帳號:guest(3.128.203.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉家甄
作者(外文):Liu, Chia-Chen
論文名稱(中文):多元混和有機太陽能電池光照穩定性之研究
論文名稱(外文):Stability of multi-component organic solar cells under illumination
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):韋光華
冉曉雯
孟心飛
趙宇強
口試委員(外文):Wei, Kung-Hwa
Zen, Hsiao-Wen
Meng, Hsin-Fei
Chao, Yu-Chinag
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:107038504
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:100
中文關鍵詞:有機太陽能電池刮刀塗佈紫外光劣化可見光劣化
外文關鍵詞:organic solar cellblade coatingdegradation of ultravioletdegradation of visible light
相關次數:
  • 推薦推薦:0
  • 點閱點閱:394
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了要模擬當有機太陽電池放置在戶外時因太陽光所造成的裂化,我們將討 論太陽光譜中的其中兩個部分,分別是紫外線以及可見光。目前已知紫外線將對 有機太陽電池造成嚴重的裂化,本研究旨在探討使有機太陽電池的劣化,從不同 主動層和介面層材料進行測試後發現雖然介面層的不同也會造成些許的裂化程度 差異,但主動層主導了太陽電池劣化程度的多寡,由我們的結果可看到不同主動 層之間能存在明顯的壽命區別,例如二元主動層相較於同體系的三元主動層的紫 外穩定性較差。確定劣化的主導因素後,我們固定主動層和介面層材料並調整製 程條件進行後續的穩定性優化,例如材料比例、退火條件...等等,然而經過嘗試 許多不同的製程條件後發現影機太陽電池的紫外穩定性幾乎不被材料選擇以外的 因素影響,因此若為了有效提高紫外穩定性,濾光片的使用便是非常必要的,在 此篇研究中也有對於貼上市售兩款濾光片進行有機太陽電池的穩定性測試。在探 討完紫外線對有機太陽電池的裂化後,我們也用不同材料組合的有機太陽電池對 可見光環境進行裂化模擬,可以看到藍光是所有可見光波段中會造成最明顯的劣 化,而紅光和綠光幾乎不會對元件造成影響。
In order to simulate the degradation while organic solar cells are placed outdoors, we roughly discuss two parts of the sunlight, namely ultraviolet and visible light. At present, it's well known that ultraviolet light will cause serious degradation of organic solar cells. This study aims to explore how organic solar cells degrade. After testing different active layer and interlayer materials, we found that there is a little bit different stability between each interlayer. However, the active layer dominates the degradation level of the solar cell instead of interlayer as we can see. For example, the ternary active layer has better UV stability compared with the same system of binary active layer. After determining the dominant factors of degradation, we fixed the active layer and interface layer materials and then adjusted the process conditions for subsequent stability optimization, such as material ratio, annealing conditions... etc. However, after trying lots of different process conditions, we found that the UV stability of solar cells is almost not affected by factors other than the choice of materials. If we want to effectively improve UV stability, the use of filters is very necessary. In this study, we also use two commercially available filters to do stability test. After discussing the degradation of organic solar cells under ultraviolet light, we also used organic solar cells with different material combinations to simulate the degradation of visible light. The results show that blue light has the most obvious degradation for every material rather
than green or red light, which is coincided with our expectation.
中文摘要........................................................................................................................................ i Abstract ......................................................................................................................................... ii 致謝.............................................................................................................................................. iv 目錄 ................................................................................................................................................v 表目錄 ........................................................................................................................................ viii 圖目錄 ........................................................................................................................................ xiii 第 1 章 、 序論..........................................................................................................................1
1.1 研究背景.............................................................................................................................1
1.1.1 前言..............................................................................................................................1
1.1.2 太陽能電池發展簡介..................................................................................................2
1.1.3 有機太陽能電池發展簡介..........................................................................................4
1.2 研究動機及架構.................................................................................................................5
第 2 章 、 文獻回顧與實驗背景..............................................................................................7
2.1 太陽能電池.........................................................................................................................7
2.1.1 太陽能電池原理..........................................................................................................7
2.1.2 太陽能電池之理想與實際等效電路..........................................................................7
2.1.3 太陽能電池之各項重要參數..........................................................................................9
2.1.4 太陽能電池操作區域模式與分析............................................................................11
2.2 有機太陽能電池...............................................................................................................14
2.2.1 有機太陽能電池之能帶理論....................................................................................14
2.2.2 有機太陽能電池之元件結構....................................................................................15
2.2.3 有機太陽能電池之主動層材料................................................................................18
2.2.4 有機太陽能電池之介面層材料................................................................................21
2.2.5 本論文所使用之元件結構和能帶圖........................................................................23
2.2.6 有機太陽能電池紫外劣化之機制探討....................................................................26
第 3 章 、 實驗方法................................................................................................................27
3.1 元件製作流程...................................................................................................................27
3.1.1 ITO 玻璃基板濕式蝕刻製程 .....................................................................................27
3.1.2 標準清洗.....................................................................................................................29
3.1.3 旋轉塗布及刮刀塗佈製程.........................................................................................29
3.1.4 陰極電極蒸鍍.............................................................................................................31
3.1.5 不同結構之製作流程差別.........................................................................................32
3.1.6 元件封裝方法.............................................................................................................36
3.2 量測系統及方式...............................................................................................................36
3.3 以LED燈箱模擬戶外環境之元件穩定性測試.............................................................37
3.3.1 紫外光 LED燈箱用以模擬戶外的衰退.................................................................37
3.3.2 可見光 LED燈箱用以模擬戶外的衰退.................................................................37
第 4 章 、 實驗結果與討論....................................................................................................39
4.1 有機太陽電池之紫外光穩定性探討...............................................................................39
4.1.1 不同材料組合對有機太陽電池之紫外光穩定性測試.............................................39
4.1.2 主動層材料比例對有機太陽電池之紫外光穩定性影響........................................47
4.1.3 主動層膜厚對有機太陽電池之紫外光穩定性影響................................................55
4.1.4 退火條件對有機太陽電池之紫外光穩定性影響....................................................60
4.1.5 介面活性劑對有機太陽電池之紫外光穩定性影響................................................64
4.1.6 陰極蒸鍍金屬對有機太陽電池之紫外光穩定性影響............................................67
4.1.7 元件結構對有機太陽電池之紫外光穩定性影響....................................................70
4.1.8 濾光片對有機太陽電池之必要性............................................................................72
4.2 有機太陽電池受紫外光照射後的特徵探討...................................................................75
4.3 有機太陽電池之可見光穩定性探討................................................................................79
4.3.1 白光對有機太陽電池之穩定性測試........................................................................79
4.3.2 藍光對有機太陽電池之穩定性測試........................................................................83
4.3.3 綠光對有機太陽電池之穩定性測試.........................................................................87
4.3.4 紅光對有機太陽電池之穩定性測試........................................................................92
第 5 章 、 結論與未來展望....................................................................................................97
參考文獻 ......................................................................................................................................98
[1] Xiaoning Ru, Minghao Qu, Jianqiang Wang, Tianyu Ruan, Miao Yang, Fuguo Peng, Wei Long, Kun Zheng, Hui Yan, Xixiang Xu, “25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers”, Solar Energy Materials and Solar Cells,Volume 215,2020
[2] S. Wang, "Current status of PV in China and its future forecast," in CSEE Journal of Power and Energy Systems, vol. 6, no. 1, pp. 72-82, March 2020
[3] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato and H. Sugimoto, "Cd- Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%," in IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863-1867, Nov. 2019
[4] Wang, R., Mujahid, M., Duan, Y., Wang, Z.-K., Xue, J., Yang, Y., Adv. Funct. Mater. 2019, 29, 1808843.
[5] An overview of the Challenges in the commercialization of dye sensitized solar cells, Renewable and Sustainable Energy Reviews, Volume 71,2017, Pages 675-686,
[6] Zhang, M., Zhu, L., Zhou, G. et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun 12, 309 (2021)
[7] Qian, D., Zheng, Z., Yao, H. et al. Design rules for minimizing voltage losses in high- efficiency organic solar cells. Nature Mater 17, 703–709 (2018).
[8] Shanawani, Mazen & Masotti, Diego & Costanzo, Alessandra. (2017). THz Rectennas and Their Design Rules. Electronics. 6. 99.
[9] Willems, R. E. M., Weijtens, C. H. L., de Vries, X., Coehoorn, R., Janssen, R. A. J., Adv. Energy Mater. 2019, 9, 1803677
[10] A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. Rowe, Jr., J. Appl. Phys. 45, 230 (1974)
[11] C. W. Tang , "Two‐layer organic photovoltaic cell", Applied Physics Letters 48, 183- 185 (1986)
[12] J. Phys. Chem. Lett. 2016, 7, 22, 4495–4500
[13] Tracey M. Clarke and James R. Durrant Chemical Reviews 2010 110 (11), 6736-6767 [14] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995).
[15] Yu, G. G., J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Science 1995, 270, 1789-1791 [16] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Advanced Functional Materials, vol. 15, no. 10, pp. 1617-1622, 2005.
[17] Y. Liang et al., "Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties," Journal of the American Chemical Society, vol. 131, no. 22, pp. 7792-7799, 2009.
[18] Liao, S.-H., Jhuo, H.-J., Cheng, Y.-S. and Chen, S.-A. (2013), Fullerene Derivative- Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low- Bandgap Polymer (PTB7-Th) for High Performance. Adv. Mater., 25: 4766-4771.
[19] Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27 (2015) 1170–1174
[20] W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, J. Hou, Adv. Mater. 28 (2016) 4734–4739
[21] J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 3 (2019) 1140– 1151
[22] Wang Taohong, Chen Changbo, Guo Kunping, Chen Guo, Xu Tao, Wei Bin. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers. Chinese Physics B, 2016, 25(3): 038402
[23] Harito, C., Bavykin, D.V., Yuliarto, B. et al. Inhibition of Polyimide Photodegradation by Incorporation of Titanate Nanotubes into a Composite. J Polym Environ 27, 1505–1515 (2019).
[24] Crispin, X., Marciniak, S., Osikowicz, W., Zotti, G., van der Gon, A.W.D., Louwet, F., Fahlman, M., Groenendaal, L., De Schryver, F. and Salaneck, W.R. (2003), Conductivity,morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)– poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci. B Polym. Phys., 41: 2561-2583.
[25] Hintz, Holger & Sessler, C. & Peisert, Heiko & Egelhaaf, H.-J & Chassé, Thomas. (2012). Wavelength-Dependent Pathways of Poly-3-hexylthiophene Photo-Oxidation. Chemistry of Materials. 24. 2739–2743. 10.1021/cm3008864.
[26] López-Elvira, E. et al. “Wavelength dependence of nanoscale photodegradation in poly(3-octylthiophene) thin films.” Polymer Degradation and Stability 96 (2011): 1279- 1285
[27] H. Hintz, C. Sessler, H. Peisert, H.-J. Egelhaaf, and T. Chassé Chemistry of Materials 2012 24 (14), 2739-2743
[28] Makoto Karakawa, Kenji Suzuki, Takayuki Kuwabara, Tetsuya Taima, Keiji Nagai, Masahiro Nakano, Takahiro Yamaguchi, Kohshin Takahashi, Factors contributing to degradation of organic photovoltaic cells, Organic Electronics, Volume 76, 2020
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *