帳號:guest(18.216.82.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫翔宇
作者(外文):Sun, Xiang-Yu
論文名稱(中文):風力永磁同步發電機為主雙極性直流微電網之開發
論文名稱(外文):DEVELOPMENT OF A WIND PMSG BASED BIPOLAR DC MICROGRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):曾萬存
陳景然
口試委員(外文):Tseng, Wan-Tsun
Chen, Ching-Jan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:107061469
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:115
中文關鍵詞:微電網風力發電機永磁同步發電機維也納開關式整流器三相單開關升壓開關式整流器三相雙開關三階升壓開關式整流器單相三線逆變器蓄電池儲能系統介面轉換器強健控制
外文關鍵詞:Microgridwind generatorIPMSGVienna SMR3P1SW SMR3P2SW three-level SMR1P3W inverterbattery energy storage systeminterface converterrobust control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在從事風力永磁同步發電機為基礎雙極性直流微電網之開發及操控。首先建立一風力永磁同步發電機,並加以適當控制,於變動之速度和負載下獲得良好之發電特性。比較評定發電機後接之三相單開關、三相雙開關和三相三開關維也納開關式整流器。在合適強健電壓和電流控制下,建立調控良好之微電網直流鏈電壓。此外亦提出均壓控制方案,減少雙極性直流鏈之電壓不平衡。對於具維也納開關式整流器之風力發電機,從事換相時刻設定之探究及實測評定,以有效利用磁阻功率成份。
接著,構建蓄電池儲能系統,提供微電網之能源緩衝,在變動風速下之供電品質得以提升。蓄電池經由雙向直流-直流升/降壓轉換器連接到微電網直流鏈。經由適當之電路及控制器設計,獲得良好之充放電操控特性。
最後,設計實現一雙向單相三線逆變器。得益於雙極性直流鏈配置,只需裝配兩個逆變器電路臂。應用所設計之比例諧振回授控制器,產生具有良好波形品質之60Hz 220V/110V 交流電壓,供電未知及非線性負載,並可施行並網操作。實測佐證微電網到用戶和微電網與電網間之成功雙向操作。
This thesis focuses on the development and operation control of a wind interior permanent-magnetic synchronous generator (IPMSG) based bipolar DC microgrid. First, the wind IPMSG is established and properly controlled to possess satisfactory generating characteristics under varied driven speed and load. Then the boost switch-mode rectifier (SMR) based bipolar DC bus is established. The generator followed by three-phase single-switch (3P1SW) boost SMR, three-phase two-switch (3P2SW) three-level boost SMR and three-phase three-switch (3P3SW) Vienna SMR are comparatively evaluated. With the proposed robust voltage and current controls, well-regulated microgrid DC-bus voltage is established. Moreover, the voltage balancing control is proposed to minimize the bipolar DC-bus voltage imbalance. For the wind IPMSG with Vienna SMR, the commu- tation angle setting to effectively use the reluctance power component is conducted and verified experimentally.
Next, a battery energy storage system (BESS) is constructed for supplying energy buffer to the microgrid. The power supplying quality is improved under fluctuated wind speed. The battery bank is connected to the microgrid DC-bus through a bidirectional three-level DC/DC boost/buck converter. With proper designs of schematic and controller, satisfactory charging and discharging characteristics are achieved.
Finally, a bidirectional single-phase three-wire (1P3W) inverter is designed and implemented. Thanks to the bipolar DC-bus arrangement, only two inverter legs are needed. The proportional-resonant (PR) feedback controller is designed to yield 60Hz 220V/110V AC voltages with good waveform quality to power the unknown and nonlinear loads. Furthermore, the bidirectional grid-connected operation is also conductible. Successful microgrid-to-home (M2H), microgrid-to-grid (M2G) and grid-to-microgrid (G2M) operations are demonstrated by measured results.
摘要 a
致謝 b
目錄 c
第一章、簡介 d
第二章、微電網系統與永磁同步發電機之基礎知識 f
第三章、三種非正弦開關式整流器永磁同步發電機之比較評估 g
第四章、具維也納開關式整流器之風力永磁同步發電機 i
第五章、風力永磁同步發電機爲主雙極性直流微電網 j
第六章、結論 k
附錄: 英文論文 l
A. Motor/Generator
[1] “Global wind report 2019,” Available: https://gwec.net/global-wind-report-2019, March, 2019.
[2] P. C. Sen, Principle of Electric Machines and Power Electronics, 3rd ed. Canada: Wiley John & Sons, Inc., 2014.
[3] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New Jersey: Prentice Hall, Inc., 2002.
[4] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[5] T. Marcic, B. Stumberger, and G. Stumberger, “Comparison of induction motor and line-start IPM synchronous motor performance in a variable-speed drive,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2341-2352, 2012.
[6] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol.48, no. 6, pp.2322-2332, 2012.
[7] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[8] C. He and T. Wu, “Analysis and design of surface permanent magnet synchronous motor and generator,” CES Trans. Electr. Mach. Syst., vol. 3, no. 1, pp. 94-100, March 2019.
[9] Q. Shen, N. Sun, G. Zhao, X. Han and R. Tang, “Design of a permanent magnet synchronous motor and performance analysis for subway,” in Proc. IEEE APPEEC, pp. 1-4, 2010.
[10] T. Finken, M. Hombitzer, and K. Hameyer, “Study and comparison of several permanent-magnet excited rotor types regarding their applicability in electric vehicles”, in Proc. IEEE Emobility- Elect. Power Train, pp. 1-7, 2010.
[11] R. Menon, A. H. Kadam, N. A. Azeez and S. S. Williamson, “A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications”, in Proc. IEEE Ind. Electron. Soc., pp. 6627-6632, 2016.
[12] M. Rosyadi, S. M. Muyeen, R. Takahashi and J. Tamura, “Voltage stability control of wind farm using PMSG based variable speed wind turbine,” in Proc. IEEE ICEM, pp. 2192-2197, 2012.
[13] G. Boztas and O. Aydogmus, “Design of a high-speed PMSM for flywheel systems,” in Proc. ICPEA, pp. 1-5, 2019.
[14] Y. Chen, J. Yang, X. Zhang and J. Gao, “An enhanced DC-Link voltage control method for high-speed PMSM/G in flywheel energy storage system with indirect feedforward of consumed power and speed compensation,” in Proc. IEEE ICEMS, pp. 1-6, 2019.
[15] T. Ackermann, Wind power in power systems, United States: John Wiley & Sons Ltd., 2005
[16] A. A. Daoud, S. S. Dessouky and A. A. Salem, “Control scheme of PMSG based wind turbine for utility network connection,” in Proc. EEEIC, pp. 1-5, 2011.
[17] H. P. Rimal, M. Brenna, N. R. Karki and A. K. Verma, “Control of PMSG based wind turbines for renewables based DC distribution,” in Proc. SKIMA, pp. 1-7, 2015.
[18] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: State-of-art and emerging technologies,” in Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015
[19] S. Z. Moussavi, and R. Atapour, “Dynamic modelling and control of doubly fed induction generator variable speed wind turbine,” in Proc. CIIT, pp. 78-86, 2011.
[20] F. Yuan, Q. Liu, and Y. Chen, “The research of variable speed constant frequency wind power generation technology,” Advanced Materials Research, pp. 619-621, 2014.
[21] M. M. Mansour, M. N. Mansouri, and M. F. Mimouni, “Comparative study of fixed speed and variable speed wind generator with pitch angle control,” in Proc. IEEE ICC, pp. 1-7, 2011.
[22] A. H. Rajaei, M. Mohamadian, and A. Yazdian Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. on Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013.
[23] Y. Zhao, C. Wei, Z. Zhang and W. Qiao, “A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 4, pp. 203-216, December 2013.
[24] K. W. Hu and C. M. Liaw, “A position sensorless surface-mounted permanent- magnet synchronous generator and its operation control,” IET Power Electron., vol. 8, no. 9, pp. 1636-1650, 2015.
[25] D. Zhang and J. G. Jiang, “Sensorless control of PMSM for DC micro-grid flywheel energy storage based on EKF,” J. Eng., vol. 2019, no. 16, pp. 1227-1231, March 2019.
B. Switch-Mode Rectifier
[26] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[27] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[28] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[29] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[30] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[31] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[32] K. Yao, X. Ruan, C. Zou and Z. Ye, “Three-phase single-switch boost power factor correction converter with high input power factor,” IET Power Electron., vol. 5, no. 7, pp. 1095-1103, August 2012.
[33] H. Chen and W. Lin, “Three-level boosting MPPT control with reduced number of sensors,” in Proc. IEEE PEDG, pp. 1-6, 2013.
[34] M. T. Tsai, C. L. Chu, C. M. Mi, J. Y. Jhang and B. J. Jiang, “Design a three-phase three-level rectifier for unbalance loads and unequal bus voltages requirements,” in Proc. IEEE ICIEA, pp. 107-112, 2014.
[35] Y. Zhang, J. L. Shi, L. Zhou, J. Li, M. Sumner, P. Wang and C. L. Xia, “Wide input-voltage range boost three-level DC-DC converter with quasi-Z source for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6728-6738, September 2017.
[36] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[37] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[38] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator based microgrid and its operation control,” IEEE Trans. Power Electron. vol. 30, no. 9, pp. 4973-4985, 2015.
[39] K. L. Bashar, A. H. Abedin, M. N. Uddin and M. A. Choudhury, “Three phase three switch modular Vienna, Boost and SEPIC rectifiers,” in Proc. IEEE CIEC, pp. 348-352, 2016.
[40] S. Ramasamy and D. Reddy, “Design of a three-phase boost type Vienna rectifier for 1kW wind energy conversion system,” IJRER, vol. 7, no. 4, pp. 1909-1918, 2017.
C. Energy Storage System
[41] N. Kularatna, “Rechargeable batteries and their management,” IEEE Trans. Instrum. Meas., vol. 14, no. 2, pp. 20-33, April 2011.
[42] M. C. Such and C. Hill, “Battery energy storage and wind energy integrated into the smart grid,” in Proc. IEEE PES ISGT, pp. 1-4, 2012.
[43] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014.
[44] X. Wang and Y. Liu, “Analysis of energy storage technology and their application for micro grid,” in Proc. ICCTEC, pp. 972-975, 2017.
[45] H. F. Jamahori and H. A. Rahman, “Hybrid energy storage system for life cycle improvement,” in Proc. IEEE CENCON, pp. 196-200, 2017.
[46] D. Shin, Y. Kim, J. Seo, N. Chang, Y. Wang and M. Pedram, “Battery-supercapacitor hybrid system for high-rate pulsed load applications,” in Proc. IEEE DATE, pp. 1-4, 2011.
[47] S. Liu, J. Peng, L. Li, X. Gong and H. Lu, “A MPC based energy management strategy for battery-supercapacitor combined energy storage system of HEV,” in Proc. CCC, pp. 8727-8731, 2016.
[48] B. L. Lawu, S. Fuada, S. Ramadhan, A. F. Sabana and A. Sasongko, “Charging supercapacitor mechanism based-on bidirectional DC-DC converter for electric ATV motor application,” in Proc. ISESD, pp. 129-132, 2017.
[49] A. Akhil, S. Kraft and P. C. Symons, “Market feasibility study of utility battery applications: penetration of battery energy storage into regulated electric utilities,” in Proc. The Twelfth Annual Battery Conference on Applications and Advances, pp. 195-200, 1997.
[50] J. M. Sandoval, M. J. Espinoza Trujillo, M. I. Buñuelos, J. L. Duran Gómez, J. Y. Verde Gómez and D. E. Pacheco-Catalán, “Batteries-supercapacitors storage systems for a mobile hybrid renewable energy system,” in Proc. IEEE EPEC, pp. 1-4, 2013.
[51] S. Sano, Y. Ito, Y. Hirose, H. Takeuchi and S. Aone, “Development of long cycle life valve-regulated lead-acid battery for large-scale battery energy storage system to utilize renewable energy,” in Proc. IEEE INTELEC, pp. 1-6, 2015.
[52] H. Keshan, J. Thornburg and T. S. Ustun, “Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems,” in Proc. IET CEAT, pp. 1-7, 2016.
D. Micro-Grid and Operation Control
[53] S. H. Park, J. Y. Choi and D. J. Won, “Cooperative control between the distributed energy resources in AC/DC hybrid microgrid,” in Proc. ISGT, pp. 1-5, 2014.
[54] L. Che, M. Shahidehpour, A. Alabdulwahab and Y. Al-Turki, "Hierarchical coordination of a community microgrid with AC and DC microgrids," IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042-3051, November 2015.
[55] Y. Khayat, R. Heydari, M. Naderi, T. Dragicevic, Q. Shafiee, M. Fathi, H. Bevrani and F. Blaabjerg “Estimation-based consensus approach for decentralized frequency control of AC microgrids,” in Proc. EPE ECCE, pp. 1-8, 2019.
[56] H. Kakigano, A. Nishino, Y. Miura and T. Ise, “Distribution voltage control for DC microgrid by converters of energy storages considering the stored energy,” in Proc. IEEE ECCE, pp. 2851-2856, 2010.
[57] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
[58] S. Rivera, B. Wu, S. Kouro, V. Yaramasu and J. Wang, “Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 1999-2009, Apr. 2015.
[59] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE-Berlin, pp. 318-322, 2015.
[60] L. E. Zubieta, “Power management and optimization concept for DC microgrids,” in Proc. IEEE ICDCM, pp. 81-85, 2015.
[61] M. Lee, W. Choi, H. Kim and B. Cho, “Operation schemes of interconnected DC microgrids through an isolated bi-directional DC-DC converter,” in Proc. IEEE APEC, pp. 2940-2945, 2015.
[62] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC Microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[63] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids- Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016.
[64] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids- Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
E. Interface Converters
[65] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[66] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, pp. 1-6, 2006.
[67] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system,” in Proc. IEEE ICBEST, 2015, pp. 62–67.
[68] W. Li and G. Joos, “A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications,” in Proc. IEEE PESC, pp. 1762-1768, 2008.
[69] X. Ruan, B. Li, Q. Chen, S. C. Tan and C. K. Tse, “Fundamental considerations of three-level DC-DC converters: Topologies, analyses, and control,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 11, pp. 3733–3743, 2008.
[70] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[71] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[72] D. Habumugisha, S. Chowdhury and S. P. Chowdhury, “A DC-DC interleaved forward converter to step-up DC voltage for DC Microgrid applications,” in Proc. IEEE PESGM, pp. 1-5, 2013.
[73] O. Cornea, E. Guran, N. Muntean and D. Hulea, “Bi-directional hybrid DC-DC converter with large conversion ratio for microgrid DC busses interface,” in Proc. IEEE SPEEDAM, pp. 695-700, 2014.
[74] A. Thiyagarajan, S. G. Praveen Kumar and A. Nandini, “Analysis and comparison of conventional and interleaved DC/DC boost converter,” in Proc. IEEE ICCTET, pp. 198-205, 2014.
[75] P. Prajof and V. Agarwal, “Novel solar PV-fuel cell fed dual-input-dual-output DC-DC converter for dc microgrid applications,” in Proc. IEEE PVSC, pp. 1-6, 2015.
[76] L. E. Zubieta and P. W. Lehn, “A high efficiency unidirectional DC/DC converter for integrating distributed resources into DC microgrids,” in Proc. IEEE ICDCM, pp. 280-284, 2015.
[77] S. Liao, J. Teng and S. Chen, “Bidirectional DC-DC converter with high step-down and step-up voltage conversion ratio,” in Proc. IEEE SPEC, pp. 1-6, 2016.
[78] N. Kondrath, “Bidirectional DC-DC converter topologies and control strategies for interfacing energy storage systems in microgrids: An overview,” in Proc. IEEE SEGE, pp. 341-345, 2017.
[79] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[80] S. Dahalea, A. Dasb, N. M. Pindoriya and S. Rajendran, “An Overview of DC-DC converter topologies and controls in DC microgrid,” in Proc. IEEE ICPS, vol. 13, pp. 410-415, 2017.
[81] Z. Kan, P. Li, R. Yuan and C. Zhang, “Interleaved three-level bi-directional DC-DC converter and power flow control,” in Proc. IEEE IGBSG, pp. 1-4, 2018.
[82] X. Zhang, B. Wang, U. Manandhar, H. B. Gooi and G. Foo, “A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4025–4030, 2019.
[83] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, D. M. Ionel, M. Mitolo and D. Almakhles, “Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130-178166, 2020.
[84] S. J. Chiang and C. M. Liaw “A single-phase three-wire transformerless inverter,” in Proc. IEE Pt. B, vol. 141, no. 4, pp. 197-205, 1994.
[85] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[86] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[87] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
[88] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
[89] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[90] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
[91] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014.
[92] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron, vol. 58, no. 10, pp. 4693-4707, October 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *