帳號:guest(3.145.20.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡懷德
作者(外文):Tsai, Huai-De
論文名稱(中文):具G2V/V2G及能源收集功能之變壓直流鏈供電電動車開關式磁阻馬達驅動系統
論文名稱(外文):VARIED-VOLTAGE DC-LINK FED EV SWITCHED-RELUCTANCE MOTOR DRIVE WITH G2V/V2G AND ENERGY HARVESTING CAPABILITIES
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):陳盛基
曾萬存
鍾太郎
口試委員(外文):Chen, Seng-Chi
Tseng, Wan-Tsun
Jong, Tai-Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061501
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:149
中文關鍵詞:電動車開關式磁阻馬達電池超電容諧振轉換器切換式整流器變頻器電網至車輛車輛至電網車輛至家庭能源收集微電網
外文關鍵詞:EVSRMbatterysupercapacitorresonant converterSMRinvertergrid-to-vehiclevehicle-to-gridvehicle-to-homeenergy harvestingmicrogrid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
本論文旨在開發具電網至車輛、車輛至電網及能源收集功能之電池/超電容供電電動車開關式磁阻馬達驅動系統。其直流鏈電壓由電池經全橋式直流/直流轉換器建立。由於所用轉換器之電壓轉換彈性,直流鏈電壓可高於和低於電池電壓,改善了廣速度範圍下之能量轉換效率。超電容經一雙向升/降壓直流/直流轉換器介接至直流鏈,可有效降低電池變動之充/放電電流。在電動車馬達驅動控制方面,除電力電路外,亦妥善設計換相設定與移位、動態電流及速度控制機構,獲得良好之操作特性。再者,由於介面轉換器建立之升壓直流鏈,進一步提升高速及/或高載下之性能。
在電動車閒置聯網下,利用所外加之雙向三相變頻器及交錯式CLLC諧振轉換器,可施行電網至車輛、車輛至電網及車輛至家庭等操作,其中,電氣隔離係由諧振轉換器所提供。在電網至車輛操作模式,車載電池可由單相或三相市電進行充電,具良好之電力品質。至於車輛至電網及車輛至家庭操作模式,變頻器產出之單相或三相交流電,供給家用負載或回送預設功率至電網。
所開發之能源收集系統具有兩種機構,即為太陽光伏能源收集器及插入式能源收集器。前者,屋頂之太陽光伏透過車上具有之全橋式轉換器形成升壓直流/直流轉換器,直接對車載電池充電。至於後者,以三相維也納切換式整流器作為基礎架構,可接受三相交流、單相交流與直流源對電池進行輔助充電。
This thesis develops a battery/super-capacitor (SC) powered electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-to-vehicle (G2V)/vehicle-to-grid (V2G) and energy harvesting functions. The motor drive DC-link voltage is established by the battery via an H-bridge DC/DC converter. Thanks to the voltage transfer flexibility of the adopted converter, the DC-link voltage can be higher and lower than the battery voltage to improve the energy conversion efficiency over wide speed range. The SC is connected to the DC-link via a bidirectional boost/buck DC/DC converter. The battery fluctuated charging and discharging currents can be efficiency reduced. In EV motor driving control, in addition to the power circuit, the commutation setting and shifting, the dynamic current and speed control schemes are all properly designed to yield satisfactory operation characteristics. Moreover, the boosted DC-link voltage provided by the interface converter further enhances the performances under high speeds and/or heavier loads.
In the idle EV grid-connected case, the externally added three-phase inverter and interleaved CLLC resonant converter are arranged to conduct the G2V/V2G/V2H operations. The galvanic isolation is provided by the CLLC converter. In G2V operation, the EV battery can be charged from the single-phase or three-phase mains with good line drawn power quality. As to the V2G/V2H operations, the single-phase or three-phase AC output voltage is generated to power the home appliances or send the preset power back to the utility grid.
In the developed energy harvesting system (EHS), two schemes are arranged, namely, the photovoltaic (PV) energy harvester and the plug-in energy harvester. For the former, the house roof photovoltaic (PV) can directly charge the EV battery via a boost DC/DC converter formed by the EV embedded H-bridge converter. As to the latter, a three-phase Vienna SMR is used as an infrastructural schematic, the auxiliary charging can be conducted from the accessible three-phase AC, single-phase AC, or DC source.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xv
LIST OF SYMBOLS xvi
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 INTRODUCTION TO SWITCHED-RELUCTANCE MOTOR, ELECTRIC VEHICLE AND SOME RELATED POWER ELECTRONIC TECHNOLOGIES
5
2.1 Introduction 5
2.2 SRM Drive 5
2.3 SRM Converters 9
2.4 Electric Vehicles 10
2.5 G2V/V2G Operations 13
2.6 Some Energy Storage Devices 16
2.7 Interface Converters 18
2.8 The Developed EV SRM Drive 23
CHAPTER 3 THE DEVELOPED BATTERY/SUPERCAPACITOR POWERED ELECTRIC VEHICLE SWITCHED-RELUCTANCE MOTOR DRIVE 26
3.1 Introduction 26
3.2 Basic SRM Drive with Fixed-voltage DC-link 26
3.2.1 System Configuration 26
3.2.2 Control Schemes 31
3.2.3 Measured Results 37
3.3 Battery/Supercapacitor Powered EV SRM Drive with Varied-voltage DC-link 44
3.3.1 System Configuration 44
3.3.2 Battery Interface DC/DC Converter 46
3.3.3 Supercapacitor Interface Converter 53
3.3.4 Voltage Control Scheme 59
3.3.5 DC-link Voltage Profile 60
3.4 Performance Evaluation of the Established EV SRM Drive 60
CHAPTER 4 GRID-CONNECTED G2V/V2G OPERATIONS 68
4.1 Introduction 68
4.2 System Configuration 68
4.3 Operation of Bidirectional CLLC Resonant Converter 70
4.4 The Developed Bidirectional Interleaved CLLC Resonant Converter 72
4.4.1 Power Circuit 72
4.4.2 The Proposed Control Strategy 76
4.4.3 Experimental Verification 78
4.5 G2V/V2H/V2G Operations via 1P3W Inverter 88
4.5.1 1P3W Inverter 88
4.5.2 V2H Operation 91
4.5.3 V2G Operation 96
4.5.4 G2V Operation 101
4.6 G2V/V2G Operations via 3P3W Inverter 105
4.6.1 Power Circuit 105
4.6.2 3P3W Inverter in V2G Operation 106
4.6.3 3P3W Inverter in G2V Operation 108
CHAPTER 5 THE DEVELOPED ENERGY HARVESTING SYSTEM 111
5.1 Introduction 111
5.2 System Configuration 111
5.3 Roof PV Energy Harvester 111
5.3.1 Power Circuit 111
5.3.2 Control Schemes 114
5.3.3 Emulated PV Operation 114
5.3.4 The Constructed PV Array 115
5.3.5 Measured Results 116
5.4 Plug-in Energy Harvester with Three-phase AC Input 117
5.4.1 Circuit Operation 117
5.4.2 Equivalent Circuit Analysis 120
5.4.3 Power Circuit Components 121
5.4.4 Control Schemes 124
5.4.5 Simulated Results 126
5.4.6 Measured Results 126
5.5 Plug-in Energy Harvester with Single-phase AC Input 129
5.5.1 Power Circuit 129
5.5.2 Control Schemes 132
5.5.3 Simulated and Measured Results 132
5.6 Plug-in Energy Harvester with DC Source Input 134
5.6.1 Power Circuit 134
5.6.2 Control Schemes 134
5.6.3 Measured Results 135
5.7 Whole System Operation Characteristics of Plug-in Energy Harvester 135
5.7.1 Three-phase AC Input 137
5.7.2 Single-phase AC Input 137
5.7.3 DC Source Input 137
CHAPTER 6 CONCLUSIONS 140
REFERENCES 141


[1] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[2] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[3] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[5] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[6] N. Denis, M. R. Dubois, J. P. F. Trovão, and A. Desrochers, “Power split strategy optimization of a plug-in parallel hybrid electric vehicle,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 315-326, 2018.
[7] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[8] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[9] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[10] N. Wada, N. Momma, and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. IEEE ICEMS, 2012, pp. 1-5.
[11] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[12] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, 2016.
[13] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, 2017.
[14] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drive for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, 2017.
[15] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
[16] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, 2012.
[17] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
[18] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[19] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle- to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015.
[20] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
[21] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehicle-solar-grid integration: concept and construction,” IEEE Power Energy Technol. Syst. J., vol. 3, no. 3, pp. 81-88, 2016.
[22] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[23] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, 2018.
[24] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, 2018.
[25] G. R. Chandra Mouli, J. Schijffelen, M. van den Heuvel, M. Kardolus, and P. Bauer, “A 10 kw solar-powered bidirectional EV charger compatible with Chademo and COMBO,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1082-1098, 2019.
[26] D. Das, N. Weise, K. Basu, R. Baranwal, and N. Mohan, “A bidirectional soft-switched DAB-based single-stage three-phase ac-dc converter for V2G application,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 186-199, 2019.
B. Switched-Reluctance Motors and Converters
[27] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[28] Y. A. Kwon, K. J. Shin, and G. H. Rim, “SRM drive system with improved power factor,” in Proc. IEEE ICIE, 1997, vol. 2, pp. 541-545.
[29] K. Tomczewski and K. Wrobel, “Improved C-dump converter for switched reluctance motor drives,” IET Power Electron., vol. 7, no. 10, pp. 2628-2635, 2014.
[30] F. Peng, J. Ye, and A. Emadi. “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
[31] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
[32] S. Riyadi, “Analysis of C-dump converter for SRM drives,” in Proc. IEEE ICELTICs, 2018, pp. 179-184.
C. Dynamic Modelling and Controls
[33] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[34] L. Chenjie, W. Wei, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, 2012.
[35] S. Mehta, M. A. Kabir, and I. Husain, “Extended speed current profiling algorithm for low torque ripple SRM using model predictive control,” in Proc. IEEE ECCE, 2018, pp. 4558-4563.
[36] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[37] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, 2014.
[38] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, 2015.
[39] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong, and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[40] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[41] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[42] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[43] S. K. Panda, X. M. Zhu, and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[44] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[45] S. Masoudi, M. R. Soltanpour, and H. Abdollahi, “Adaptive fuzzy control method for a linear switched reluctance motor,” IET Elect. Power Appl., vol. 12, no. 9, pp. 1328-1336, 2018.
D. Commutation Instant Shifting
[46] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[47] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[48] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[49] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[50] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[51] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
E. Hybrid Energy Storage System in EVs
[52] O. M. F. Camacho, P. B. Nørgård, N. Rao, and L. M. Popa, “Electrical vehicle batteries testing in a distribution network using sustainable energy,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1033-1042, 2014.
[53] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics-lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSIM-AMSS Conf., 2015, pp. 444-450.
[54] N. Mukherjee and D. Strickland, “Analysis and comparative study of different converter modes in modular second-life hybrid battery energy storage systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 547-563, 2016.
[55] M. Padmanabh and M. M. Desai, “Performance and dynamic charge acceptance estimation of different Lithium-Ion batteries for electric and hybrid electric vehicles,” in Proc. IEEE ITEC, pp. 1-5, 2017.
[56] T. Rout, M. K. Maharana, A. Chowdhury, and S. Samal, “A comparative study of stand-alone photo-voltaic system with battery storage system and battery supercapacitor storage system,” in Proc. IEEE ICEES, 2018, pp. 77-81.
[57] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
[58] G. O. Suvire, P. E. Mercado, and L. J. Ontiveros, “Comparative analysis of energy storage technologies to compensate wind power short-term fluctuations,” in Proc. IEEE T&D-LA, 2010, pp. 522-528.
[59] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[60] A. Ostadi, M. Kazerani, and S. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
[61] A. Tina, M. B. Camara, B. Dakyo, and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 686-696, 2013.
[62] K. Zhuge and M. Kazerani, “Development of a hybrid energy storage system (HESS) for electric and hybrid electric vehicles,” in Proc. IEEE ITEC, 2014, pp. 1-5.
[63] X. Huang, H. Tosiyoki, and H. Yoichi, “System design and converter control for super- capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10.
[64] R. E. Araújo, R. d. Castro, C. Pinto, P. Melo, and D. Freitas, “Combined sizing and energy management in EVs with batteries and supercapacitors,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3062-3076, 2014.
[65] J. Shen and A. Khaligh, “A supervisory energy management control strategy in a battery/ ultracapacitor hybrid energy storage system,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 223-231, 2015.
[66] H. Miniguano, A. Barrado, C. Raga, A. Lázaro, C. Fernández, and M. Sanz, “A comparative study and parameterization of supercapacitor electrical models applied to hybrid electric vehicles,” in Proc. IEEE ITEC, 2016, pp. 1-6.
[67] D. B. W. Abeywardana, B. Hredzak, V. G. Agelidisand, and G. D. Demetriades, “Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1626-1637, 2017.
[68] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
[69] M. A. A. Rahman and M. K. Rahmat, “Performance review on small-medium scales energy storage system in term of investment aspect,’’ in Proc. IEEE PECon, 2018.
[70] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, 2019.
F. DC/DC Converters
[71] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011.
[72] L. Kumar and S. Jain “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
[73] O. C. Onar, J. Kobayashi, D. C. Erb, and A. Khaligh, “A bidirectional high power quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018-2032, 2012.
[74] I. P. Farneth, “Design of a phase-shifted ZVS full-bridge front-end DC/DC converter for fuel cell inverter applications,” in Proc. IEEE ITEC, 2014, pp. 1-6.
[75] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, 2015.
[76] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[77] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: a multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, 2015.
[78] A. Mallik and A. Khaligh “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523-6531, 2017.
[79] C. Kallukaran, L. Unnikrishnan, and R. A. Koshy, “Multi-input interleaved DC-DC converter with low current ripple for electric vehicle application,” in Proc. IEEE ICCTCT, 2018, pp. 1-5.
G. On-Board Charger
[80] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[81] S. Haghbin et al., “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. IEEE ICEM, 2010, pp. 1-6.
[82] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, 2011.
[83] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
[84] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, 2013.
[85] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[86] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, 2013.
[87] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[88] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014.
[89] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, 2014.
[90] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
[91] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, 2017.
[92] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017, pp. 1-6.
[93] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
[94] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, 2017.
[95] D. Kim, M. Kim, and B. Lee, “An integrated battery charger with high power density and efficiency for electric vehicles,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4553-4565, 2017.
[96] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, 2019.
[97] S. Jeong, Y. Jeong, J. Kwon, and B. Kwon, “A soft-switching single-stage converter with high efficiency for a 3.3-kW on-board charger,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6959-6967, 2019.
[98] M. Nassary, M. Orabi, M. Ghoneima, and M. K. El-Nemr, “Single-phase isolated bidirectional AC-DC battery charger for electric vehicle – review,” in Proc. IEEE ITCE, 2019, pp. 581-586.
H. Switch-Mode Rectifiers
[99] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[100] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[101] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Electr. Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
[102] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[103] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
[104] T. Friedli, M. Hartmann, and J. W Kolar, “The essence of three-phase PFC rectifier systems-part II” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2013.
[105] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[106] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[107] L. Schrittwieser, J. W. Kolar, and T. B. Soeiro, “Novel SWISS rectifier modulation scheme preventing input current distortions at sector boundaries,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5771-5785, 2017.
I. Photovoltaic Applied to EVs
[108] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, 2007.
[109] P. Kádár and A. Varga, “Photovoltaic EV charge station,” in Proc. IEEE SAMI, 2013, pp. 57-60.
[110] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM., 2015, pp. 299-304.
[111] T. K. Soon and S. Mekhilef, “A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance,” IEEE Trans. Ind. Informat., vol. 11, no. 1, pp. 176-186, 2015.
[112] R. Sei, T. Yachi, Y. Hirata, and Y. Watanabe, “Power generation estimate of flexible PV panel for a solar matching house,” in Proc. IEEE ICRERA, 2017, pp. 310-314.
[113] A. Verma and B. Singh, “Control and implementation of renewable energy based smart charging station beneficial for EVs, home and grid,” in Proc. IEEE ECCE, 2019, pp. 5443-5449.
J. Inverters
[114] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[115] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[116] B. S. Prasad, S. Jain, and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[117] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[118] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
K. Resonant DC/DC Converter
[119] E. S. Kim, S. M. Lee, J. H. Park, Y. J. Noh, H. Xu, and Y. S. Kong, “Resonant DC-DC converter for high efficiency bidirectional power conversion,” in Proc. IEEE APEC, 2013, pp. 2005-2011.
[120] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC resonant DC–DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437-5445, 2013.
[121] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, 2013.
[122] N. Radimov, R. Orr, and T. K. Gachovska, “Bi-directional CLLC front-end for off-grid battery inverters,” in Proc. IEEE IHTC, 2015, pp. 1-4.
[123] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., 2015, vol. 1, no. 3, pp. 232-244.
[124] U. Kundu and P. Sensarma, “Gain-relationship-based automatic resonant frequency tracking in parallel LLC converter,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 874-883, 2016.
[125] B. Kim, K. Park, and G. Moon, “Analysis and design of two-phase interleaved LLC resonant converter considering load sharing,” in Proc. IEEE ECCE, 2009, pp. 1141-1144.
[126] C. Liu, X. Xu, D. He, H. Liu, X. Tian, Y. Guo, G. Cai, C. Ma, and G. Mu, “Magnetic- coupling current-balancing cells based input-parallel output-parallel LLC resonant converter modules for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 6968-6979, 2016.
L. Others
[127] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” 2009.
[128] K. Y. Chou, “A batter/supercapacitor powered EV SRM drive with bidirectional isolated charger,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2017.
[129] Z. W. Guo, “A hybrid source powered EV switched-reluctance motor drive with isolated grid-connected capability,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2018.
[130] Y. J. Yang, “An electric vehicle switched-reluctance motor drive with isolated grid- connection and energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2019.
[131] “POWERLITEC04202011 Inductor Cores,” Available: https://elnamagnetics.com/wp- content/uploads/catalogs/Metglas/powerlite.pdf, July 19,2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *