帳號:guest(3.14.252.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):尚俊佑
作者(外文):Shang, Chun-Yu
論文名稱(中文):氣泡爆破式口服藥物遞送平台用於同時投遞親脂及親水化療藥物以治療胰臟癌
論文名稱(外文):A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumor
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):胡宇方
林昆儒
許源宏
蘇慕寰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:107038511
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:43
中文關鍵詞:胰臟癌吉西他濱紫杉醇氣泡爆破氣泡爆破產泡反應
外文關鍵詞:pancreatic adenocarcinomagemcitabinepaclitaxelbubble burstingeffervescent reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:210
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胰臟癌為難以治癒的癌症之一,雖然現今已經提出多種治療方式,但治療效果仍不如預期。本篇研究提出一個口服藥物遞送平台能自行產生二氧化碳(carbon dioxide,CO2)氣泡載體。此載體系統主要包含五種化合物:親水性藥物吉西他濱(gemcitabine,GEM)、親脂性藥物紫杉醇(paclitaxel,PTX)、癸酸(capric acid)、碳酸氫鈉(sodium bicarbonate,SBC)與檸檬酸(citric acid)等。利用此氣泡載體同時投遞PTX和GEM,並藉由氣泡的爆破來提升藥物於腸道的吸收性。GEM是一種具有抗腫瘤作用的核苷酸類似物,而PTX為一細胞有絲分裂抑制劑,二者皆為臨床胰臟癌第一線用藥,臨床上皆是以靜脈注射(intravenous,i.v.)投遞。脂質癸酸大量的存在於天然椰子油與動物乳奶中,碳酸氫鈉與檸檬酸為製藥上泡騰片(effervescent tablet)的主要成分。將所有化合物充分混合後裝載於膠囊中,並在膠囊外鍍上一層腸溶衣層(enteric coating)。經口服後,膠囊外的腸溶衣層在胃酸裡並不會受到影響,在小腸中性、弱鹼的環境下崩解釋放所攜帶的化合物。膠囊內的檸檬酸遇到腸液後會開始解離釋放出氫離子,產生出一暫時性的酸性環境並促使碳酸氫鈉裂解產生二氧化碳氣泡,而腸液中膽鹽(bile salt)具有界面活性劑的特性可幫助穩定CO2的氣泡結構,並以其形成的氣泡載體攜帶癸酸與親脂性藥物PTX。在口服投遞後,PTX會透過腸道內的淋巴循環系統進行吸收循環,最後再回到血液循環系統。而GEM則是直接透過一般的血液循環系統吸收,最後兩種藥物會累積在胰臟腫瘤組織中。在藥物動力學的實驗裡也證實口服藥物的組成成分相較於靜脈注射的組別有更低的毒性、更輕微的副作用卻有更高的生物可使用率,而口服投遞的組別也能有更好的抑制腫瘤生長、轉移等效果。本實驗數據證實了,我們所提出的口服藥物遞送平台能有效地抑制癌腫瘤的生長及其轉移,具有潛力改善胰臟癌的治療效果。
The therapeutic outcome of pancreatic cancer remains unsatisfactory, despite many attempts to improve it. To address this challenge, an oral drug delivery system that spontaneously initiates an effervescent reaction to form gas-bubble carriers is proposed. These carriers concurrently deliver lipophilic paclitaxel (PTX) and hydrophilic gemcitabine (GEM) in the small intestine. The bursting of the bubbles promotes the intestinal absorption of the drugs. The antitumor efficacy of this proposed oral drug delivery system is evaluated in rats with experimentally created orthotopic pancreatic tumors. The combined administration of equivalent amounts of PTX and GEM via the intravenous (i.v.) route, which is clinically used for treating pancreatic cancer, serves as a control. Following oral administration, the lipophilic PTX is initially absorbed through the intestinal lymphatic system and then enters systemic circulation, whereas the hydrophilic GEM is directly taken up into the blood circulation, ultimately accumulating in the tumorous pancreatic tissues. A pharmacokinetic study reveals that the orally delivered formulation has none of the toxic side-effects that are associated with the i.v. injected formulation; changes the pharmacokinetic profiles of the drugs; and increases the bioavailability of PTX. The oral formulation has a greater impact than the i.v. formulation on tumor-specific stromal depletion, resulting in greater inhibition of tumor growth with no evidence of metastatic spread. As well as enhancing the therapeutic efficacy, this unique approach of oral chemotherapy has potential for use on outpatients, greatly improving their quality of life.
摘要 ................. 1
Abstract........ 2
Contents .................. 3
一、 緒論................................ 5
1.1胰臟與胰臟癌............................... 5
1.2口服投遞藥物 ............................... 6
1.3 PTX ................................... 7
1.3.1 PTX作用機制....................................... 8
1.3.2 PTX副作用與投遞難題 ............................... 8
1.4 GEM ................................................ 9
1.4.1 GEM作用機制 ........................................ 9
1.4.2 GEM副作用與治療效率的降低 ............................... 10
1.5氣泡爆破式載體 .......................................... 11
1.6實驗架構 ....................................... 14
二、 材料與方法 .............................................. 16
2.1 材料 ............................................... 16
2.2脂質奈米乳化載體 ........................................ 16
2.2.1藥物載體組成成分最佳化 ................................. 16
2.2.2載體產泡能力及結構 ..................................... 16
2.3 劑型製備 ..................................... 17
2.4動物實驗 ......................................... 17
2.4.1原位胰臟癌腫瘤模型建立 ............................. 17
2.4.2藥物劑量最佳化 .................................... 18
2.4.3藥物吸收途徑 .................................... 18
2.4.4藥物吸收生體分布 .................................... 18
2.4.5 PTX、GEM之藥物動力學實驗 .............................. 19
2.4.6抗腫瘤藥效 ......................................... 20
2.4.7正電子發射電腦斷層掃描 ............................... 22
三、 實驗結果與討論 ........................................... 23
3.1脂質奈米油珠載體 ........................................... 23
3.1.1藥物載體產泡成分最佳化.................................. 23
3.1.2載體產泡能力及結構 ..................................... 23
3.2動物實驗 ............................................. 26
3.2.1藥物劑量最佳化 ....................................... 26
3.2.2藥物吸收途徑 ........................................... 27
3.2.3藥物吸收生體分布 ....................................... 28
3.2.4 PTX、GEM之藥物動力學實驗 ............................. 30
3.2.5動物胰臟癌模型治療效果 ................................ 32
3.2.6免疫組織染色 ......................................... 33
3.2.7正電子發射電腦斷層掃描 .............................. 35
四、 結論 ................................................. 37
五、參考文獻 ............................................... 38
【1】 Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351-358.
【2】 Longnecker, D. S. (2014). Anatomy and Histology of the Pancreas. Pancreapedia: The Exocrine Pancreas Knowledge Base.
【3】 Adamska, A., Domenichini, A., & Falasca, M. (2017). Pancreatic ductal adenocarcinoma: current and evolving therapies. International journal of molecular sciences, 18(7), 1338.
【4】 Kleeff, J., Korc, M., Apte, M., La Vecchia, C., Johnson, C. D., Biankin, A. V., ... & Neoptolemos, J. P. (2016). Pancreatic cancer. Nature reviews Disease primers, 2(1), 1-22.
【5】 Wang, G., Zhou, Z., Zhao, Z., Li, Q., Wu, Y., Yan, S., ... & Huang, P. (2020). Enzyme-Triggered Transcytosis of Dendrimer–Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS nano, 14(4), 4890-4904.
【6】 Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A., & Verma, A. (2017). The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of hematology & oncology, 10(1), 1-8.
【7】 Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting tumor microenvironment for cancer therapy. International journal of molecular sciences, 20(4), 840.
【8】 Li, T., Lei, Y., Guo, M., & Yan, H. (2018). Crosslinked poly (vinyl alcohol) hydrogel microspheres containing dispersed fenofibrate nanocrystals as an oral sustained delivery system. European Polymer Journal, 101, 77-82.
【9】 Mu, H., Holm, R., & Müllertz, A. (2013). Lipid-based formulations for oral administration of poorly water-soluble drugs. International journal of pharmaceutics, 453(1), 215-224.
【10】 Truong-Le, V., Lovalenti, P. M., & Abdul-Fattah, A. M. (2015). Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems. Advanced drug delivery reviews, 93, 95-108.
【11】 Duan, Y., Zhang, B., Chu, L., Tong, H. H., Liu, W., & Zhai, G. (2016). Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids and Surfaces B: Biointerfaces, 141, 345-354.
【12】 Yu, M., Yang, Y., Zhu, C., Guo, S., & Gan, Y. (2016). Advances in the transepithelial transport of nanoparticles. Drug discovery today, 21(7), 1155-1161.
【13】 Horwitz, S. B. (1994). Taxol (paclitaxel): mechanisms of action. Annals of oncology: official journal of the European Society for Medical Oncology, 5, S3-6.
【14】 Zhang, Y. M., Zhang, N. Y., Xiao, K., Yu, Q., & Liu, Y. (2018). Photo‐controlled reversible microtubule assembly mediated by paclitaxel‐modified cyclodextrin. Angewandte Chemie, 130(28), 8785-8789.
【15】 Yang, H., Mao, W., Rodriguez-Aguayo, C., Mangala, L. S., Bartholomeusz, G., Iles, L. R., ... & Lu, Z. (2018). Paclitaxel sensitivity of ovarian cancer can be enhanced by knocking down pairs of kinases that regulate MAP4 phosphorylation and microtubule stability. Clinical Cancer Research, 24(20), 5072-5084.
【16】 Gornstein, E. L. (2016). Neurotoxic Mechanisms of the Chemotherapeutic Paclitaxel (Doctoral dissertation).
【17】 Zhang, Z., Mei, L., & Feng, S. S. (2013). Paclitaxel drug delivery systems. Expert opinion on drug delivery, 10(3), 325-340.
【18】 Zeng, J., Li, C., Duan, X., Liu, F., Li, A., Luo, C., ... & Zheng, Y. (2019). PEGylation of lipophilic SN38 prodrug with DSPE-mPEG2000 versus cremophor EL: comparative study for intravenous chemotherapy. Drug delivery, 26(1), 354-362.
【19】 Amrutkar, M., & Gladhaug, I. P. (2017). Pancreatic cancer chemoresistance to gemcitabine. Cancers, 9(11), 157.
【20】 Takemoto, H., Inaba, T., Nomoto, T., Matsui, M., Liu, X., Toyoda, M., ... & Tomoda, K. (2020). Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials, 235, 119804.
【21】 Hosseinzadeh, H., Atyabi, F., Dinarvand, R., & Ostad, S. N. (2012). Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. International journal of nanomedicine, 7, 1851.
【22】 Lin, P. Y., Chen, K. H., Miao, Y. B., Chen, H. L., Lin, K. J., Chen, C. T., ... & Sung, H. W. (2019). Phase‐Changeable Nanoemulsions for Oral Delivery of a Therapeutic Peptide: Toward Targeting the Pancreas for Antidiabetic Treatments Using Lymphatic Transport. Advanced Functional Materials, 29(13), 1809015.
【23】 Krug, S. M., Amasheh, M., Dittmann, I., Christoffel, I., Fromm, M., & Amasheh, S. (2013). Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials, 34(1), 275-282.
【24】 Jacob, S., Shirwaikar, A., & Nair, A. (2009). Preparation and evaluation of fast-disintegrating effervescent tablets of glibenclamide. Drug development and industrial pharmacy, 35(3), 321-328.
【25】 Jassim, Z. E., Rajab, N. A., & Mohammed, N. H. (2018). Study the effect of wet granulation and fusion methods on preparation, characterization, and release of lornoxicam sachet effervescent granules. Drug Invent Today, 10(9), 1612-6.
【26】 E.Y. Chuang, K.J. Lin, T.Y. Huang, H.L. Chen, Y.B. Miao, P.Y. Lin, et al., An intestinal "transformers"-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs, ACS Nano 12 (2018) 6389−6397.
【27】 Kim, K. S., Suzuki, K., Cho, H., Youn, Y. S., & Bae, Y. H. (2018). Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS nano, 12(9), 8893-8900.
【28】 Chuang, E. Y., Lin, K. J., Huang, T. Y., Chen, H. L., Miao, Y. B., Lin, P. Y., ... & Sung, H. W. (2018). An Intestinal “Transformers”-like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. ACS nano, 12(7), 6389-6397.
【29】 Trevaskis, N. L., Kaminskas, L. M., & Porter, C. J. (2015). From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nature Reviews Drug Discovery, 14(11), 781-803.
【30】 Kalepu, S., Manthina, M., & Padavala, V. (2013). Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B, 3(6), 361-372.
【31】 Hotz, H. G., Reber, H. A., Hotz, B., Foitzik, T., Buhr, H. J., Cortina, G., & Hines, O. J. (2001). An improved clinical model of orthotopic pancreatic cancer in immunocompetent Lewis rats. Pancreas, 22(2), 113-121.
【32】 He, R., & Yin, C. (2017). Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta biomaterialia, 53, 355-366.
【33】 Reuter, F., Bade, S., Hirst, T. R., & Frey, A. (2009). Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis. Journal of controlled release, 137(2), 98-103.
【34】 Aslani, A., & Jahangiri, H. (2013). Formulation, characterization and physicochemical evaluation of ranitidine effervescent tablets. Advanced pharmaceutical bulletin, 3(2), 315.
【35】 Amrutkar, M., & Gladhaug, I. P. (2017). Pancreatic cancer chemoresistance to gemcitabine. Cancers, 9(11), 157.
【36】 Huang, W., Chen, R., Peng, Y., Duan, F., Huang, Y., Guo, W., ... & Nie, L. (2019). In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad pH-responsive sensor. ACS nano, 13(8), 9561-9570.
【37】 Chuang, E. Y., Lin, K. J., Huang, T. Y., Chen, H. L., Miao, Y. B., Lin, P. Y., ... & Sung, H. W. (2018). An Intestinal “Transformers”-like Nanocarrier System for Enhancing the Oral Bioavailability of Poorly Water-Soluble Drugs. ACS nano, 12(7), 6389-6397.
【38】 Bibby, M. C. (2004). Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. European journal of cancer, 40(6), 852-857.
【39】 Schudel, A., Francis, D. M., & Thomas, S. N. (2019). Material design for lymph node drug delivery. Nature Reviews Materials, 4(6), 415-428.
【40】 Rajeshkumar, N. V., Yabuuchi, S., Pai, S. G., Tong, Z., Hou, S., Bateman, S., ... & Hidalgo, M. (2016). Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. British journal of cancer, 115(4), 442-453.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *