "An Islanding Detection Algorithm for Inverter-Based Distributed Generation Based on Reactive Power Control," IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4672-4683, Sept. 2014.
29. R. Teodorescu, M. Liserre, and P. Rodrguez, Grid Converters for Photovoltaic and Wind Power Systems: IEEE-Wiley, 2011.
30. A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems: Modelling, Control, and Application. New York, NY, USA: Wiley, 2010.
31. K. Chen, Y. Wang, S. Tian, Y. Cheng, and C. Yin, "Interference of various active islanding detection methods with positive feedback in multi-inverter power system," J. Renewable Sustainable Energy 7, 033103 (2015)
32. J. Gukerhamer and P. Homes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields,Springer-Verlag, New York, 1983.
33. IEEE Application Guide for IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std 1547.2-2008, 2009.
34. A. R. Bergen, Power Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1986
35. C. Concordia and G. K. Carter, "Negative Damping of Electrical Machinery," AIEE Trans, vol. 60, Mar. 1941, pp. 116-119.
36. F. P. Demello and C. Concordia, "Concepts of Synchronous Machine Stability as Affected by Excitation Control," IEEE Transactions on Power Apparatus and Systems, vol. PAS-88, no. 4, pp. 316-329, April 1969.
37. S. Kim, J. Jeon, J. Ahn, B. Lee, and S. Kwon, "Frequency-Shift Acceleration Control for Anti-Islanding of a Distributed-Generation Inverter," IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 494-504, Feb. 2010.
38. C. C. Chu, Power System Transient Dynamics: Direct Stability Assessment and Chaotic Motions, Ph.D. thesis, Cornell University, 1996.
39. S. Lee and J. Park, "New Islanding Detection Method for Inverter-Based Distributed Generation Considering Its Switching Frequency," IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 2089-2098, Sept.-Oct. 2010.
40. Y. Li et al., "Nondetection Zone Analytics for Unintentional Islanding in a Distribution Grid Integrated with Distributed Energy Resources," IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 214-225, Jan. 2019.
41. Guanyu Wang, Dajun Chen, Jianya Lin, and Xing Chen, "The application of chaotic oscillators to weak signal detection," IEEE Transactions on Industrial Electronics, vol. 46, no. 2, pp. 440-444, April 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *