帳號:guest(3.145.174.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):辛尼亞
作者(外文):Snigdha Roy Barman
論文名稱(中文):自驅動系統應用於環境監測與傷口癒合
論文名稱(外文):Self-Powered Systems for Environmental Monitoring and Wound Healing Applications
指導教授(中文):林宗宏
指導教授(外文):Lin, Zong-Hong
口試委員(中文):張煥宗
黃志清
黃郁棻
黃玠誠
口試委員(外文):Chang, Huan-Tsung
Huang, Chih-Ching
Huang, Yu-Fen
Huang, Chieh-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:跨院國際博士班學位學程
學號:107038421
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:269
中文關鍵詞:自供電系統摩擦 式納米發電機電刺激傷口癒合固 液接觸帶電機器 手臂自動化學傳感
外文關鍵詞:Self-powered systemsTriboelectric nanogenerator (TENG)Electrical stimulationWound healingSolid-liquid contact electrificationRobot handAutomated chemical sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
With the advancements in Internet-of-Things (IoT), the world is approaching towards an ever-growing concept of point-of-care wearable devices which is defined by a more personalized approach with better outcomes and higher user convenience. However, the current modalities of wearable devices relies on external rigid batteries as power source which leads to high power consumption, makes the devices bulky and increases risks for environmental pollution. Therefore, there is an urgent need to develop next-generation of self-powered wearable devices which can function without external power supplies, rendering a sustainable solution in this era of energy crisis. In this regard, energy harvesting technologies known as the nanogenerators have emerged as promising platforms for realizing the concept of self-powering. Amongst all, triboelectric nanogenerators (TENG) which can efficiently convert the mechanical energies from our surroundings into electricity have garnered immense attention as a novel green energy technology. Despite encouraging developments, their utilization is challenged in terms of biocompatibility, wearability, conformability, durability, and inadequate functionalities. This thesis work aims to design solve the address the limitations of TENG for wearable applications by fabricating lightweight and highly customizable self-powered platforms which can be used for on-body biomedical and sensing approaches. Relying to the fact that TENGs can generate electrical output, it has been utilized as on-body electrical stimulation (ES) module for wound healing. In this work, a next generation of wearable self-powered wound dressings is developed that can be activated by diverse stimuli from the patient’s body and provide on-demand treatment for both normal and infected wounds. The highly tunable dressing is composed of thermocatalytic bismuth telluride nanoplates (Bi2Te3 NPs) functionalized onto carbon fiber fabric electrodes and triggered by the surrounding temperature difference to controllably generate hydrogen peroxide to effectively inhibit bacterial growth at the wound site. The integrated electrodes are connected to a wearable triboelectric nanogenerator (TENG) to provide electrical stimulation for accelerated wound closure by enhancing cellular proliferation, migration and angiogenesis. Apart from therapeutic stimulation, the electrical energy from TENGs can also be employed as sensing cues for detection of chemical analytes. Moreover, triboelectricity combined with robotics can present tremendous opportunities for developing self-powered tools for on-site chemical sensing with minimized human exposure. Here, we have developed an innovative self-powered triboelectric nanosensor integrated with a robotic hand with additional wireless transmission functionality to detect Hg2+ ions in in resource-limited settings. The robotic hand was mounted with a solid triboelectric material, which underwent periodic contact and separation with the target ion solution, leading to the in situ detection of Hg2+ ions owing to its highly selective binding. The output signal was wirelessly transmitted, with the help of a built-in wireless microcontroller unit placed at the back of the robotic hand, in real-time to the smart devices which resulted in an enhanced user-friendly experience for hazard monitoring.
List of Contents
摘要 …………………………………………………………………………………i
Abstract ………………………………………………………………………………...iii
Acknowledgements………………………………………………………………………...v
Chapter 1 Introduction……………………………………………………………………1
Chapter 2 Literature Review and Theory 12
2.1 An Overview of Self-Powered Systems 12
2.1.1 Types of Self-Powered Systems 12
2.1.2 Triboelectric Nanogenerators (TENG) 16
2.1.3 Applications of TENG 23
2.1.4 Therapeutic Applications of TENG 26
2.2 TENG-based electrical stimulation for wound healing 29
2.2.1 Wound Healing Process 29
2.2.2 Conventional Treatments for Wound Healing 33
2.2.3 Self-Powered Systems for Wound Healing 39
2.2.4 TENG for wound healing applications 44
2.3 Point-of use chemical sensing methodologies 47
2.3.1 Mercury ion pollution 47
2.3.2 Conventional methods for mercury sensing 49
2.3.3 Self-powered methods for chemical sensing 50
2.3.4 TENG based systems for chemical sensing 52
2.3.5 Robotics integrated platforms for automated chemcial sensing 58

Chapter 3 Development of Self-Powered Systems for Wound Healing 63
3.1 Introduction 63
3.2 Experimental 68
3.2.1 Preparation of chitosan hydrogel 68
3.2.2 Synthesis of Bi2Te3 NPs 69
3.2.3 Preparation of the wound dressing 70
3.2.4 Characterization 71
3.2.5 Detection of H2O2 generated by Bi2Te3 NPs 72
3.2.6 Preparation of the bacterial culture 74
3.2.7 In-vitro antibacterial activity of wound dressing 74
3.2.8 Fabrication of an arch-shaped TENG 75
3.2.9 Characterization and electrical measurement of TENG 76
3.2.10 In-vitro cell culture 77
3.2.11 Cytotoxicity study of the wound dressing 77
3.2.12 Cell proliferation and migration assays 78
3.2.13 In-vivo wound healing assay 80
3.2.14 In-vivo infected wound healing assay 81
3.2.15 Histological and immunohistological analysis 83
3.2.16 Statistical analysis 84
3.3 Results & Discussions 85
3.3.1 Fabrication of the wound dressing 85
3.3.2 Characterization of Bi2Te3 NPs 87
3.3.3 Characterization of chitosan hydrogel 93
3.3.4 Properties of the wound dressing 94
3.3.5 Generation of reactive oxygen species (ROS) 96
3.3.6 In-vitro antibacterial activity of wound dressing 101
3.3.7 Design and characterization of an arch-shaped TENG 110
3.3.8 Effect of TENG-based electrical stimulation on cell behavior 117
3.3.9 Normal wound healing using TENG based ES 124
3.3.10 Histomorphological and immunofluorescence staining of normal wound tissues 129
3.3.11 Infected wound healing using hybrid treatment strategy 133
3.3.12 Histomorphological and immunofluorescence staining of infected wound tissues 144
3.4 Conclusions 151
Chapter 4 Development of Self-Powered Systems for Chemical Sensing 155
4.1 Introduction 155
4.2 Experimental 159
4.2.1 Chemicals 159
4.2.2 Growth of functional Te NWs on the aluminum substrate 160
4.2.3 Sensing process of S-L TENS 160
4.2.4 Integration of triboelectric nanosensor with the robotic hand 161
4.2.5 Robotic hand-based detection of Hg2+ ions 161
4.2.6 Detection of Hg2+ ions in samples using the robotic hand-based chemical sensor 162
4.2.7 Material characterization and electrical measurement 163
4.2.8 Electrical measurements for the Hg2+ ion sensing 164
4.3 Results & Discussions 165
4.3.1 Design of the robotic chemical sensor 165
4.3.2 Characterization of binding of Hg2+ ions to Te NWs 168
4.3.3 Sensing performance of S–L TENS with DI water as a contact solvent…..174
4.3.4 Sensing performance of S–L TENS with Acetone as a contact solvent 179
4.3.5 Characterization of Te NWs and HgTe NWs after contact 185
4.3.6 Stability, sensitivity, and selectivity of S-L TENS 190
4.3.7 Multiple analyte sensing ability of the robotic chemcial sensor…………..194
4.3.8 Robotic chemical sensor based Hg2+ detection in real samples 201
4.4 Conclusions 204
Chapter 5 Conclusions and Future Prespective 206
References....209
Publications.....263
Conferences.....267
[1] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019).
[2] J. Luo, W. Gao, Z.L. Wang, The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports, Adv. Mater. 33 (2021).
[3] Z.L. Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution, Adv. Energy. Mater. 10 (2020).
[4] Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources, npj Flex. Electron. 1 (2017).
[5] X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen, Z. Wen, Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators, Adv. Funct. Mater. 30 (2020).
[6] S. Parandeh, N. Etemadi, M. Kharaziha, G. Chen, A. Nashalian, X. Xiao, J. Chen, Advances in Triboelectric Nanogenerators for Self-Powered Regenerative Medicine, Adv. Funct. Mater. 31 (2021).
[7] R.D.I.G. Dharmasena, S.R.P. Silva, Towards optimized triboelectric nanogenerators, Nano Energy. 62 (2019) 530–549.
210
[8] G. Zhu, B. Peng, J. Chen, Q. Jing, Z. Lin Wang, Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications, Nano Energy 14 (2014) 126–138.
[9] L. Zhou, D. Liu, J. Wang, Z.L. Wang, Triboelectric nanogenerators: Fundamental physics and potential applications, Friction. 8 (2020) 481–506.
[10] F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring, Adv. Funct. Mater. 29 (2019).
[11] M. Mayer, X. Xiao, J. Yin, G. Chen, J. Xu, J. Chen, Advances in Bioinspired Triboelectric Nanogenerators, Adv. Electron. Mater. (2022).
[12] S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian, J. Chen, Leveraging triboelectric nanogenerators for bioengineering, Matter. 4 (2021) 845–887.
[13] S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy. 14 (2014) 161–192.
[14] K. Parida, J. Xiong, X. Zhou, P.S. Lee, Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility, Nano Energy. 59 (2019) 237–257.
211
[15] W. Liu, Z. Wang, C. Hu, Advanced designs for output improvement of triboelectric nanogenerator system, Mater. Today. 45 (2021) 93–119.
[16] X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen, Z. Wen, Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators, Adv Funct Mater. 30 (2020). h
[17] Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat Commun. 12 (2021).
[18] J. Wang, H. Wang, N. v. Thakor, C. Lee, Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator (TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode, ACS Nano. 13 (2019) 3589–3599.
[19] W. Paosangthong, R. Torah, S. Beeby, Recent progress on textile-based triboelectric nanogenerators, Nano Energy. 55 (2019) 401–423.
[20] Y. Kim, D. Lee, J. Seong, B. Bak, U.H. Choi, J. Kim, Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric
212
nanogenerator (TENG) for wearable energy solutions, Nano Energy. 84 (2021).
[21] W. Ding, A.C. Wang, C. Wu, H. Guo, Z.L. Wang, Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics, Adv Mater Technol. 4 (2019).
[22] R. Walden, C. Kumar, D.M. Mulvihill, S.C. Pillai, Opportunities and Challenges in Triboelectric Nanogenerator (TENG) based Sustainable Energy Generation Technologies: A Mini-Review, Adv. Chem. Eng. 9 (2022).
[23] X. Li, G. Xu, X. Xia, J. Fu, L. Huang, Y. Zi, Standardization of triboelectric nanogenerators: Progress and perspectives, Nano Energy. 56 (2019) 40–55.
[24] S. Matoori, A. Veves, D.J. Mooney, Advanced bandages for diabetic wound healing, Sci. Transl. Med. 2021.
[25] R. Dong, B. Guo, Smart wound dressings for wound healing, Nano Today. 41 (2021).
[26] Y. Long, H. Wei, J. Li, G. Yao, B. Yu, D. Ni, A.L. Gibson, X. Lan, Y. Jiang, W. Cai, X. Wang, Effective Wound Healing Enabled by Discrete Alternative
213
Electric Fields from Wearable Nanogenerators, ACS Nano. 12 (2018) 12533–12540.
[27] Y. Liang, J. He, B. Guo, Functional Hydrogels as Wound Dressing to Enhance Wound Healing, ACS Nano. 15 (2021) 12687–12722.
[28] N.C. Brigham, R.R. Ji, M.L. Becker, Degradable polymeric vehicles for postoperative pain management, Nat Commun. 12 (2021). https://doi.org/10.1038/s41467-021-21438-3.
[29] M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound Healing: A Cellular Perspective, Physiol Rev. 99 (2019) 665–706.
[30] A. Memic, T. Abudula, H.S. Mohammed, K. Joshi Navare, T. Colombani, S.A. Bencherif, Latest Progress in Electrospun Nanofibers for Wound Healing Applications, ACS Appl Bio Mater. 2 (2019) 952–969.
[31] E.M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, B. Conti, Skin wound healing process and new emerging technologies for skin wound care and regeneration, Pharmaceutics. 12 (2020) 1–30.
[32] Z. Xu, S. Han, Z. Gu, J. Wu, Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing, Adv Healthc Mater. 9 (2020).
214
[33] H. Fu, H. Zhou, X. Yu, J. Xu, J. Zhou, X. Meng, J. Zhao, Y. Zhou, A.D. Chisholm, S. Xu, Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling, Nat Commun. 11 (2020).
[34] S.H. Bhang, W.S. Jang, J. Han, J.K. Yoon, W.G. La, E. Lee, Y.S. Kim, J.Y. Shin, T.J. Lee, H.K. Baik, B.S. Kim, Zinc Oxide Nanorod-Based Piezoelectric Dermal Patch for Wound Healing, Adv Funct Mater. 27 (2017).
[35] L. Yazdanpanah, Literature review on the management of diabetic foot ulcer, World J Diabetes. 6 (2015) 37.
[36] D. Baltzis, I. Eleftheriadou, A. Veves, Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights, Adv Ther. 31 (2014) 817–836.
[37] L.R. Braun, W.A. Fisk, H. Lev-Tov, R.S. Kirsner, R.R. Isseroff, Diabetic foot ulcer: An evidence-based treatment update, Am J Clin Dermatol. 15 (2014) 267–281.
[38] J. Boateng, O. Catanzano, Advanced Therapeutic Dressings for Effective Wound Healing - A Review, J Pharm Sci. 104 (2015) 3653–3680.
215
[39] D.P. Kuffler, Improving the ability to eliminate wounds and pressure ulcers, Wound Repair Regen. 23 (2015) 312–317.
[40] C. Korupalli, H. Li, N. Nguyen, F.L. Mi, Y. Chang, Y.J. Lin, H.W. Sung, Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives, Adv Healthc Mater. 10 (2021).
[41] X.F. Wang, M.L. Li, Q.Q. Fang, W.Y. Zhao, D. Lou, Y.Y. Hu, J. Chen, X.Z. Wang, W.Q. Tan, Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes, Bioact Mater. 6 (2021) 230–243.
[42] X. Xiao, X. Xiao, A. Nashalian, A. Libanori, Y. Fang, X. Li, J. Chen, Triboelectric Nanogenerators for Self-Powered Wound Healing, Adv Healthc Mater. 10 (2021).
[43] C. Wang, X. Jiang, H.J. Kim, S. Zhang, X. Zhou, Y. Chen, H. Ling, Y. Xue, Z. Chen, M. Qu, L. Ren, J. Zhu, A. Libanori, Y. Zhu, H. Kang, S. Ahadian, M.R. Dokmeci, P. Servati, X. He, Z. Gu, W. Sun, A. Khademhosseini,
216
Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing, Biomaterials. 285 (2022).
[44] G. Conta, A. Libanori, T. Tat, G. Chen, J. Chen, Triboelectric Nanogenerators for Therapeutic Electrical Stimulation, Adv. Mater. (2021).
[45] R. Luo, J. Dai, J. Zhang, Z. Li, Accelerated Skin Wound Healing by Electrical Stimulation, Adv Healthc Mater. 10 (2021).
[46] S. Du, N. Zhou, G. Xie, Y. Chen, H. Suo, J. Xu, J. Tao, L. Zhang, J. Zhu, Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing, Nano Energy. 85 (2021).
[47] K.N. Kim, J. Chun, J.W. Kim, K.Y. Lee, J.U. Park, S.W. Kim, Z.L. Wang, J.M. Baik, Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments, ACS Nano. 9 (2015) 6394–6400.
[48] N. Cui, J. Liu, L. Gu, S. Bai, X. Chen, Y. Qin, Wearable Triboelectric Generator for Powering the Portable Electronic Devices, ACS Appl Mater Interfaces. 7 (2015) 18225–18230.
217
[49] S. Li, Q. Zhong, J. Zhong, X. Cheng, B. Wang, B. Hu, J. Zhou, Cloth-based power shirt for wearable energy harvesting and clothes ornamentation, ACS Appl Mater Interfaces. 7 (2015) 14912–14916.
[50] T. Li, Y. Xu, M. Willander, F. Xing, X. Cao, N. Wang, Z.L. Wang, Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion, Adv Funct Mater. 26 (2016) 4370–4376.
[51] P. Maharjan, R.M. Toyabur, J.Y. Park, A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications, Nano Energy. 46 (2018) 383–395.
[52] S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes, Adv Mater. 26 (2014) 2818–2824.
[53] A. Yu, X. Pu, R. Wen, M. Liu, T. Zhou, K. Zhang, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths, ACS Nano. 11 (2017) 12764–12771.
[54] Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang, Z. Li, Wearable and Implantable Triboelectric Nanogenerators, Adv Funct Mater. 29 (2019).
218
[55] M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable electronics, ACS Nano. 9 (2015) 3421–3427.
[56] L. Zhang, Y. Yu, G.P. Eyer, G. Suo, L.A. Kozik, M. Fairbanks, X. Wang, T.L. Andrew, All-Textile Triboelectric Generator Compatible with Traditional Textile Process, Adv Mater Technol. 1 (2016).
[57] S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi, Z.L. Wang, Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement, Adv Funct Mater. 27 (2017).
[58] J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu, Z.L. Wang, J. Zhou, Fiber-based generator for wearable electronics and mobile medication, ACS Nano. 8 (2014) 6273–6280.
[59] Y. Jin, J. Seo, J.S. Lee, S. Shin, H.J. Park, S. Min, E. Cheong, T. Lee, S.W. Cho, Triboelectric nanogenerator accelerates highly efficient nonviral direct conversion and in vivo reprogramming of fibroblasts to functional neuronal cells, Adv Mater. 28 (2016) 7365–7374.
219
[60] Z. Li, H. Feng, Q. Zheng, H. Li, C. Zhao, H. Ouyang, S. Noreen, M. Yu, F. Su, R. Liu, L. Li, Z.L. Wang, Z. Li, Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing, Nano Energy. 54 (2018) 390–399.
[61] J. Tian, R. Shi, Z. Liu, H. Ouyang, M. Yu, C. Zhao, Y. Zou, D. Jiang, J. Zhang, Z. Li, Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation, Nano Energy. 59 (2019) 705–714.
[62] W. Tang, J. Tian, Q. Zheng, L. Yan, J. Wang, Z. Li, Z.L. Wang, Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts’ Proliferation and Differentiation, ACS Nano. 9 (2015) 7867–7873.
[63] G. Yao, D. Jiang, J. Li, L. Kang, S. Chen, Y. Long, Y. Wang, P. Huang, Y. Lin, W. Cai, X. Wang, Self-Activated Electrical Stimulation for Effective Hair Regeneration via a Wearable Omnidirectional Pulse Generator, ACS Nano. 13 (2019) 12345–12356.
220
[64] F. Gao, T. Shao, Y. Yu, Y. Xiong, L. Yang, Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action, Nat Commun. 12 (2021).
[65] S. Yu, G. Li, P. Zhao, Q. Cheng, Q. He, D. Ma, W. Xue, NIR-Laser-Controlled Hydrogen-Releasing PdH Nanohydride for Synergistic Hydrogen-Photothermal Antibacterial and Wound-Healing Therapies, Adv Funct Mater. 29 (2019).
[66] W. Wentao, Z. Tao, S. Bulei, Z. Tongchang, Z. Qicheng, W. Fan, Z. Ninglin, S. Jian, Z. Ming, S. Yi, Functionalization of polyvinyl alcohol composite film wrapped in am-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing, Appl Mater Today. 17 (2019) 36–44.
[67] S. Huang, S. Xu, Y. Hu, X. Zhao, L. Chang, Z. Chen, X. Mei, Preparation of NIR-responsive, ROS-generating and antibacterial black phosphorus quantum dots for promoting the MRSA-infected wound healing in diabetic rats, Acta Biomater. 137 (2022) 199–217.
221
[68] Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles, ACS Nano. 6 (2012) 5164–5173.
[69] S.Y. Kim, C. Park, H.J. Jang, B. o. Kim, H.W. Bae, I.Y. Chung, E.S. Kim, Y.H. Cho, Antibacterial strategies inspired by the oxidative stress and response networks, J. Microbiol. 57 (2019) 203–212.
[70] Y. Liang, M. Wang, Z. Zhang, G. Ren, Y. Liu, S. Wu, J. Shen, Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing, J. Chem. Eng. 378 (2019).
[71] C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden, J. Cooke, D. Leaper, N.T. Georgopoulos, Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process, Int Wound J. 14 (2017) 89–96.
[72] Y.J. Lin, I. Khan, S. Saha, C.C. Wu, S.R. Barman, F.C. Kao, Z.H. Lin, Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates, Nat Commun. 12 (2021).
222
[73] C.D. Le, C.P. Vo, T.H. Nguyen, D.L. Vu, K.K. Ahn, Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure, Nano Energy. 80 (2021).
[74] S. Jang, M. La, S. Cho, Y. Yun, J.H. Choi, Y. Ra, S.J. Park, D. Choi, Monocharged electret based liquid-solid interacting triboelectric nanogenerator for its boosted electrical output performance, Nano Energy. 70 (2020).
[75] S. Chatterjee, S. Saha, S.R. Barman, I. Khan, Y.P. Pao, S. Lee, D. Choi, Z.H. Lin, Enhanced sensing performance of triboelectric nanosensors by solid-liquid contact electrification, Nano Energy. 77 (2020).
[76] Y. Dong, S. Dong, B. Liu, C. Yu, J. Liu, D. Yang, P. Yang, J. Lin, 2D Piezoelectric Bi2MoO6 Nanoribbons for GSH-Enhanced Sonodynamic Therapy, Adv. Mater. 33 (2021).
[77] Y. Feng, H. Li, L. Ling, S. Yan, D. Pan, H. Ge, H. Li, Z. Bian, Enhanced Photocatalytic Degradation Performance by Fluid-Induced Piezoelectric Field, Environ Sci Technol. 52 (2018) 7842–7848.
223
[78] A.M. Almassri, W.Z. Wan Hasan, S.A. Ahmad, A.J. Ishak, A.M. Ghazali, D.N. Talib, C. Wada, Pressure sensor: State of the art, design, and application for robotic hand, J Sens. 2015 (2015).
[79] L.J. Hubble, J. Wang, Sensing at Your Fingertips: Glove-based Wearable Chemical Sensors, Electroanalysis. 31 (2019) 428–436.
[80] H. Ishida, Y. Wada, H. Matsukura, Chemical sensing in robotic applications: A review, IEEE Sens J. 12 (2012) 3163–3173.
[81] A. Ravalli, C. Rossi, G. Marrazza, Bio-inspired fish robot based on chemical sensors, Sens Actuators B Chem. 239 (2017) 325–329.
[82] Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things, InfoMat. 2 (2020) 1131–1162.
[83] Q. Zhang, T. Jin, J. Cai, L. Xu, T. He, T. Wang, Y. Tian, L. Li, Y. Peng, C. Lee, Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications, Adv. Sci. 9 (2022).
224
[84] M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Power generation for wearable systems, Energy Environ Sci. 14 (2021) 2114–2157.
[85] P. Maharjan, T. Bhatta, H. Cho, X. Hui, C. Park, S. Yoon, M. Salauddin, M.T. Rahman, S.S. Rana, J.Y. Park, A Fully Functional Universal Self-Chargeable Power Module for Portable/Wearable Electronics and Self-Powered IoT Applications, Adv Energy Mater. 10 (2020).
[86] Z. Zhao, Y. Dai, S.X. Dou, J. Liang, Flexible nanogenerators for wearable electronic applications based on piezoelectric materials, Mater Today Energy. 20 (2021).
[87] H. Jin, Y.S. Abu-Raya, H. Haick, Adv Mater for Health Monitoring with Skin-Based Wearable Devices, Adv Healthc Mater. 6 (2017).
[88] W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications, Adv. Mater. 26 (2014) 5310–5336.
[89] J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Adv Mater for Printed Wearable Electrochemical Devices: A Review, Adv Electron Mater. 3 (2017).
225
[90] S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y.D. Suh, H. Cho, J. Shin, J. Yeo, S.H. Ko, Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications, Adv. Mater. 27 (2015) 4744–4751.
[91] F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring, Adv Funct Mater. 29 (2019).
[92] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019).
[93] F. Hu, Q. Cai, F. Liao, M. Shao, S.T. Lee, Recent Advancements in Nanogenerators for Energy Harvesting, Small. 11 (2015) 5611–5628.
[94] Z. Zhao, Y. Dai, S.X. Dou, J. Liang, Flexible nanogenerators for wearable electronic applications based on piezoelectric materials, Mater Today Energy. 20 (2021).
[95] F.R. Fan, W. Tang, Z.L. Wang, Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics, Adv. Mater. 28 (2016) 4283–4305.
[96] X. Li, C. Jiang, Y. Ying, J. Ping, Biotriboelectric Nanogenerators: Materials, Structures, and Applications, Adv Energy Mater. 10 (2020).
226
[97] Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics, 2012.
[98] V. Nguyen, R. Zhu, R. Yang, Environmental effects on nanogenerators, Nano Energy. 14 (2014) 49–6.
[99] S. Rani, N. Kumar, Y. Sharma, Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications, J Phys Energy. 3 (2021).
[100] Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo, H. Zheng, Z.L. Wang, Self‐powered technology based on nanogenerators for biomedical applications, Exploration. 1 (2021) 90–114.
[101] M. Dargusch, W. di Liu, Z.G. Chen, Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems, Adv. Sci. 7 (2020).
[102] A. Kim, P. Kumar, P.K. Annamalai, R. Patel, Recent Advances in the Nanomaterials, Design, Fabrication Approaches of Thermoelectric Nanogenerators for Various Applications, Adv Mater Interfaces. (2022).
[103] S. Masoumi, S. O’Shaughnessy, A. Pakdel, Organic-based flexible thermoelectric generators: From materials to devices, Nano Energy. 92 (2022).
227
[104] Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: From materials to devices, Renewable and Sustainable Energy Rev. 137 (2021).
[105] D. Zhang, Y. Wang, Y. Yang, Design, Performance, and Application of Thermoelectric Nanogenerators, Small. 15 (2019).
[106] H. Askari, N. Xu, B.H. Groenner Barbosa, Y. Huang, L. Chen, A. Khajepour, H. Chen, Z.L. Wang, Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators, Mater. Today. 52 (2022) 188–206.
[107] S. Korkmaz, A. Kariper, Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status, Nano Energy. 84 (2021).
[108] D. Zhang, H. Wu, C.R. Bowen, Y. Yang, Recent Advances in Pyroelectric Materials and Applications, Small. 17 (2021).
[109] H. Ryu, S.W. Kim, Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy, Small. 17 (2021).
[110] W. Liu, Z. Wang, C. Hu, Advanced designs for output improvement of triboelectric nanogenerator system, Mater Today. 45 (2021) 93–119.
228
[111] L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy. 78 (2020).
[112] J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting, Nano Energy. 56 (2019) 662–692.
[113] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy. 55 (2019) 288–304.
[114] X. Wang, Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale, Nano Energy. 1 (2012) 13–24.
[115] J. Briscoe, S. Dunn, Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters, Nano Energy. 14 (2014) 15–29.
[116] H. Yuan, T. Lei, Y. Qin, R. Yang, Flexible electronic skins based on piezoelectric nanogenerators and piezotronics, Nano Energy. 59 (2019) 84–90.
[117] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019).
229
[118] S.Y. Kuang, J. Chen, X.B. Cheng, G. Zhu, Z.L. Wang, Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics, Nano Energy. 17 (2015) 10–16.
[119] Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue, W. Ji, Z. Liu, Y. Jin, Y. Zou, Z. An, W. Zhang, X. Wang, W. Jiang, Z. Xu, Z.L. Wang, Z. Li, H. Zhang, Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring, Nano Lett. 16 (2016) 6042–6051.
[120] K. Xia, Z. Zhu, H. Zhang, C. Du, J. Fu, Z. Xu, Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion, Nano Energy. 56 (2019) 400–410.
[121] K. Dong, J. Deng, Y. Zi, Y.C. Wang, C. Xu, H. Zou, W. Ding, Y. Dai, B. Gu, B. Sun, Z.L. Wang, 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors, Adv. Mater. 29 (2017).
[122] A.Y. Choi, C.J. Lee, J. Park, D. Kim, Y.T. Kim, Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting, Sci Rep. 7 (2017).
230
[123] Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu, Y. Jin, Y. Ma, Y. Zou, X. Wang, Z. An, W. Tang, W. Zhang, F. Yang, Y. Liu, X. Lang, Z. Xu, Z. Li, Z.L. Wang, In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator, ACS Nano. 10 (2016) 6510–6518.
[124] H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z.L. Wang, H. Zhang, Z. Li, Symbiotic cardiac pacemaker, Nat Commun. 10 (2019).
[125] Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li, D. Jiang, F. Xie, D. Qu, Y. Zou, Y. Huang, H. Li, C. Zhao, P. Tan, M. Yu, Y. Fan, H. Zhang, Z.L. Wang, Z. Li, Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor, Adv Funct Mater. 29 (2019).
[126] B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen, C. He, L. Xu, H. Guo, P. Lin, D. Li, J. Shao, Z.L. Wang, Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing, Nano Energy. 45 (2018) 380–389.
[127] Y. Kang, B. Wang, S. Dai, G. Liu, Y. Pu, C. Hu, Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications, ACS Appl Mater Interfaces. 7 (2015) 20469–20476.
231
[128] P. Bai, G. Zhu, Z.H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, Z.L. Wang, Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions, ACS Nano. 7 (2013) 3713–3719.
[129] Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy, Angew. Chem. Int. Ed. 52 (2013) 12545–12549.
[130] R. Zhang, H. Lin, Y. Pan, C. Li, Z. Yang, J. Tian, H.C. Shum, Liquid–Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy, Adv Funct Mater. (2022).
[131] Z.L. Wang, From contact electrification to triboelectric nanogenerators, Reports on Progress in Physics. 84 (2021).
[132] Y. Zhou, W. Deng, J. Xu, J. Chen, Engineering Materials at the Nanoscale for Triboelectric Nanogenerators, Cell Rep Phys Sci. 1 (2020).
[133] C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang, Y. Zi, L. Pan, P. Wang, P. Feng, Z. Lin, Z.L. Wang, Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification, Adv. Mater. 30 (2018).
232
[134] Y. Nurmakanov, G. Kalimuldina, G. Nauryzbayev, D. Adair, Z. Bakenov, Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators, Nanoscale Res Lett. 16 (2021).
[135] H. Chen, Y. Song, X. Cheng, H. Zhang, Self-powered electronic skin based on the triboelectric generator, Nano Energy. 56 (2019) 252–268.
[136] Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators, Mater Today. 20 (2017) 74–82.
[137] B. Chen, Y. Yang, Z.L. Wang, Scavenging Wind Energy by Triboelectric Nanogenerators, Adv Energy Mater. 8 (2018).
[138] D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors, NPG Asia Mater. 12 (2020).
[139] G. Liu, T. Chen, J. Xu, K. Wang, Blue energy harvesting on nanostructured carbon materials, J Mater Chem A Mater. 6 (2018) 18357–18377.
[140] Z. Wang, J. An, J. Nie, J. Luo, J. Shao, T. Jiang, B. Chen, W. Tang, Z.L. Wang, A Self-Powered Angle Sensor at Nanoradian-Resolution for Robotic Arms and Personalized Medicare, Adv. Mater. 32 (2020).
233
[141] X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai, R. Cheng, D. Liu, X. Gao, J. Wang, Z. Lin Wang, A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators, 2020.
[142] J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han, T. Jiang, Q. Lai, Y. Bai, W. Tang, F.R. Fan, Z.L. Wang, Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics, Nat Commun. 10 (2019).
[143] J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit, Nano Res. 8 (2015) 3934–3943.
[144] S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nat Commun. 6 (2015).
[145] Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z.L. Wang, In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator, Adv Mater. 26 (2014) 5851–5856.
234
[146] C. Li, Y. Yin, B. Wang, T. Zhou, J. Wang, J. Luo, W. Tang, R. Cao, Z. Yuan, N. Li, X. Du, C. Wang, S. Zhao, Y. Liu, Z.L. Wang, Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator, ACS Nano. 11 (2017) 10439–10445.
[147] J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications, EcoMat. 2 (2020).
[148] M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring, ACS Nano. (2019).
[149] X. Xie, Y. Zhang, C. Chen, X. Chen, T. Yao, M. Peng, X. Chen, B. Nie, Z. Wen, X. Sun, Frequency-independent self-powered sensing based on capacitive impedance matching effect of triboelectric nanogenerator, Nano Energy. 65 (2019).
[150] W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou, G. Zhang, J. Yang, Z. Lin Wang, A P Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring, 2020.
235
[151] S. Lee, C. Lee, Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications, Curr Opin Biomed Eng. 6 (2018) 130–137.
[152] S. Lee, C. Lee, Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications, Curr Opin Biomed Eng. 6 (2018) 130–137.
[153] M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound Healing: A Cellular Perspective, Physiol Rev. 99 (2019) 665–706.
[154] Z. Xu, S. Han, Z. Gu, J. Wu, Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing, Adv Healthc Mater. 9 (2020).
[155] S0733-86352930216-X, (n.d.).
[156] S. Ellis, E.J. Lin, D. Tartar, Immunology of Wound Healing, Curr Dermatol Rep. 7 (2018) 350–358.
[157] B.K. Sun, Z. Siprashvili, P.A. Khavari, Advances in skin grafting and treatment of cutaneous wounds, n.d.
[158] P. Yu, W. Zhong, Hemostatic materials in wound care, Burns Trauma. 9 (2021).
236
[159] S. Guo, L.A. DiPietro, Critical review in oral biology & medicine: Factors affecting wound healing, J Dent Res. 89 (2010) 219–229.
[160] T. Velnar, T. Bailey, V. Smrkolj, The Wound Healing Process: an Overview of the Cellular and Molecular Mechanisms, 2009.
[161] D.P. Orgill, L.R. Bayer, Negative pressure wound therapy: Past, present and future, Int Wound J. 10 (2013) 15–19.
[162] D.P. Orgill, L.R. Bayer, Negative pressure wound therapy: Past, present and future, Int Wound J. 10 (2013) 15–19.
[163] P. Vikatmaa, V. Juutilainen, P. Kuukasjärvi, A. Malmivaara, Negative Pressure Wound Therapy: a Systematic Review on Effectiveness and Safety, European Journal of Vascular and Endovascular Surgery. 36 (2008) 438–448.
[164] C. Huang, T. Leavitt, L.R. Bayer, D.P. Orgill, Effect of negative pressure wound therapy on wound healing, Curr Probl Surg. 51 (2014) 301–331.
[165] G. Han, R. Ceilley, Chronic Wound Healing: A Review of Current Management and Treatments, Adv Ther. 34 (2017) 599–610.
237
[166] J.A. Thackham, D.L.S. McElwain, R.J. Long, The use of hyperbaric oxygen therapy to treat chronic wounds: A review, Wound Repair and Regeneration. 16 (2008) 321–330.
[167] M.A. Ortega, O. Fraile-Martinez, C. García-Montero, E. Callejón-Peláez, M.A. Sáez, M.A. Álvarez-Mon, N. García-Honduvilla, J. Monserrat, M. Álvarez-Mon, J. Bujan, M.L. Canals, A general overview on the hyperbaric oxygen therapy: Applications, mechanisms and translational opportunities, Medicina (Lithuania). 57 (2021).
[168] H. Chen, Y. Cheng, J. Tian, P. Yang, X. Zhang, Y. Chen, Y. Hu, J. Wu, Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes, Sci. Adv. 2020.
[169] M. Verdes, K. Mace, L. Margetts, S. Cartmell, Status and challenges of electrical stimulation use in chronic wound healing, Curr Opin Biotechnol. 75 (2022).
[170] G. Thakral, J. LaFontaine, B. Najafi, T.K. Talal, P. Kim, L.A. Lavery, Electrical stimulation to accelerate wound healing, Diabet Foot Ankle. 4 (2013).
238
[171] S.I. Reger, A. Hyodo, S. Negami, H.E. Kambic, V. Sahgal, Experimental Wound Healing with Electrical Stimulation, Blackwell Science, 2022.
[172] L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao, L. Fu, H. Cheng, L. Xia, S. Xie, W. Ye, Z. Shi, G. Yang, Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation, Adv Healthc Mater. 9 (2020).
[173] G. Tai, M. Tai, M. Zhao, Electrically stimulated cell migration and its contribution to wound healing, Burns Trauma. 6 (2018).
[174] H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome, T. Miyake, K. Yamasaki, M. Nishizawa, Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster, Adv Healthc Mater. 6 (2017).
[175] A. Wang, Z. Liu, M. Hu, C. Wang, X. Zhang, B. Shi, Y. Fan, Y. Cui, Z. Li, K. Ren, Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing, Nano Energy. 43 (2018) 63–71.
239
[176] H.S. Wu, S.M. Wei, S.W. Chen, H.C. Pan, W.P. Pan, S.M. Huang, M.L. Tsai, P.K. Yang, Metal-Free Perovskite Piezoelectric Nanogenerators for Human–Machine Interfaces and Self-Powered Electrical Stimulation Applications, Advanced Science. 9 (2022).
[177] S. Du, N. Zhou, Y. Gao, G. Xie, H. Du, H. Jiang, L. Zhang, J. Tao, J. Zhu, Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing, Nano Res. 13 (2020) 2525–2533.
[178] S.H. Bhang, W.S. Jang, J. Han, J.K. Yoon, W.G. La, E. Lee, Y.S. Kim, J.Y. Shin, T.J. Lee, H.K. Baik, B.S. Kim, Zinc Oxide Nanorod-Based Piezoelectric Dermal Patch for Wound Healing, Adv Funct Mater. 27 (2017).
[179] C. Han, J. Huang, A. Zhangji, X. Tong, K. Yu, K. Chen, X. Liu, Y. Yang, Y. Chen, W.A. Memon, K. Amin, W. Gao, Z. Deng, K. Zhou, Y. Wang, X. Qi, Accelerated Skin Wound Healing Using Flexible Photovoltaic-Bioelectrode Electrical Stimulation, Micromachines. 13 (2022).
[180] H.K. Jang, J.Y. Oh, G.J. Jeong, T.J. Lee, G.B. Im, J.R. Lee, J.K. Yoon, D.I. Kim, B.S. Kim, S.H. Bhang, T. il Lee, A disposable photovoltaic patch
240
controlling cellular microenvironment for wound healing, Int J Mol Sci. 19 (2018).
[181] Z. Qiao, J. Ding, C. Wu, T. Zhou, K. Wu, Y. Zhang, Z. Xiao, D. Wei, J. Sun, H. Fan, One-Pot Synthesis of Bi2S3/TiO2/rGO Heterostructure with Red Light-Driven Photovoltaic Effect for Remote Electrotherapy-Assisted Wound Repair, Small. (2022).
[182] Y. Zhang, Z. Zhou, L. Sun, Z. Liu, X. Xia, T.H. Tao, “Genetically Engineered” Biofunctional Triboelectric Nanogenerators Using Recombinant Spider Silk, Adv. Mater. 30 (2018).
[183] W. Hu, X. Wei, L. Zhu, D. Yin, A. Wei, X. Bi, T. Liu, G. Zhou, Y. Qiang, X. Sun, Z. Wen, Y. Pan, Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator, Nano Energy. 57 (2019) 600–607.
[184] S.H. Jeong, Y. Lee, M.G. Lee, W.J. Song, J.U. Park, J.Y. Sun, Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator, Nano Energy. 79 (2021).
241
[185] S. Du, H. Suo, G. Xie, Q. Lyu, M. Mo, Z. Xie, N. Zhou, L. Zhang, J. Tao, J. Zhu, Self-powered and photothermal electronic skin patches for accelerating wound healing, Nano Energy. 93 (2022).
[186] S.H. Jeong, Y. Lee, M.G. Lee, W.J. Song, J.U. Park, J.Y. Sun, Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator, Nano Energy. 79 (2021).
[187] S.A. El-Safty, M.A. Shenashen, Mercury-ion optical sensors, TrAC - Trends in Anal Chem. 38 (2012) 98–115.
[188] E.S. Corbitt, D.J. Jacob, C.D. Holmes, D.G. Streets, E.M. Sunderland, Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios, Environ Sci Technol. 45 (2011) 10477–10484.
[189] D. Dai, J. Yang, Y. Wang, Y.W. Yang, Recent Progress in Functional Materials for Selective Detection and Removal of Mercury (II) Ions, Adv Funct Mater. 31 (2021).
[190] A.T. Jan, I. Murtaza, A. Ali, Q.M.R. Haq, Mercury pollution: An emerging problem and potential bacterial remediation strategies, World J Microbiol Biotechnol. 25 (2009) 1529–1537.
242
[191] Y. Wang, L. Zhang, X. Han, L. Zhang, X. Wang, L. Chen, Fluorescent probe for mercury ion imaging analysis: Strategies and applications, J. Chem. Eng.. 406 (2021).
[192] A.M. Ashrafi, Z. Koudelkova, E. Sedlackova, L. Richtera, V. Adam, Review—Electrochemical Sensors and Biosensors for Determination of Mercury Ions, J Electrochem Soc. 165 (2018) B824–B834.
[193] L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens Bioelectron. 63 (2015) 276–286.
[194] C. Huang, G. Chen, A. Nashalian, J. Chen, Advances in self-powered chemical sensing: Via a triboelectric nanogenerator, Nanoscale. 13 (2021) 2065–2081.
[195] Q. Zhou, J. Pan, S. Deng, F. Xia, T. Kim, Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection, Adv Mater. 33 (2021).
[196] W. Harmon, D. Bamgboje, H. Guo, T. Hu, Z.L. Wang, Self-driven power management system for triboelectric nanogenerators, Nano Energy. 71 (2020).
243
[197] S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou, W. Liu, Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator, Nano Energy. 49 (2018) 31–39.
[198] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation, Energy Environ Sci. 8 (2015) 887–896.
[199] G. Zhu, Z.H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano Lett. 13 (2013) 847–853.
[200] Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, Z.L. Wang, A self-powered triboelectric nanosensor for mercury ion detection, Angewandte Chemie - International Edition. 52 (2013) 5065–5069..
[201] Y.P. Pao, C.C. Yu, Y.Z. Lin, S. Chatterjee, S. Saha, N. Tiwari, Y.T. Huang, C.C. Wu, D. Choi, Z.H. Lin, Carbohydrate-protein interactions studied by solid-liquid contact electrification and its use for label-free bacterial detection, Nano Energy. 85 (2021).
244
[202] Z. Ying, Y. Long, F. Yang, Y. Dong, J. Li, Z. Zhang, X. Wang, Self-powered liquid chemical sensors based on solid-liquid contact electrification, Analyst. 146 (2021) 1656–1662.
[203] J. Zhang, S. Lin, M. Zheng, Z.L. Wang, Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces, ACS Nano. 15 (2021) 14830–14837.
[204] Z.H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials, ACS Nano. 7 (2013) 4554–4560.
[205] L.J. Hubble, J. Wang, Sensing at Your Fingertips: Glove-based Wearable Chemical Sensors, Electroanalysis. 31 (2019) 428–436.
[206] B. Ciui, A. Martin, R.K. Mishra, T. Nakagawa, T.J. Dawkins, M. Lyu, C. Cristea, R. Sandulescu, J. Wang, Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples, ACS Sens. 3 (2018) 2375–2384.
[207] B. Ciui, M. Tertiş, A. Cernat, R. Sǎndulescu, J. Wang, C. Cristea, Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening of
245
Pseudomonas aeruginosa Virulence Factors, Anal Chem. 90 (2018) 7761–7768.
[208] R.K. Mishra, L.J. Hubble, A. Martín, R. Kumar, A. Barfidokht, J. Kim, M.M. Musameh, I.L. Kyratzis, J. Wang, Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats, ACS Sens. 2 (2017) 553–561.
[209] A.J. Bandodkar, A.M. O’Mahony, J. Ramírez, I.A. Samek, S.M. Anderson, J.R. Windmiller, J. Wang, Solid-state forensic finger sensor for integrated sampling and detection of gunshot residue and explosives: Towards “Lab-on-a-finger,” Analyst. 138 (2013) 5288–5295.
[210] M. de Jong, N. Sleegers, J. Kim, F. van Durme, N. Samyn, J. Wang, K. de Wael, Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders, Chem Sci. 7 (2016) 2364–2370.
[211] M. Amit, R.K. Mishra, Q. Hoang, A.M. Galan, J. Wang, T.N. Ng, Point-of-use robotic sensors for simultaneous pressure detection and chemical analysis, Mater Horiz. 6 (2019) 604–611.
246
[212] J. Dunn, L. Kidzinski, R. Runge, D. Witt, J.L. Hicks, S.M. Schüssler-Fiorenza Rose, X. Li, A. Bahmani, S.L. Delp, T. Hastie, M.P. Snyder, Wearable sensors enable personalized predictions of clinical laboratory measurements, Nat Med. 27 (2021) 1105–1112..
[213] M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors, Nat Electron. 1 (2018) 160–171.
[214] X. Xiao, X. Xiao, A. Nashalian, A. Libanori, Y. Fang, X. Li, J. Chen, Triboelectric Nanogenerators for Self-Powered Wound Healing, Adv Healthc Mater. 10 (2021).
[215] R. Dong, B. Guo, Smart wound dressings for wound healing, Nano Today. 41 (2021).
[216] A. McLister, J. McHugh, J. Cundell, J. Davis, New Developments in Smart Bandage Technologies for Wound Diagnostics, Adv Mater. 28 (2016) 5732–5737.
[217] D. Zhao, P.J. Feng, J.H. Liu, M. Dong, X.Q. Shen, Y.X. Chen, Q.D. Shen, Electromagnetized-Nanoparticle-Modulated Neural Plasticity and Recovery
247
of Degenerative Dopaminergic Neurons in the Mid-Brain, Adv Mater. 32 (2020).
[218] A. Patruno, A. Ferrone, E. Costantini, S. Franceschelli, M. Pesce, L. Speranza, P. Amerio, C. D’Angelo, M. Felaco, A. Grilli, M. Reale, Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines, Cell Prolif. 51 (2018).
[219] F. Bao, G. Pei, Z. Wu, H. Zhuang, Z. Zhang, Z. Huan, C. Wu, J. Chang, Bioactive Self-Pumping Composite Wound Dressings with Micropore Array Modified Janus Membrane for Enhanced Diabetic Wound Healing, Adv Funct Mater. 30 (2020).
[220] P.E. Banwell, M. Musgrave, Topical negative pressure therapy: mechanisms and indications, n.d.
[221] E. Hoste, E.N. Arwert, R. Lal, A.P. South, J.C. Salas-Alanis, D.F. Murrell, G. Donati, F.M. Watt, Innate sensing of microbial products promotes wound-induced skin cancer, Nat Commun. 6 (2015).
[222] J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K.W.K. Yeung, Z. Cui, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Interfacial engineering of
248
Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing, Nat Commun. 12 (2021).
[223] J. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K.W.K. Yeung, X. Wang, S. Wu, Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds, Nat Commun. 10 (2019).
[224] Y. Long, H. Wei, J. Li, G. Yao, B. Yu, D. Ni, A.L. Gibson, X. Lan, Y. Jiang, W. Cai, X. Wang, Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable Nanogenerators, ACS Nano. 12 (2018) 12533–12540.
[225] M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Y. Gu, T. Sasaki, A. Suzuki, J. v. Forrester, H.R. Bourne, P.N. Devreotes, C.D. McCaig, J.M. Penninger, Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN, Nature. 442 (2006) 457–460.
[226] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019).
249
[227] W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, Z.L. Wang, Integrated charge excitation triboelectric nanogenerator, Nat Commun. 10 (2019).
[228] Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat Commun. 12 (2021).
[229] H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z.L. Wang, H. Zhang, Z. Li, Symbiotic cardiac pacemaker, Nat Commun. 10 (2019).
[230] H. Ryu, H. moon Park, M.K. Kim, B. Kim, H.S. Myoung, T.Y. Kim, H.J. Yoon, S.S. Kwak, J. Kim, T.H. Hwang, E.K. Choi, S.W. Kim, Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators, Nat Commun. 12 (2021).
[231] Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source, Sci Adv. 2 (2016).
250
[232] Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu, Y. Jin, Y. Ma, Y. Zou, X. Wang, Z. An, W. Tang, W. Zhang, F. Yang, Y. Liu, X. Lang, Z. Xu, Z. Li, Z.L. Wang, In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator, ACS Nano. 10 (2016) 6510–6518.
[233] D. Zhao, J. Zhuo, Z. Chen, J. Wu, R. Ma, X. Zhang, Y. Zhang, X. Wang, X. Wei, L. Liu, C. Pan, J. Wang, J. Yang, F. Yi, G. Yang, Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities, Nano Energy. 90 (2021).
[234] Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie, M. Yao, H. Tai, Y. Jiang, J. Chen, Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator, Adv Mater. 33 (2021).
[235] H. Zhang, J. Zhang, Z. Hu, L. Quan, L. Shi, J. Chen, W. Xuan, Z. Zhang, S. Dong, J. Luo, Waist-wearable wireless respiration sensor based on triboelectric effect, Nano Energy. 59 (2019) 75–83.
[236] J. Tian, R. Shi, Z. Liu, H. Ouyang, M. Yu, C. Zhao, Y. Zou, D. Jiang, J. Zhang, Z. Li, Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation, Nano Energy. 59 (2019) 705–714.
251
[237] R. Edwards, K.G. Harding, Bacteria and wound healing, (n.d.).
[238] G.S. Ashcroft, K. Lei, W. Jin, G. Longenecker, A.B. Kulkarni, T. Greenwell-Wild, H. Hale-Donze, G. Mcgrady, X.-Y. Song, S.M. Wahl, Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing, 2000.
[239] F. Gao, T. Shao, Y. Yu, Y. Xiong, L. Yang, Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action, Nat Commun. 12 (2021) 745.
[240] T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen, X. Zhang, C. Wu, Z. Mao, G. Luo, X. Chen, J. Deng, Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases, Nat Commun. 11 (2020).
[241] G. Kim, Y.E.L. Koo, H. Xu, M.A. Philbert, R. Kopelman, Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells, Anal Chem. 82 (2010) 2165–2169.
252
[242] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process, Angewandte Chemie - International Edition. 45 (2006) 6962–6984.
[243] B.R. Locke, K.Y. Shih, Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water, Plasma Sources Sci Technol. 20 (2011).
[244] H. Hou, X. Zeng, X. Zhang, Production of Hydrogen Peroxide by Photocatalytic Processes, Angewandte Chemie - International Edition. 59 (2020) 17356–17376.
[245] Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Piezo-catalysis for nondestructive tooth whitening, Nat Commun. 11 (2020).
[246] Y.J. Lin, I. Khan, S. Saha, C.C. Wu, S.R. Barman, F.C. Kao, Z.H. Lin, Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates, Nat Commun. 12 (2021).
[247] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Thin-®lm thermoelectric devices with high room-temperature ®gures of merit, 2001.
253
[248] M.S. Park, J.H. Song, J.E. Medvedeva, M. Kim, I.G. Kim, A.J. Freeman, Electronic structure and volume effect on thermoelectric transport in p -type Bi and Sb tellurides, Phys Rev B Condens Matter Mater Phys. 81 (2010).
[249] V.T. Nooshabadi, M. Khanmohamadi, E. Valipour, S. Mahdipour, A. Salati, Z.V. Malekshahi, S. Shafei, E. Amini, S. Farzamfar, J. Ai, Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model, J Biomed Mater Res A. 108 (2020) 2138–2149.
[250] H. Liu, C. Wang, C. Li, Y. Qin, Z. Wang, F. Yang, Z. Li, J. Wang, A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing, RSC Adv. 8 (2018) 7533–7549.
[251] X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma, Z. Zhu, Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze-thawing, Radiation Physics and Chemistry. 79 (2010) 606–611.
[252] R. Ahmadi, J.D. de Bruijn, Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels, J Biomed Mater Res A. 86 (2008) 824–832.
254
[253] Y. Zhang, L. Xu, Z. Liu, X. Cui, Z. Xiang, J. Bai, D. Jiang, J. Xue, C. Wang, Y. Lin, Z. Li, Y. Shan, Y. Yang, L. Bo, Z. Li, X. Zhou, Self-powered pulsed direct current stimulation system for enhancing osteogenesis in MC3T3-E1, Nano Energy. 85 (2021).
[254] M. Ashrafi, T. Alonso-Rasgado, M. Baguneid, A. Bayat, The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals, Vet Dermatol. 27 (2016) 235-e57.
[255] C. Chen, X. Bai, Y. Ding, I.S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering, Biomater Res. 23 (2019).
[256] A.K. Dubey, S.D. Gupta, B. Basu, Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces, J Biomed Mater Res B Appl Biomater. 98 B (2011) 18–29.
[257] Y. Wang, M. Rouabhia, Z. Zhang, Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis, Biochim Biophys Acta Gen Subj. 1860 (2016) 1551–1559.
[258] N. Tang, R. Zhang, Y. Zheng, J. Wang, M. Khatib, X. Jiang, C. Zhou, R. Omar, W. Saliba, W. Wu, M. Yuan, D. Cui, H. Haick, Highly Efficient Self-Healing
255
Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring, Adv Mater. 34 (2022).
[259] Y. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y. Xue, C. Lin, B. Lei, Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing, ACS Nano. 14 (2020) 2904–2916.
[260] J. Zhu, H. Zhou, E.M. Gerhard, S. Zhang, F.I. Parra Rodríguez, T. Pan, H. Yang, Y. Lin, J. Yang, H. Cheng, Smart bioadhesives for wound healing and closure, Bioact Mater. 19 (2023) 360–375.
[261] M. Guo, Y. Wang, B. Gao, B. He, Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management, ACS Nano. 15 (2021) 15316–15327.
[262] Y. Yang, Multi-tier computing networks for intelligent IoT, Nat Electron. 2 (2019) 4–5.
[263] W. Shi, Y. Guo, Y. Liu, When Flexible Organic Field-Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things, Adv Mater. 32 (2020).
256
[264] G. Li, Z. Ma, C. You, G. Huang, E. Song, R. Pan, H. Zhu, J. Xin, B. Xu, T. Lee, Z. An, Z. Di, Y. Mei, Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust, 2020.
[265] M. Mayer, A.J. Baeumner, A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things, Chem Rev. 119 (2019) 7996–8027.
[266] L. da Xu, W. He, S. Li, Internet of things in industries: A survey, IEEE Trans Industr Inform. 10 (2014) 2233–2243.
[267] A. Whitmore, A. Agarwal, L. da Xu, The Internet of Things—A survey of topics and trends, Information Systems Frontiers. 17 (2015) 261–274.
[268] G.-D. Sim, J.A. Krogstad, K.M. Reddy, K.Y. Xie, G.M. Valentino, T.P. Weihs, K.J. Hemker, Nanotwinned metal MEMS films with unprecedented strength and stability, 2017.
[269] P.P. Ray, Internet of Robotic Things: Concept, Technologies, and Challenges, IEEE Access. 4 (2016) 9489–9500.
257
[270] H.L. Park, Y. Lee, N. Kim, D.G. Seo, G.T. Go, T.W. Lee, Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics, Adv Mater. 32 (2020).
[271] J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Nanomaterials: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli, Sci Adv. 1 (2015).
[272] Y. Asano, K. Okada, M. Inaba, Design principles of a human mimetic humanoid: Humanoid platform to study human intelligence and internal body system, 2017.
[273] Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu, M. Foshey, B. Li, T. Palacios, A. Torralba, W. Matusik, Learning human–environment interactions using conformal tactile textiles, Nat Electron. 4 (2021) 193–201.
[274] B. Ciui, A. Martin, R.K. Mishra, T. Nakagawa, T.J. Dawkins, M. Lyu, C. Cristea, R. Sandulescu, J. Wang, Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples, ACS Sens. 3 (2018) 2375–2384.
258
[275] J. Kim, A.S. Campbell, B.E.F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring, Nat Biotechnol. 37 (2019) 389–406.
[276] A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable Chemical Sensors: Present Challenges and Future Prospects, ACS Sens. 1 (2016) 464–482..
[277] Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, W. Gao, Wireless battery-free wearable sweat sensor powered by human motion, 2020.
[278] Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong, W. Cheng, Disruptive, Soft, Wearable Sensors, Adv Mater. 32 (2020).
[279] M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Power generation for wearable systems, Energy Environ Sci. 14 (2021) 2114–2157.
[280] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation, Energy Environ Sci. 8 (2015) 887–896.
[281] P. Jiang, L. Zhang, H. Guo, C. Chen, C. Wu, S. Zhang, Z.L. Wang, Signal Output of Triboelectric Nanogenerator at Oil–Water–Solid Multiphase
259
Interfaces and its Application for Dual-Signal Chemical Sensing, Adv Mater. 31 (2019).
[282] Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z.L. Wang, Self-Powered Triboelectric Nanosensor with Poly(tetrafluoroethylene) Nanoparticle Arrays for Dopamine Detection, ACS Nano. 9 (2015) 8376–8383.
[283] H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C. Ping Wong, Y. Bando, Z.L. Wang, Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol, Nano Energy. 2 (2013) 693–701.
[284] Y. Su, M. Yao, G. Xie, H. Pan, H. Yuan, M. Yang, H. Tai, X. Du, Y. Jiang, Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric-photoelectric coupling effect, Appl Phys Lett. 115 (2019).
[285] Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process, Adv Mater. 26 (2014) 4690–4696.
[286] X. Zhang, Y. Zheng, D. Wang, F. Zhou, Solid-liquid triboelectrification in smart U-tube for multifunctional sensors, Nano Energy. 40 (2017) 95–106.
260
[287] S. Chatterjee, S.R. Burman, I. Khan, S. Saha, D. Choi, S. Lee, Z.H. Lin, Recent advancements in solid-liquid triboelectric nanogenerators for energy harvesting and self-powered applications, Nanoscale. 12 (2020) 17663–17697.
[288] Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy, Angewandte Chemie - International Edition. 52 (2013) 12545–12549.
[289] S. Yoon, E.W. Miller, Q. He, P.H. Do, C.J. Chang, A bright and specific fluorescent sensor for mercury in water, cells, and tissue, Angewandte Chemie - International Edition. 46 (2007) 6658–6661.
[290] D. Dai, J. Yang, Y. Wang, Y.W. Yang, Recent Progress in Functional Materials for Selective Detection and Removal of Mercury (II) Ions, Adv Funct Mater. 31 (2021).
[291] L. Zhang, H. Chang, A. Hirata, H. Wu, Q.K. Xue, M. Chen, Nanoporous gold based optical sensor for sub-ppt detection of mercury ions, ACS Nano. 7 (2013) 4595–4600.
261
[292] J. Du, B. Zhu, X. Chen, Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion, Small. 9 (2013) 4104–4111.
[293] Y. Zhao, Z. Zhong, Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy, J Am Chem Soc. 128 (2006) 9988–9989.
[294] Y.H. Tsao, R.A. Husain, Y.J. Lin, I. Khan, S.W. Chen, Z.H. Lin, A self-powered mercury ion nanosensor based on the thermoelectric effect and chemical transformation mechanism, Nano Energy. 62 (2019) 268–274.
[295] M. Hu, H. Tian, J. He, Unprecedented Selectivity and Rapid Uptake of CuS Nanostructures toward Hg(II) Ions, ACS Appl Mater Interfaces. (2019).
[296] J.W. Lee, H.J. Cho, J. Chun, K.N. Kim, S. Kim, C.W. Ahn, I.W. Kim, J.-Y. Kim, S.-W. Kim, C. Yang, † Jeong, M. Baik, Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement, n.d.
[297] J. Chun, J.W. Kim, W.S. Jung, C.Y. Kang, S.W. Kim, Z.L. Wang, J.M. Baik, Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments, Energy Environ Sci. 8 (2015) 3006–3012.
262
[298] D. Choi, D.W. Kim, D. Yoo, K.J. Cha, M. La, D.S. Kim, Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf, Nano Energy. 36 (2017) 250–259.
[299] T.A.L. Burgo, F. Galembeck, G.H. Pollack, Where is water in the triboelectric series?, J Electrostat. 80 (2016) 30–33.
[300] H. Cho, J. Chung, G. Shin, J.Y. Sim, D.S. Kim, S. Lee, W. Hwang, Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures, Nano Energy. 56 (2019) 56–64.
(此全文20280110後開放外部瀏覽)
電子全文
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *