|
[1] Xiaoning Ru, Minghao Qu, Jianqiang Wang, Tianyu Ruan, Miao Yang, Fuguo Peng, Wei Long, Kun Zheng, Hui Yan, Xixiang Xu, “25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers”, Solar Energy Materials and Solar Cells,Volume 215,2020 [2] S. Wang, "Current status of PV in China and its future forecast," in CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 72-82, March 2020 [3] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato and H. Sugimoto, "Cd- Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%," in IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863-1867, Nov. 2019 [4] Wang, R., Mujahid, M., Duan, Y., Wang, Z.-K., Xue, J., Yang, Y., Adv. Funct. Mater. 2019, 29, 1808843. [5] An overview of the Challenges in the commercialization of dye sensitized solar cells, Renewable and Sustainable Energy Reviews, Volume 71,2017, Pages 675-686, [6] Zhang, M., Zhu, L., Zhou, G. et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun 12, 309 (2021) [7] Qian, D., Zheng, Z., Yao, H. et al. Design rules for minimizing voltage losses in high- efficiency organic solar cells. Nature Mater 17, 703–709 (2018). [8] Shanawani, Mazen & Masotti, Diego & Costanzo, Alessandra. (2017). THz Rectennas and Their Design Rules. Electronics. 6. 99. [9] Willems, R. E. M., Weijtens, C. H. L., de Vries, X., Coehoorn, R., Janssen, R. A. J., Adv. Energy Mater. 2019, 9, 1803677 [10] A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. Rowe, Jr., J. Appl. Phys. 45, 230 (1974) [11] C. W. Tang , "Two‐layer organic photovoltaic cell", Applied Physics Letters 48, 183- 185 (1986) [12] J. Phys. Chem. Lett. 2016, 7, 22, 4495–4500 [13] Tracey M. Clarke and James R. Durrant Chemical Reviews 2010 110 (11), 6736-6767 [14] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995). [15] Yu, G. G., J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Science 1995, 270, 1789-1791 [16] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Advanced Functional Materials, vol. 15, no. 10, pp. 1617-1622, 2005. [17] Y. Liang et al., "Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," Journal of the American Chemical Society, vol. 131, no. 22, pp. 7792-7799, 2009. [18] Liao, S.-H., Jhuo, H.-J., Cheng, Y.-S. and Chen, S.-A. (2013), Fullerene Derivative- Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low- Bandgap Polymer (PTB7-Th) for High Performance. Adv. Mater., 25: 4766-4771. [19] Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27 (2015) 1170–1174 [20] W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, J. Hou, Adv. Mater. 28 (2016) 4734–4739 [21] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 3 (2019) 1140– 1151 [22] Wang Taohong, Chen Changbo, Guo Kunping, Chen Guo, Xu Tao, Wei Bin. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers. Chinese Physics B, 2016, 25(3): 038402 [23] Harito, C., Bavykin, D.V., Yuliarto, B. et al. Inhibition of Polyimide Photodegradation by Incorporation of Titanate Nanotubes into a Composite. J Polym Environ 27, 1505–1515 (2019). [24] Crispin, X., Marciniak, S., Osikowicz, W., Zotti, G., van der Gon, A.W.D., Louwet, F., Fahlman, M., Groenendaal, L., De Schryver, F. and Salaneck, W.R. (2003), Conductivity,morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)– poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci. B Polym. Phys., 41: 2561-2583. [25] Hintz, Holger & Sessler, C. & Peisert, Heiko & Egelhaaf, H.-J & Chassé, Thomas. (2012). Wavelength-Dependent Pathways of Poly-3-hexylthiophene Photo-Oxidation. Chemistry of Materials. 24. 2739–2743. 10.1021/cm3008864. [26] López-Elvira, E. et al. “Wavelength dependence of nanoscale photodegradation in poly(3-octylthiophene) thin films.” Polymer Degradation and Stability 96 (2011): 1279- 1285 [27] H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé Chemistry of Materials 2012 24 (14), 2739-2743 [28] Makoto Karakawa, Kenji Suzuki, Takayuki Kuwabara, Tetsuya Taima, Keiji Nagai, Masahiro Nakano, Takahiro Yamaguchi, Kohshin Takahashi, Factors contributing to degradation of organic photovoltaic cells, Organic Electronics, Volume 76, 2020 |