|
A. Motor/Generator [1] “Global wind report 2019,” Available: https://gwec.net/global-wind-report-2019, March, 2019. [2] P. C. Sen, Principle of Electric Machines and Power Electronics, 3rd ed. Canada: Wiley John & Sons, Inc., 2014. [3] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New Jersey: Prentice Hall, Inc., 2002. [4] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006. [5] T. Marcic, B. Stumberger, and G. Stumberger, “Comparison of induction motor and line-start IPM synchronous motor performance in a variable-speed drive,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2341-2352, 2012. [6] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol.48, no. 6, pp.2322-2332, 2012. [7] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015. [8] C. He and T. Wu, “Analysis and design of surface permanent magnet synchronous motor and generator,” CES Trans. Electr. Mach. Syst., vol. 3, no. 1, pp. 94-100, March 2019. [9] Q. Shen, N. Sun, G. Zhao, X. Han and R. Tang, “Design of a permanent magnet synchronous motor and performance analysis for subway,” in Proc. IEEE APPEEC, pp. 1-4, 2010. [10] T. Finken, M. Hombitzer, and K. Hameyer, “Study and comparison of several permanent-magnet excited rotor types regarding their applicability in electric vehicles”, in Proc. IEEE Emobility- Elect. Power Train, pp. 1-7, 2010. [11] R. Menon, A. H. Kadam, N. A. Azeez and S. S. Williamson, “A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications”, in Proc. IEEE Ind. Electron. Soc., pp. 6627-6632, 2016. [12] M. Rosyadi, S. M. Muyeen, R. Takahashi and J. Tamura, “Voltage stability control of wind farm using PMSG based variable speed wind turbine,” in Proc. IEEE ICEM, pp. 2192-2197, 2012. [13] G. Boztas and O. Aydogmus, “Design of a high-speed PMSM for flywheel systems,” in Proc. ICPEA, pp. 1-5, 2019. [14] Y. Chen, J. Yang, X. Zhang and J. Gao, “An enhanced DC-Link voltage control method for high-speed PMSM/G in flywheel energy storage system with indirect feedforward of consumed power and speed compensation,” in Proc. IEEE ICEMS, pp. 1-6, 2019. [15] T. Ackermann, Wind power in power systems, United States: John Wiley & Sons Ltd., 2005 [16] A. A. Daoud, S. S. Dessouky and A. A. Salem, “Control scheme of PMSG based wind turbine for utility network connection,” in Proc. EEEIC, pp. 1-5, 2011. [17] H. P. Rimal, M. Brenna, N. R. Karki and A. K. Verma, “Control of PMSG based wind turbines for renewables based DC distribution,” in Proc. SKIMA, pp. 1-7, 2015. [18] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: State-of-art and emerging technologies,” in Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015 [19] S. Z. Moussavi, and R. Atapour, “Dynamic modelling and control of doubly fed induction generator variable speed wind turbine,” in Proc. CIIT, pp. 78-86, 2011. [20] F. Yuan, Q. Liu, and Y. Chen, “The research of variable speed constant frequency wind power generation technology,” Advanced Materials Research, pp. 619-621, 2014. [21] M. M. Mansour, M. N. Mansouri, and M. F. Mimouni, “Comparative study of fixed speed and variable speed wind generator with pitch angle control,” in Proc. IEEE ICC, pp. 1-7, 2011. [22] A. H. Rajaei, M. Mohamadian, and A. Yazdian Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. on Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013. [23] Y. Zhao, C. Wei, Z. Zhang and W. Qiao, “A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 4, pp. 203-216, December 2013. [24] K. W. Hu and C. M. Liaw, “A position sensorless surface-mounted permanent- magnet synchronous generator and its operation control,” IET Power Electron., vol. 8, no. 9, pp. 1636-1650, 2015. [25] D. Zhang and J. G. Jiang, “Sensorless control of PMSM for DC micro-grid flywheel energy storage based on EKF,” J. Eng., vol. 2019, no. 16, pp. 1227-1231, March 2019. B. Switch-Mode Rectifier [26] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [27] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [28] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [29] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [30] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [31] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [32] K. Yao, X. Ruan, C. Zou and Z. Ye, “Three-phase single-switch boost power factor correction converter with high input power factor,” IET Power Electron., vol. 5, no. 7, pp. 1095-1103, August 2012. [33] H. Chen and W. Lin, “Three-level boosting MPPT control with reduced number of sensors,” in Proc. IEEE PEDG, pp. 1-6, 2013. [34] M. T. Tsai, C. L. Chu, C. M. Mi, J. Y. Jhang and B. J. Jiang, “Design a three-phase three-level rectifier for unbalance loads and unequal bus voltages requirements,” in Proc. IEEE ICIEA, pp. 107-112, 2014. [35] Y. Zhang, J. L. Shi, L. Zhou, J. Li, M. Sumner, P. Wang and C. L. Xia, “Wide input-voltage range boost three-level DC-DC converter with quasi-Z source for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6728-6738, September 2017. [36] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336. [37] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523. [38] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator based microgrid and its operation control,” IEEE Trans. Power Electron. vol. 30, no. 9, pp. 4973-4985, 2015. [39] K. L. Bashar, A. H. Abedin, M. N. Uddin and M. A. Choudhury, “Three phase three switch modular Vienna, Boost and SEPIC rectifiers,” in Proc. IEEE CIEC, pp. 348-352, 2016. [40] S. Ramasamy and D. Reddy, “Design of a three-phase boost type Vienna rectifier for 1kW wind energy conversion system,” IJRER, vol. 7, no. 4, pp. 1909-1918, 2017. C. Energy Storage System [41] N. Kularatna, “Rechargeable batteries and their management,” IEEE Trans. Instrum. Meas., vol. 14, no. 2, pp. 20-33, April 2011. [42] M. C. Such and C. Hill, “Battery energy storage and wind energy integrated into the smart grid,” in Proc. IEEE PES ISGT, pp. 1-4, 2012. [43] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014. [44] X. Wang and Y. Liu, “Analysis of energy storage technology and their application for micro grid,” in Proc. ICCTEC, pp. 972-975, 2017. [45] H. F. Jamahori and H. A. Rahman, “Hybrid energy storage system for life cycle improvement,” in Proc. IEEE CENCON, pp. 196-200, 2017. [46] D. Shin, Y. Kim, J. Seo, N. Chang, Y. Wang and M. Pedram, “Battery-supercapacitor hybrid system for high-rate pulsed load applications,” in Proc. IEEE DATE, pp. 1-4, 2011. [47] S. Liu, J. Peng, L. Li, X. Gong and H. Lu, “A MPC based energy management strategy for battery-supercapacitor combined energy storage system of HEV,” in Proc. CCC, pp. 8727-8731, 2016. [48] B. L. Lawu, S. Fuada, S. Ramadhan, A. F. Sabana and A. Sasongko, “Charging supercapacitor mechanism based-on bidirectional DC-DC converter for electric ATV motor application,” in Proc. ISESD, pp. 129-132, 2017. [49] A. Akhil, S. Kraft and P. C. Symons, “Market feasibility study of utility battery applications: penetration of battery energy storage into regulated electric utilities,” in Proc. The Twelfth Annual Battery Conference on Applications and Advances, pp. 195-200, 1997. [50] J. M. Sandoval, M. J. Espinoza Trujillo, M. I. Buñuelos, J. L. Duran Gómez, J. Y. Verde Gómez and D. E. Pacheco-Catalán, “Batteries-supercapacitors storage systems for a mobile hybrid renewable energy system,” in Proc. IEEE EPEC, pp. 1-4, 2013. [51] S. Sano, Y. Ito, Y. Hirose, H. Takeuchi and S. Aone, “Development of long cycle life valve-regulated lead-acid battery for large-scale battery energy storage system to utilize renewable energy,” in Proc. IEEE INTELEC, pp. 1-6, 2015. [52] H. Keshan, J. Thornburg and T. S. Ustun, “Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems,” in Proc. IET CEAT, pp. 1-7, 2016. D. Micro-Grid and Operation Control [53] S. H. Park, J. Y. Choi and D. J. Won, “Cooperative control between the distributed energy resources in AC/DC hybrid microgrid,” in Proc. ISGT, pp. 1-5, 2014. [54] L. Che, M. Shahidehpour, A. Alabdulwahab and Y. Al-Turki, "Hierarchical coordination of a community microgrid with AC and DC microgrids," IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042-3051, November 2015. [55] Y. Khayat, R. Heydari, M. Naderi, T. Dragicevic, Q. Shafiee, M. Fathi, H. Bevrani and F. Blaabjerg “Estimation-based consensus approach for decentralized frequency control of AC microgrids,” in Proc. EPE ECCE, pp. 1-8, 2019. [56] H. Kakigano, A. Nishino, Y. Miura and T. Ise, “Distribution voltage control for DC microgrid by converters of energy storages considering the stored energy,” in Proc. IEEE ECCE, pp. 2851-2856, 2010. [57] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010. [58] S. Rivera, B. Wu, S. Kouro, V. Yaramasu and J. Wang, “Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 1999-2009, Apr. 2015. [59] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE-Berlin, pp. 318-322, 2015. [60] L. E. Zubieta, “Power management and optimization concept for DC microgrids,” in Proc. IEEE ICDCM, pp. 81-85, 2015. [61] M. Lee, W. Choi, H. Kim and B. Cho, “Operation schemes of interconnected DC microgrids through an isolated bi-directional DC-DC converter,” in Proc. IEEE APEC, pp. 2940-2945, 2015. [62] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC Microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016. [63] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids- Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016. [64] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids- Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016. E. Interface Converters [65] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003. [66] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, pp. 1-6, 2006. [67] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system,” in Proc. IEEE ICBEST, 2015, pp. 62–67. [68] W. Li and G. Joos, “A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications,” in Proc. IEEE PESC, pp. 1762-1768, 2008. [69] X. Ruan, B. Li, Q. Chen, S. C. Tan and C. K. Tse, “Fundamental considerations of three-level DC-DC converters: Topologies, analyses, and control,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 11, pp. 3733–3743, 2008. [70] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10. [71] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011. [72] D. Habumugisha, S. Chowdhury and S. P. Chowdhury, “A DC-DC interleaved forward converter to step-up DC voltage for DC Microgrid applications,” in Proc. IEEE PESGM, pp. 1-5, 2013. [73] O. Cornea, E. Guran, N. Muntean and D. Hulea, “Bi-directional hybrid DC-DC converter with large conversion ratio for microgrid DC busses interface,” in Proc. IEEE SPEEDAM, pp. 695-700, 2014. [74] A. Thiyagarajan, S. G. Praveen Kumar and A. Nandini, “Analysis and comparison of conventional and interleaved DC/DC boost converter,” in Proc. IEEE ICCTET, pp. 198-205, 2014. [75] P. Prajof and V. Agarwal, “Novel solar PV-fuel cell fed dual-input-dual-output DC-DC converter for dc microgrid applications,” in Proc. IEEE PVSC, pp. 1-6, 2015. [76] L. E. Zubieta and P. W. Lehn, “A high efficiency unidirectional DC/DC converter for integrating distributed resources into DC microgrids,” in Proc. IEEE ICDCM, pp. 280-284, 2015. [77] S. Liao, J. Teng and S. Chen, “Bidirectional DC-DC converter with high step-down and step-up voltage conversion ratio,” in Proc. IEEE SPEC, pp. 1-6, 2016. [78] N. Kondrath, “Bidirectional DC-DC converter topologies and control strategies for interfacing energy storage systems in microgrids: An overview,” in Proc. IEEE SEGE, pp. 341-345, 2017. [79] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017. [80] S. Dahalea, A. Dasb, N. M. Pindoriya and S. Rajendran, “An Overview of DC-DC converter topologies and controls in DC microgrid,” in Proc. IEEE ICPS, vol. 13, pp. 410-415, 2017. [81] Z. Kan, P. Li, R. Yuan and C. Zhang, “Interleaved three-level bi-directional DC-DC converter and power flow control,” in Proc. IEEE IGBSG, pp. 1-4, 2018. [82] X. Zhang, B. Wang, U. Manandhar, H. B. Gooi and G. Foo, “A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4025–4030, 2019. [83] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, D. M. Ionel, M. Mitolo and D. Almakhles, “Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130-178166, 2020. [84] S. J. Chiang and C. M. Liaw “A single-phase three-wire transformerless inverter,” in Proc. IEE Pt. B, vol. 141, no. 4, pp. 197-205, 1994. [85] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999. [86] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009. [87] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664. [88] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003. [89] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [90] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013. [91] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014. [92] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron, vol. 58, no. 10, pp. 4693-4707, October 2011.
|