|
【1】 Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351-358. 【2】 Longnecker, D. S. (2014). Anatomy and Histology of the Pancreas. Pancreapedia: The Exocrine Pancreas Knowledge Base. 【3】 Adamska, A., Domenichini, A., & Falasca, M. (2017). Pancreatic ductal adenocarcinoma: current and evolving therapies. International journal of molecular sciences, 18(7), 1338. 【4】 Kleeff, J., Korc, M., Apte, M., La Vecchia, C., Johnson, C. D., Biankin, A. V., ... & Neoptolemos, J. P. (2016). Pancreatic cancer. Nature reviews Disease primers, 2(1), 1-22. 【5】 Wang, G., Zhou, Z., Zhao, Z., Li, Q., Wu, Y., Yan, S., ... & Huang, P. (2020). Enzyme-Triggered Transcytosis of Dendrimer–Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS nano, 14(4), 4890-4904. 【6】 Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A., & Verma, A. (2017). The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of hematology & oncology, 10(1), 1-8. 【7】 Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting tumor microenvironment for cancer therapy. International journal of molecular sciences, 20(4), 840. 【8】 Li, T., Lei, Y., Guo, M., & Yan, H. (2018). Crosslinked poly (vinyl alcohol) hydrogel microspheres containing dispersed fenofibrate nanocrystals as an oral sustained delivery system. European Polymer Journal, 101, 77-82. 【9】 Mu, H., Holm, R., & Müllertz, A. (2013). Lipid-based formulations for oral administration of poorly water-soluble drugs. International journal of pharmaceutics, 453(1), 215-224. 【10】 Truong-Le, V., Lovalenti, P. M., & Abdul-Fattah, A. M. (2015). Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Advanced drug delivery reviews, 93, 95-108. 【11】 Duan, Y., Zhang, B., Chu, L., Tong, H. H., Liu, W., & Zhai, G. (2016). Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids and Surfaces B: Biointerfaces, 141, 345-354. 【12】 Yu, M., Yang, Y., Zhu, C., Guo, S., & Gan, Y. (2016). Advances in the transepithelial transport of nanoparticles. Drug discovery today, 21(7), 1155-1161. 【13】 Horwitz, S. B. (1994). Taxol (paclitaxel): mechanisms of action. Annals of oncology: official journal of the European Society for Medical Oncology, 5, S3-6. 【14】 Zhang, Y. M., Zhang, N. Y., Xiao, K., Yu, Q., & Liu, Y. (2018). Photo‐controlled reversible microtubule assembly mediated by paclitaxel‐modified cyclodextrin. Angewandte Chemie, 130(28), 8785-8789. 【15】 Yang, H., Mao, W., Rodriguez-Aguayo, C., Mangala, L. S., Bartholomeusz, G., Iles, L. R., ... & Lu, Z. (2018). Paclitaxel sensitivity of ovarian cancer can be enhanced by knocking down pairs of kinases that regulate MAP4 phosphorylation and microtubule stability. Clinical Cancer Research, 24(20), 5072-5084. 【16】 Gornstein, E. L. (2016). Neurotoxic Mechanisms of the Chemotherapeutic Paclitaxel (Doctoral dissertation). 【17】 Zhang, Z., Mei, L., & Feng, S. S. (2013). Paclitaxel drug delivery systems. Expert opinion on drug delivery, 10(3), 325-340. 【18】 Zeng, J., Li, C., Duan, X., Liu, F., Li, A., Luo, C., ... & Zheng, Y. (2019). PEGylation of lipophilic SN38 prodrug with DSPE-mPEG2000 versus cremophor EL: comparative study for intravenous chemotherapy. Drug delivery, 26(1), 354-362. 【19】 Amrutkar, M., & Gladhaug, I. P. (2017). Pancreatic cancer chemoresistance to gemcitabine. Cancers, 9(11), 157. 【20】 Takemoto, H., Inaba, T., Nomoto, T., Matsui, M., Liu, X., Toyoda, M., ... & Tomoda, K. (2020). Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials, 235, 119804. 【21】 Hosseinzadeh, H., Atyabi, F., Dinarvand, R., & Ostad, S. N. (2012). Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. International journal of nanomedicine, 7, 1851. 【22】 Lin, P. Y., Chen, K. H., Miao, Y. B., Chen, H. L., Lin, K. J., Chen, C. T., ... & Sung, H. W. (2019). Phase‐Changeable Nanoemulsions for Oral Delivery of a Therapeutic Peptide: Toward Targeting the Pancreas for Antidiabetic Treatments Using Lymphatic Transport. Advanced Functional Materials, 29(13), 1809015. 【23】 Krug, S. M., Amasheh, M., Dittmann, I., Christoffel, I., Fromm, M., & Amasheh, S. (2013). Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials, 34(1), 275-282. 【24】 Jacob, S., Shirwaikar, A., & Nair, A. (2009). Preparation and evaluation of fast-disintegrating effervescent tablets of glibenclamide. Drug development and industrial pharmacy, 35(3), 321-328. 【25】 Jassim, Z. E., Rajab, N. A., & Mohammed, N. H. (2018). Study the effect of wet granulation and fusion methods on preparation, characterization, and release of lornoxicam sachet effervescent granules. Drug Invent Today, 10(9), 1612-6. 【26】 E.Y. Chuang, K.J. Lin, T.Y. Huang, H.L. Chen, Y.B. Miao, P.Y. Lin, et al., An intestinal "transformers"-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs, ACS Nano 12 (2018) 6389−6397. 【27】 Kim, K. S., Suzuki, K., Cho, H., Youn, Y. S., & Bae, Y. H. (2018). Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS nano, 12(9), 8893-8900. 【28】 Chuang, E. Y., Lin, K. J., Huang, T. Y., Chen, H. L., Miao, Y. B., Lin, P. Y., ... & Sung, H. W. (2018). An Intestinal “Transformers”-like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. ACS nano, 12(7), 6389-6397. 【29】 Trevaskis, N. L., Kaminskas, L. M., & Porter, C. J. (2015). From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nature Reviews Drug Discovery, 14(11), 781-803. 【30】 Kalepu, S., Manthina, M., & Padavala, V. (2013). Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B, 3(6), 361-372. 【31】 Hotz, H. G., Reber, H. A., Hotz, B., Foitzik, T., Buhr, H. J., Cortina, G., & Hines, O. J. (2001). An improved clinical model of orthotopic pancreatic cancer in immunocompetent Lewis rats. Pancreas, 22(2), 113-121. 【32】 He, R., & Yin, C. (2017). Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta biomaterialia, 53, 355-366. 【33】 Reuter, F., Bade, S., Hirst, T. R., & Frey, A. (2009). Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis. Journal of controlled release, 137(2), 98-103. 【34】 Aslani, A., & Jahangiri, H. (2013). Formulation, characterization and physicochemical evaluation of ranitidine effervescent tablets. Advanced pharmaceutical bulletin, 3(2), 315. 【35】 Amrutkar, M., & Gladhaug, I. P. (2017). Pancreatic cancer chemoresistance to gemcitabine. Cancers, 9(11), 157. 【36】 Huang, W., Chen, R., Peng, Y., Duan, F., Huang, Y., Guo, W., ... & Nie, L. (2019). In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad pH-responsive sensor. ACS nano, 13(8), 9561-9570. 【37】 Chuang, E. Y., Lin, K. J., Huang, T. Y., Chen, H. L., Miao, Y. B., Lin, P. Y., ... & Sung, H. W. (2018). An Intestinal “Transformers”-like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. ACS nano, 12(7), 6389-6397. 【38】 Bibby, M. C. (2004). Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. European journal of cancer, 40(6), 852-857. 【39】 Schudel, A., Francis, D. M., & Thomas, S. N. (2019). Material design for lymph node drug delivery. Nature Reviews Materials, 4(6), 415-428. 【40】 Rajeshkumar, N. V., Yabuuchi, S., Pai, S. G., Tong, Z., Hou, S., Bateman, S., ... & Hidalgo, M. (2016). Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. British journal of cancer, 115(4), 442-453.
|