|
[1] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019). [2] J. Luo, W. Gao, Z.L. Wang, The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports, Adv. Mater. 33 (2021). [3] Z.L. Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution, Adv. Energy. Mater. 10 (2020). [4] Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources, npj Flex. Electron. 1 (2017). [5] X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen, Z. Wen, Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators, Adv. Funct. Mater. 30 (2020). [6] S. Parandeh, N. Etemadi, M. Kharaziha, G. Chen, A. Nashalian, X. Xiao, J. Chen, Advances in Triboelectric Nanogenerators for Self-Powered Regenerative Medicine, Adv. Funct. Mater. 31 (2021). [7] R.D.I.G. Dharmasena, S.R.P. Silva, Towards optimized triboelectric nanogenerators, Nano Energy. 62 (2019) 530–549. 210 [8] G. Zhu, B. Peng, J. Chen, Q. Jing, Z. Lin Wang, Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications, Nano Energy 14 (2014) 126–138. [9] L. Zhou, D. Liu, J. Wang, Z.L. Wang, Triboelectric nanogenerators: Fundamental physics and potential applications, Friction. 8 (2020) 481–506. [10] F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring, Adv. Funct. Mater. 29 (2019). [11] M. Mayer, X. Xiao, J. Yin, G. Chen, J. Xu, J. Chen, Advances in Bioinspired Triboelectric Nanogenerators, Adv. Electron. Mater. (2022). [12] S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian, J. Chen, Leveraging triboelectric nanogenerators for bioengineering, Matter. 4 (2021) 845–887. [13] S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy. 14 (2014) 161–192. [14] K. Parida, J. Xiong, X. Zhou, P.S. Lee, Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility, Nano Energy. 59 (2019) 237–257. 211 [15] W. Liu, Z. Wang, C. Hu, Advanced designs for output improvement of triboelectric nanogenerator system, Mater. Today. 45 (2021) 93–119. [16] X. Chen, X. Xie, Y. Liu, C. Zhao, M. Wen, Z. Wen, Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators, Adv Funct Mater. 30 (2020). h [17] Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat Commun. 12 (2021). [18] J. Wang, H. Wang, N. v. Thakor, C. Lee, Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator (TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode, ACS Nano. 13 (2019) 3589–3599. [19] W. Paosangthong, R. Torah, S. Beeby, Recent progress on textile-based triboelectric nanogenerators, Nano Energy. 55 (2019) 401–423. [20] Y. Kim, D. Lee, J. Seong, B. Bak, U.H. Choi, J. Kim, Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric 212 nanogenerator (TENG) for wearable energy solutions, Nano Energy. 84 (2021). [21] W. Ding, A.C. Wang, C. Wu, H. Guo, Z.L. Wang, Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics, Adv Mater Technol. 4 (2019). [22] R. Walden, C. Kumar, D.M. Mulvihill, S.C. Pillai, Opportunities and Challenges in Triboelectric Nanogenerator (TENG) based Sustainable Energy Generation Technologies: A Mini-Review, Adv. Chem. Eng. 9 (2022). [23] X. Li, G. Xu, X. Xia, J. Fu, L. Huang, Y. Zi, Standardization of triboelectric nanogenerators: Progress and perspectives, Nano Energy. 56 (2019) 40–55. [24] S. Matoori, A. Veves, D.J. Mooney, Advanced bandages for diabetic wound healing, Sci. Transl. Med. 2021. [25] R. Dong, B. Guo, Smart wound dressings for wound healing, Nano Today. 41 (2021). [26] Y. Long, H. Wei, J. Li, G. Yao, B. Yu, D. Ni, A.L. Gibson, X. Lan, Y. Jiang, W. Cai, X. Wang, Effective Wound Healing Enabled by Discrete Alternative 213 Electric Fields from Wearable Nanogenerators, ACS Nano. 12 (2018) 12533–12540. [27] Y. Liang, J. He, B. Guo, Functional Hydrogels as Wound Dressing to Enhance Wound Healing, ACS Nano. 15 (2021) 12687–12722. [28] N.C. Brigham, R.R. Ji, M.L. Becker, Degradable polymeric vehicles for postoperative pain management, Nat Commun. 12 (2021). https://doi.org/10.1038/s41467-021-21438-3. [29] M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound Healing: A Cellular Perspective, Physiol Rev. 99 (2019) 665–706. [30] A. Memic, T. Abudula, H.S. Mohammed, K. Joshi Navare, T. Colombani, S.A. Bencherif, Latest Progress in Electrospun Nanofibers for Wound Healing Applications, ACS Appl Bio Mater. 2 (2019) 952–969. [31] E.M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, B. Conti, Skin wound healing process and new emerging technologies for skin wound care and regeneration, Pharmaceutics. 12 (2020) 1–30. [32] Z. Xu, S. Han, Z. Gu, J. Wu, Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing, Adv Healthc Mater. 9 (2020). 214 [33] H. Fu, H. Zhou, X. Yu, J. Xu, J. Zhou, X. Meng, J. Zhao, Y. Zhou, A.D. Chisholm, S. Xu, Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling, Nat Commun. 11 (2020). [34] S.H. Bhang, W.S. Jang, J. Han, J.K. Yoon, W.G. La, E. Lee, Y.S. Kim, J.Y. Shin, T.J. Lee, H.K. Baik, B.S. Kim, Zinc Oxide Nanorod-Based Piezoelectric Dermal Patch for Wound Healing, Adv Funct Mater. 27 (2017). [35] L. Yazdanpanah, Literature review on the management of diabetic foot ulcer, World J Diabetes. 6 (2015) 37. [36] D. Baltzis, I. Eleftheriadou, A. Veves, Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights, Adv Ther. 31 (2014) 817–836. [37] L.R. Braun, W.A. Fisk, H. Lev-Tov, R.S. Kirsner, R.R. Isseroff, Diabetic foot ulcer: An evidence-based treatment update, Am J Clin Dermatol. 15 (2014) 267–281. [38] J. Boateng, O. Catanzano, Advanced Therapeutic Dressings for Effective Wound Healing - A Review, J Pharm Sci. 104 (2015) 3653–3680. 215 [39] D.P. Kuffler, Improving the ability to eliminate wounds and pressure ulcers, Wound Repair Regen. 23 (2015) 312–317. [40] C. Korupalli, H. Li, N. Nguyen, F.L. Mi, Y. Chang, Y.J. Lin, H.W. Sung, Conductive Materials for Healing Wounds: Their Incorporation in Electroactive Wound Dressings, Characterization, and Perspectives, Adv Healthc Mater. 10 (2021). [41] X.F. Wang, M.L. Li, Q.Q. Fang, W.Y. Zhao, D. Lou, Y.Y. Hu, J. Chen, X.Z. Wang, W.Q. Tan, Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes, Bioact Mater. 6 (2021) 230–243. [42] X. Xiao, X. Xiao, A. Nashalian, A. Libanori, Y. Fang, X. Li, J. Chen, Triboelectric Nanogenerators for Self-Powered Wound Healing, Adv Healthc Mater. 10 (2021). [43] C. Wang, X. Jiang, H.J. Kim, S. Zhang, X. Zhou, Y. Chen, H. Ling, Y. Xue, Z. Chen, M. Qu, L. Ren, J. Zhu, A. Libanori, Y. Zhu, H. Kang, S. Ahadian, M.R. Dokmeci, P. Servati, X. He, Z. Gu, W. Sun, A. Khademhosseini, 216 Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing, Biomaterials. 285 (2022). [44] G. Conta, A. Libanori, T. Tat, G. Chen, J. Chen, Triboelectric Nanogenerators for Therapeutic Electrical Stimulation, Adv. Mater. (2021). [45] R. Luo, J. Dai, J. Zhang, Z. Li, Accelerated Skin Wound Healing by Electrical Stimulation, Adv Healthc Mater. 10 (2021). [46] S. Du, N. Zhou, G. Xie, Y. Chen, H. Suo, J. Xu, J. Tao, L. Zhang, J. Zhu, Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing, Nano Energy. 85 (2021). [47] K.N. Kim, J. Chun, J.W. Kim, K.Y. Lee, J.U. Park, S.W. Kim, Z.L. Wang, J.M. Baik, Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments, ACS Nano. 9 (2015) 6394–6400. [48] N. Cui, J. Liu, L. Gu, S. Bai, X. Chen, Y. Qin, Wearable Triboelectric Generator for Powering the Portable Electronic Devices, ACS Appl Mater Interfaces. 7 (2015) 18225–18230. 217 [49] S. Li, Q. Zhong, J. Zhong, X. Cheng, B. Wang, B. Hu, J. Zhou, Cloth-based power shirt for wearable energy harvesting and clothes ornamentation, ACS Appl Mater Interfaces. 7 (2015) 14912–14916. [50] T. Li, Y. Xu, M. Willander, F. Xing, X. Cao, N. Wang, Z.L. Wang, Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion, Adv Funct Mater. 26 (2016) 4370–4376. [51] P. Maharjan, R.M. Toyabur, J.Y. Park, A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications, Nano Energy. 46 (2018) 383–395. [52] S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes, Adv Mater. 26 (2014) 2818–2824. [53] A. Yu, X. Pu, R. Wen, M. Liu, T. Zhou, K. Zhang, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths, ACS Nano. 11 (2017) 12764–12771. [54] Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang, Z. Li, Wearable and Implantable Triboelectric Nanogenerators, Adv Funct Mater. 29 (2019). 218 [55] M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable electronics, ACS Nano. 9 (2015) 3421–3427. [56] L. Zhang, Y. Yu, G.P. Eyer, G. Suo, L.A. Kozik, M. Fairbanks, X. Wang, T.L. Andrew, All-Textile Triboelectric Generator Compatible with Traditional Textile Process, Adv Mater Technol. 1 (2016). [57] S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi, Z.L. Wang, Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement, Adv Funct Mater. 27 (2017). [58] J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu, Z.L. Wang, J. Zhou, Fiber-based generator for wearable electronics and mobile medication, ACS Nano. 8 (2014) 6273–6280. [59] Y. Jin, J. Seo, J.S. Lee, S. Shin, H.J. Park, S. Min, E. Cheong, T. Lee, S.W. Cho, Triboelectric nanogenerator accelerates highly efficient nonviral direct conversion and in vivo reprogramming of fibroblasts to functional neuronal cells, Adv Mater. 28 (2016) 7365–7374. 219 [60] Z. Li, H. Feng, Q. Zheng, H. Li, C. Zhao, H. Ouyang, S. Noreen, M. Yu, F. Su, R. Liu, L. Li, Z.L. Wang, Z. Li, Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing, Nano Energy. 54 (2018) 390–399. [61] J. Tian, R. Shi, Z. Liu, H. Ouyang, M. Yu, C. Zhao, Y. Zou, D. Jiang, J. Zhang, Z. Li, Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation, Nano Energy. 59 (2019) 705–714. [62] W. Tang, J. Tian, Q. Zheng, L. Yan, J. Wang, Z. Li, Z.L. Wang, Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts’ Proliferation and Differentiation, ACS Nano. 9 (2015) 7867–7873. [63] G. Yao, D. Jiang, J. Li, L. Kang, S. Chen, Y. Long, Y. Wang, P. Huang, Y. Lin, W. Cai, X. Wang, Self-Activated Electrical Stimulation for Effective Hair Regeneration via a Wearable Omnidirectional Pulse Generator, ACS Nano. 13 (2019) 12345–12356. 220 [64] F. Gao, T. Shao, Y. Yu, Y. Xiong, L. Yang, Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action, Nat Commun. 12 (2021). [65] S. Yu, G. Li, P. Zhao, Q. Cheng, Q. He, D. Ma, W. Xue, NIR-Laser-Controlled Hydrogen-Releasing PdH Nanohydride for Synergistic Hydrogen-Photothermal Antibacterial and Wound-Healing Therapies, Adv Funct Mater. 29 (2019). [66] W. Wentao, Z. Tao, S. Bulei, Z. Tongchang, Z. Qicheng, W. Fan, Z. Ninglin, S. Jian, Z. Ming, S. Yi, Functionalization of polyvinyl alcohol composite film wrapped in am-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing, Appl Mater Today. 17 (2019) 36–44. [67] S. Huang, S. Xu, Y. Hu, X. Zhao, L. Chang, Z. Chen, X. Mei, Preparation of NIR-responsive, ROS-generating and antibacterial black phosphorus quantum dots for promoting the MRSA-infected wound healing in diabetic rats, Acta Biomater. 137 (2022) 199–217. 221 [68] Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles, ACS Nano. 6 (2012) 5164–5173. [69] S.Y. Kim, C. Park, H.J. Jang, B. o. Kim, H.W. Bae, I.Y. Chung, E.S. Kim, Y.H. Cho, Antibacterial strategies inspired by the oxidative stress and response networks, J. Microbiol. 57 (2019) 203–212. [70] Y. Liang, M. Wang, Z. Zhang, G. Ren, Y. Liu, S. Wu, J. Shen, Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing, J. Chem. Eng. 378 (2019). [71] C. Dunnill, T. Patton, J. Brennan, J. Barrett, M. Dryden, J. Cooke, D. Leaper, N.T. Georgopoulos, Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process, Int Wound J. 14 (2017) 89–96. [72] Y.J. Lin, I. Khan, S. Saha, C.C. Wu, S.R. Barman, F.C. Kao, Z.H. Lin, Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates, Nat Commun. 12 (2021). 222 [73] C.D. Le, C.P. Vo, T.H. Nguyen, D.L. Vu, K.K. Ahn, Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure, Nano Energy. 80 (2021). [74] S. Jang, M. La, S. Cho, Y. Yun, J.H. Choi, Y. Ra, S.J. Park, D. Choi, Monocharged electret based liquid-solid interacting triboelectric nanogenerator for its boosted electrical output performance, Nano Energy. 70 (2020). [75] S. Chatterjee, S. Saha, S.R. Barman, I. Khan, Y.P. Pao, S. Lee, D. Choi, Z.H. Lin, Enhanced sensing performance of triboelectric nanosensors by solid-liquid contact electrification, Nano Energy. 77 (2020). [76] Y. Dong, S. Dong, B. Liu, C. Yu, J. Liu, D. Yang, P. Yang, J. Lin, 2D Piezoelectric Bi2MoO6 Nanoribbons for GSH-Enhanced Sonodynamic Therapy, Adv. Mater. 33 (2021). [77] Y. Feng, H. Li, L. Ling, S. Yan, D. Pan, H. Ge, H. Li, Z. Bian, Enhanced Photocatalytic Degradation Performance by Fluid-Induced Piezoelectric Field, Environ Sci Technol. 52 (2018) 7842–7848. 223 [78] A.M. Almassri, W.Z. Wan Hasan, S.A. Ahmad, A.J. Ishak, A.M. Ghazali, D.N. Talib, C. Wada, Pressure sensor: State of the art, design, and application for robotic hand, J Sens. 2015 (2015). [79] L.J. Hubble, J. Wang, Sensing at Your Fingertips: Glove-based Wearable Chemical Sensors, Electroanalysis. 31 (2019) 428–436. [80] H. Ishida, Y. Wada, H. Matsukura, Chemical sensing in robotic applications: A review, IEEE Sens J. 12 (2012) 3163–3173. [81] A. Ravalli, C. Rossi, G. Marrazza, Bio-inspired fish robot based on chemical sensors, Sens Actuators B Chem. 239 (2017) 325–329. [82] Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things, InfoMat. 2 (2020) 1131–1162. [83] Q. Zhang, T. Jin, J. Cai, L. Xu, T. He, T. Wang, Y. Tian, L. Li, Y. Peng, C. Lee, Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications, Adv. Sci. 9 (2022). 224 [84] M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Power generation for wearable systems, Energy Environ Sci. 14 (2021) 2114–2157. [85] P. Maharjan, T. Bhatta, H. Cho, X. Hui, C. Park, S. Yoon, M. Salauddin, M.T. Rahman, S.S. Rana, J.Y. Park, A Fully Functional Universal Self-Chargeable Power Module for Portable/Wearable Electronics and Self-Powered IoT Applications, Adv Energy Mater. 10 (2020). [86] Z. Zhao, Y. Dai, S.X. Dou, J. Liang, Flexible nanogenerators for wearable electronic applications based on piezoelectric materials, Mater Today Energy. 20 (2021). [87] H. Jin, Y.S. Abu-Raya, H. Haick, Adv Mater for Health Monitoring with Skin-Based Wearable Devices, Adv Healthc Mater. 6 (2017). [88] W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications, Adv. Mater. 26 (2014) 5310–5336. [89] J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Adv Mater for Printed Wearable Electrochemical Devices: A Review, Adv Electron Mater. 3 (2017). 225 [90] S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y.D. Suh, H. Cho, J. Shin, J. Yeo, S.H. Ko, Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications, Adv. Mater. 27 (2015) 4744–4751. [91] F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring, Adv Funct Mater. 29 (2019). [92] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019). [93] F. Hu, Q. Cai, F. Liao, M. Shao, S.T. Lee, Recent Advancements in Nanogenerators for Energy Harvesting, Small. 11 (2015) 5611–5628. [94] Z. Zhao, Y. Dai, S.X. Dou, J. Liang, Flexible nanogenerators for wearable electronic applications based on piezoelectric materials, Mater Today Energy. 20 (2021). [95] F.R. Fan, W. Tang, Z.L. Wang, Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics, Adv. Mater. 28 (2016) 4283–4305. [96] X. Li, C. Jiang, Y. Ying, J. Ping, Biotriboelectric Nanogenerators: Materials, Structures, and Applications, Adv Energy Mater. 10 (2020). 226 [97] Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics, 2012. [98] V. Nguyen, R. Zhu, R. Yang, Environmental effects on nanogenerators, Nano Energy. 14 (2014) 49–6. [99] S. Rani, N. Kumar, Y. Sharma, Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications, J Phys Energy. 3 (2021). [100] Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo, H. Zheng, Z.L. Wang, Self‐powered technology based on nanogenerators for biomedical applications, Exploration. 1 (2021) 90–114. [101] M. Dargusch, W. di Liu, Z.G. Chen, Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems, Adv. Sci. 7 (2020). [102] A. Kim, P. Kumar, P.K. Annamalai, R. Patel, Recent Advances in the Nanomaterials, Design, Fabrication Approaches of Thermoelectric Nanogenerators for Various Applications, Adv Mater Interfaces. (2022). [103] S. Masoumi, S. O’Shaughnessy, A. Pakdel, Organic-based flexible thermoelectric generators: From materials to devices, Nano Energy. 92 (2022). 227 [104] Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: From materials to devices, Renewable and Sustainable Energy Rev. 137 (2021). [105] D. Zhang, Y. Wang, Y. Yang, Design, Performance, and Application of Thermoelectric Nanogenerators, Small. 15 (2019). [106] H. Askari, N. Xu, B.H. Groenner Barbosa, Y. Huang, L. Chen, A. Khajepour, H. Chen, Z.L. Wang, Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators, Mater. Today. 52 (2022) 188–206. [107] S. Korkmaz, A. Kariper, Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status, Nano Energy. 84 (2021). [108] D. Zhang, H. Wu, C.R. Bowen, Y. Yang, Recent Advances in Pyroelectric Materials and Applications, Small. 17 (2021). [109] H. Ryu, S.W. Kim, Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy, Small. 17 (2021). [110] W. Liu, Z. Wang, C. Hu, Advanced designs for output improvement of triboelectric nanogenerator system, Mater Today. 45 (2021) 93–119. 228 [111] L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy. 78 (2020). [112] J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting, Nano Energy. 56 (2019) 662–692. [113] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy. 55 (2019) 288–304. [114] X. Wang, Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale, Nano Energy. 1 (2012) 13–24. [115] J. Briscoe, S. Dunn, Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters, Nano Energy. 14 (2014) 15–29. [116] H. Yuan, T. Lei, Y. Qin, R. Yang, Flexible electronic skins based on piezoelectric nanogenerators and piezotronics, Nano Energy. 59 (2019) 84–90. [117] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019). 229 [118] S.Y. Kuang, J. Chen, X.B. Cheng, G. Zhu, Z.L. Wang, Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics, Nano Energy. 17 (2015) 10–16. [119] Y. Ma, Q. Zheng, Y. Liu, B. Shi, X. Xue, W. Ji, Z. Liu, Y. Jin, Y. Zou, Z. An, W. Zhang, X. Wang, W. Jiang, Z. Xu, Z.L. Wang, Z. Li, H. Zhang, Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring, Nano Lett. 16 (2016) 6042–6051. [120] K. Xia, Z. Zhu, H. Zhang, C. Du, J. Fu, Z. Xu, Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion, Nano Energy. 56 (2019) 400–410. [121] K. Dong, J. Deng, Y. Zi, Y.C. Wang, C. Xu, H. Zou, W. Ding, Y. Dai, B. Gu, B. Sun, Z.L. Wang, 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors, Adv. Mater. 29 (2017). [122] A.Y. Choi, C.J. Lee, J. Park, D. Kim, Y.T. Kim, Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting, Sci Rep. 7 (2017). 230 [123] Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu, Y. Jin, Y. Ma, Y. Zou, X. Wang, Z. An, W. Tang, W. Zhang, F. Yang, Y. Liu, X. Lang, Z. Xu, Z. Li, Z.L. Wang, In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator, ACS Nano. 10 (2016) 6510–6518. [124] H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z.L. Wang, H. Zhang, Z. Li, Symbiotic cardiac pacemaker, Nat Commun. 10 (2019). [125] Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li, D. Jiang, F. Xie, D. Qu, Y. Zou, Y. Huang, H. Li, C. Zhao, P. Tan, M. Yu, Y. Fan, H. Zhang, Z.L. Wang, Z. Li, Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor, Adv Funct Mater. 29 (2019). [126] B. Chen, W. Tang, T. Jiang, L. Zhu, X. Chen, C. He, L. Xu, H. Guo, P. Lin, D. Li, J. Shao, Z.L. Wang, Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing, Nano Energy. 45 (2018) 380–389. [127] Y. Kang, B. Wang, S. Dai, G. Liu, Y. Pu, C. Hu, Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications, ACS Appl Mater Interfaces. 7 (2015) 20469–20476. 231 [128] P. Bai, G. Zhu, Z.H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, Z.L. Wang, Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions, ACS Nano. 7 (2013) 3713–3719. [129] Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy, Angew. Chem. Int. Ed. 52 (2013) 12545–12549. [130] R. Zhang, H. Lin, Y. Pan, C. Li, Z. Yang, J. Tian, H.C. Shum, Liquid–Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy, Adv Funct Mater. (2022). [131] Z.L. Wang, From contact electrification to triboelectric nanogenerators, Reports on Progress in Physics. 84 (2021). [132] Y. Zhou, W. Deng, J. Xu, J. Chen, Engineering Materials at the Nanoscale for Triboelectric Nanogenerators, Cell Rep Phys Sci. 1 (2020). [133] C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang, Y. Zi, L. Pan, P. Wang, P. Feng, Z. Lin, Z.L. Wang, Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification, Adv. Mater. 30 (2018). 232 [134] Y. Nurmakanov, G. Kalimuldina, G. Nauryzbayev, D. Adair, Z. Bakenov, Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators, Nanoscale Res Lett. 16 (2021). [135] H. Chen, Y. Song, X. Cheng, H. Zhang, Self-powered electronic skin based on the triboelectric generator, Nano Energy. 56 (2019) 252–268. [136] Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators, Mater Today. 20 (2017) 74–82. [137] B. Chen, Y. Yang, Z.L. Wang, Scavenging Wind Energy by Triboelectric Nanogenerators, Adv Energy Mater. 8 (2018). [138] D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors, NPG Asia Mater. 12 (2020). [139] G. Liu, T. Chen, J. Xu, K. Wang, Blue energy harvesting on nanostructured carbon materials, J Mater Chem A Mater. 6 (2018) 18357–18377. [140] Z. Wang, J. An, J. Nie, J. Luo, J. Shao, T. Jiang, B. Chen, W. Tang, Z.L. Wang, A Self-Powered Angle Sensor at Nanoradian-Resolution for Robotic Arms and Personalized Medicare, Adv. Mater. 32 (2020). 233 [141] X. Peng, K. Dong, C. Ye, Y. Jiang, S. Zhai, R. Cheng, D. Liu, X. Gao, J. Wang, Z. Lin Wang, A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators, 2020. [142] J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han, T. Jiang, Q. Lai, Y. Bai, W. Tang, F.R. Fan, Z.L. Wang, Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics, Nat Commun. 10 (2019). [143] J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit, Nano Res. 8 (2015) 3934–3943. [144] S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nat Commun. 6 (2015). [145] Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z.L. Wang, In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator, Adv Mater. 26 (2014) 5851–5856. 234 [146] C. Li, Y. Yin, B. Wang, T. Zhou, J. Wang, J. Luo, W. Tang, R. Cao, Z. Yuan, N. Li, X. Du, C. Wang, S. Zhao, Y. Liu, Z.L. Wang, Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator, ACS Nano. 11 (2017) 10439–10445. [147] J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications, EcoMat. 2 (2020). [148] M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring, ACS Nano. (2019). [149] X. Xie, Y. Zhang, C. Chen, X. Chen, T. Yao, M. Peng, X. Chen, B. Nie, Z. Wen, X. Sun, Frequency-independent self-powered sensing based on capacitive impedance matching effect of triboelectric nanogenerator, Nano Energy. 65 (2019). [150] W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou, G. Zhang, J. Yang, Z. Lin Wang, A P Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring, 2020. 235 [151] S. Lee, C. Lee, Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications, Curr Opin Biomed Eng. 6 (2018) 130–137. [152] S. Lee, C. Lee, Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications, Curr Opin Biomed Eng. 6 (2018) 130–137. [153] M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound Healing: A Cellular Perspective, Physiol Rev. 99 (2019) 665–706. [154] Z. Xu, S. Han, Z. Gu, J. Wu, Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing, Adv Healthc Mater. 9 (2020). [155] S0733-86352930216-X, (n.d.). [156] S. Ellis, E.J. Lin, D. Tartar, Immunology of Wound Healing, Curr Dermatol Rep. 7 (2018) 350–358. [157] B.K. Sun, Z. Siprashvili, P.A. Khavari, Advances in skin grafting and treatment of cutaneous wounds, n.d. [158] P. Yu, W. Zhong, Hemostatic materials in wound care, Burns Trauma. 9 (2021). 236 [159] S. Guo, L.A. DiPietro, Critical review in oral biology & medicine: Factors affecting wound healing, J Dent Res. 89 (2010) 219–229. [160] T. Velnar, T. Bailey, V. Smrkolj, The Wound Healing Process: an Overview of the Cellular and Molecular Mechanisms, 2009. [161] D.P. Orgill, L.R. Bayer, Negative pressure wound therapy: Past, present and future, Int Wound J. 10 (2013) 15–19. [162] D.P. Orgill, L.R. Bayer, Negative pressure wound therapy: Past, present and future, Int Wound J. 10 (2013) 15–19. [163] P. Vikatmaa, V. Juutilainen, P. Kuukasjärvi, A. Malmivaara, Negative Pressure Wound Therapy: a Systematic Review on Effectiveness and Safety, European Journal of Vascular and Endovascular Surgery. 36 (2008) 438–448. [164] C. Huang, T. Leavitt, L.R. Bayer, D.P. Orgill, Effect of negative pressure wound therapy on wound healing, Curr Probl Surg. 51 (2014) 301–331. [165] G. Han, R. Ceilley, Chronic Wound Healing: A Review of Current Management and Treatments, Adv Ther. 34 (2017) 599–610. 237 [166] J.A. Thackham, D.L.S. McElwain, R.J. Long, The use of hyperbaric oxygen therapy to treat chronic wounds: A review, Wound Repair and Regeneration. 16 (2008) 321–330. [167] M.A. Ortega, O. Fraile-Martinez, C. García-Montero, E. Callejón-Peláez, M.A. Sáez, M.A. Álvarez-Mon, N. García-Honduvilla, J. Monserrat, M. Álvarez-Mon, J. Bujan, M.L. Canals, A general overview on the hyperbaric oxygen therapy: Applications, mechanisms and translational opportunities, Medicina (Lithuania). 57 (2021). [168] H. Chen, Y. Cheng, J. Tian, P. Yang, X. Zhang, Y. Chen, Y. Hu, J. Wu, Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes, Sci. Adv. 2020. [169] M. Verdes, K. Mace, L. Margetts, S. Cartmell, Status and challenges of electrical stimulation use in chronic wound healing, Curr Opin Biotechnol. 75 (2022). [170] G. Thakral, J. LaFontaine, B. Najafi, T.K. Talal, P. Kim, L.A. Lavery, Electrical stimulation to accelerate wound healing, Diabet Foot Ankle. 4 (2013). 238 [171] S.I. Reger, A. Hyodo, S. Negami, H.E. Kambic, V. Sahgal, Experimental Wound Healing with Electrical Stimulation, Blackwell Science, 2022. [172] L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao, L. Fu, H. Cheng, L. Xia, S. Xie, W. Ye, Z. Shi, G. Yang, Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation, Adv Healthc Mater. 9 (2020). [173] G. Tai, M. Tai, M. Zhao, Electrically stimulated cell migration and its contribution to wound healing, Burns Trauma. 6 (2018). [174] H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome, T. Miyake, K. Yamasaki, M. Nishizawa, Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster, Adv Healthc Mater. 6 (2017). [175] A. Wang, Z. Liu, M. Hu, C. Wang, X. Zhang, B. Shi, Y. Fan, Y. Cui, Z. Li, K. Ren, Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing, Nano Energy. 43 (2018) 63–71. 239 [176] H.S. Wu, S.M. Wei, S.W. Chen, H.C. Pan, W.P. Pan, S.M. Huang, M.L. Tsai, P.K. Yang, Metal-Free Perovskite Piezoelectric Nanogenerators for Human–Machine Interfaces and Self-Powered Electrical Stimulation Applications, Advanced Science. 9 (2022). [177] S. Du, N. Zhou, Y. Gao, G. Xie, H. Du, H. Jiang, L. Zhang, J. Tao, J. Zhu, Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing, Nano Res. 13 (2020) 2525–2533. [178] S.H. Bhang, W.S. Jang, J. Han, J.K. Yoon, W.G. La, E. Lee, Y.S. Kim, J.Y. Shin, T.J. Lee, H.K. Baik, B.S. Kim, Zinc Oxide Nanorod-Based Piezoelectric Dermal Patch for Wound Healing, Adv Funct Mater. 27 (2017). [179] C. Han, J. Huang, A. Zhangji, X. Tong, K. Yu, K. Chen, X. Liu, Y. Yang, Y. Chen, W.A. Memon, K. Amin, W. Gao, Z. Deng, K. Zhou, Y. Wang, X. Qi, Accelerated Skin Wound Healing Using Flexible Photovoltaic-Bioelectrode Electrical Stimulation, Micromachines. 13 (2022). [180] H.K. Jang, J.Y. Oh, G.J. Jeong, T.J. Lee, G.B. Im, J.R. Lee, J.K. Yoon, D.I. Kim, B.S. Kim, S.H. Bhang, T. il Lee, A disposable photovoltaic patch 240 controlling cellular microenvironment for wound healing, Int J Mol Sci. 19 (2018). [181] Z. Qiao, J. Ding, C. Wu, T. Zhou, K. Wu, Y. Zhang, Z. Xiao, D. Wei, J. Sun, H. Fan, One-Pot Synthesis of Bi2S3/TiO2/rGO Heterostructure with Red Light-Driven Photovoltaic Effect for Remote Electrotherapy-Assisted Wound Repair, Small. (2022). [182] Y. Zhang, Z. Zhou, L. Sun, Z. Liu, X. Xia, T.H. Tao, “Genetically Engineered” Biofunctional Triboelectric Nanogenerators Using Recombinant Spider Silk, Adv. Mater. 30 (2018). [183] W. Hu, X. Wei, L. Zhu, D. Yin, A. Wei, X. Bi, T. Liu, G. Zhou, Y. Qiang, X. Sun, Z. Wen, Y. Pan, Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator, Nano Energy. 57 (2019) 600–607. [184] S.H. Jeong, Y. Lee, M.G. Lee, W.J. Song, J.U. Park, J.Y. Sun, Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator, Nano Energy. 79 (2021). 241 [185] S. Du, H. Suo, G. Xie, Q. Lyu, M. Mo, Z. Xie, N. Zhou, L. Zhang, J. Tao, J. Zhu, Self-powered and photothermal electronic skin patches for accelerating wound healing, Nano Energy. 93 (2022). [186] S.H. Jeong, Y. Lee, M.G. Lee, W.J. Song, J.U. Park, J.Y. Sun, Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator, Nano Energy. 79 (2021). [187] S.A. El-Safty, M.A. Shenashen, Mercury-ion optical sensors, TrAC - Trends in Anal Chem. 38 (2012) 98–115. [188] E.S. Corbitt, D.J. Jacob, C.D. Holmes, D.G. Streets, E.M. Sunderland, Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios, Environ Sci Technol. 45 (2011) 10477–10484. [189] D. Dai, J. Yang, Y. Wang, Y.W. Yang, Recent Progress in Functional Materials for Selective Detection and Removal of Mercury (II) Ions, Adv Funct Mater. 31 (2021). [190] A.T. Jan, I. Murtaza, A. Ali, Q.M.R. Haq, Mercury pollution: An emerging problem and potential bacterial remediation strategies, World J Microbiol Biotechnol. 25 (2009) 1529–1537. 242 [191] Y. Wang, L. Zhang, X. Han, L. Zhang, X. Wang, L. Chen, Fluorescent probe for mercury ion imaging analysis: Strategies and applications, J. Chem. Eng.. 406 (2021). [192] A.M. Ashrafi, Z. Koudelkova, E. Sedlackova, L. Richtera, V. Adam, Review—Electrochemical Sensors and Biosensors for Determination of Mercury Ions, J Electrochem Soc. 165 (2018) B824–B834. [193] L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials, Biosens Bioelectron. 63 (2015) 276–286. [194] C. Huang, G. Chen, A. Nashalian, J. Chen, Advances in self-powered chemical sensing: Via a triboelectric nanogenerator, Nanoscale. 13 (2021) 2065–2081. [195] Q. Zhou, J. Pan, S. Deng, F. Xia, T. Kim, Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection, Adv Mater. 33 (2021). [196] W. Harmon, D. Bamgboje, H. Guo, T. Hu, Z.L. Wang, Self-driven power management system for triboelectric nanogenerators, Nano Energy. 71 (2020). 243 [197] S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou, W. Liu, Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator, Nano Energy. 49 (2018) 31–39. [198] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation, Energy Environ Sci. 8 (2015) 887–896. [199] G. Zhu, Z.H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano Lett. 13 (2013) 847–853. [200] Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, Z.L. Wang, A self-powered triboelectric nanosensor for mercury ion detection, Angewandte Chemie - International Edition. 52 (2013) 5065–5069.. [201] Y.P. Pao, C.C. Yu, Y.Z. Lin, S. Chatterjee, S. Saha, N. Tiwari, Y.T. Huang, C.C. Wu, D. Choi, Z.H. Lin, Carbohydrate-protein interactions studied by solid-liquid contact electrification and its use for label-free bacterial detection, Nano Energy. 85 (2021). 244 [202] Z. Ying, Y. Long, F. Yang, Y. Dong, J. Li, Z. Zhang, X. Wang, Self-powered liquid chemical sensors based on solid-liquid contact electrification, Analyst. 146 (2021) 1656–1662. [203] J. Zhang, S. Lin, M. Zheng, Z.L. Wang, Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces, ACS Nano. 15 (2021) 14830–14837. [204] Z.H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials, ACS Nano. 7 (2013) 4554–4560. [205] L.J. Hubble, J. Wang, Sensing at Your Fingertips: Glove-based Wearable Chemical Sensors, Electroanalysis. 31 (2019) 428–436. [206] B. Ciui, A. Martin, R.K. Mishra, T. Nakagawa, T.J. Dawkins, M. Lyu, C. Cristea, R. Sandulescu, J. Wang, Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples, ACS Sens. 3 (2018) 2375–2384. [207] B. Ciui, M. Tertiş, A. Cernat, R. Sǎndulescu, J. Wang, C. Cristea, Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening of 245 Pseudomonas aeruginosa Virulence Factors, Anal Chem. 90 (2018) 7761–7768. [208] R.K. Mishra, L.J. Hubble, A. Martín, R. Kumar, A. Barfidokht, J. Kim, M.M. Musameh, I.L. Kyratzis, J. Wang, Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats, ACS Sens. 2 (2017) 553–561. [209] A.J. Bandodkar, A.M. O’Mahony, J. Ramírez, I.A. Samek, S.M. Anderson, J.R. Windmiller, J. Wang, Solid-state forensic finger sensor for integrated sampling and detection of gunshot residue and explosives: Towards “Lab-on-a-finger,” Analyst. 138 (2013) 5288–5295. [210] M. de Jong, N. Sleegers, J. Kim, F. van Durme, N. Samyn, J. Wang, K. de Wael, Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders, Chem Sci. 7 (2016) 2364–2370. [211] M. Amit, R.K. Mishra, Q. Hoang, A.M. Galan, J. Wang, T.N. Ng, Point-of-use robotic sensors for simultaneous pressure detection and chemical analysis, Mater Horiz. 6 (2019) 604–611. 246 [212] J. Dunn, L. Kidzinski, R. Runge, D. Witt, J.L. Hicks, S.M. Schüssler-Fiorenza Rose, X. Li, A. Bahmani, S.L. Delp, T. Hastie, M.P. Snyder, Wearable sensors enable personalized predictions of clinical laboratory measurements, Nat Med. 27 (2021) 1105–1112.. [213] M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors, Nat Electron. 1 (2018) 160–171. [214] X. Xiao, X. Xiao, A. Nashalian, A. Libanori, Y. Fang, X. Li, J. Chen, Triboelectric Nanogenerators for Self-Powered Wound Healing, Adv Healthc Mater. 10 (2021). [215] R. Dong, B. Guo, Smart wound dressings for wound healing, Nano Today. 41 (2021). [216] A. McLister, J. McHugh, J. Cundell, J. Davis, New Developments in Smart Bandage Technologies for Wound Diagnostics, Adv Mater. 28 (2016) 5732–5737. [217] D. Zhao, P.J. Feng, J.H. Liu, M. Dong, X.Q. Shen, Y.X. Chen, Q.D. Shen, Electromagnetized-Nanoparticle-Modulated Neural Plasticity and Recovery 247 of Degenerative Dopaminergic Neurons in the Mid-Brain, Adv Mater. 32 (2020). [218] A. Patruno, A. Ferrone, E. Costantini, S. Franceschelli, M. Pesce, L. Speranza, P. Amerio, C. D’Angelo, M. Felaco, A. Grilli, M. Reale, Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines, Cell Prolif. 51 (2018). [219] F. Bao, G. Pei, Z. Wu, H. Zhuang, Z. Zhang, Z. Huan, C. Wu, J. Chang, Bioactive Self-Pumping Composite Wound Dressings with Micropore Array Modified Janus Membrane for Enhanced Diabetic Wound Healing, Adv Funct Mater. 30 (2020). [220] P.E. Banwell, M. Musgrave, Topical negative pressure therapy: mechanisms and indications, n.d. [221] E. Hoste, E.N. Arwert, R. Lal, A.P. South, J.C. Salas-Alanis, D.F. Murrell, G. Donati, F.M. Watt, Innate sensing of microbial products promotes wound-induced skin cancer, Nat Commun. 6 (2015). [222] J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K.W.K. Yeung, Z. Cui, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Interfacial engineering of 248 Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing, Nat Commun. 12 (2021). [223] J. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K.W.K. Yeung, X. Wang, S. Wu, Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds, Nat Commun. 10 (2019). [224] Y. Long, H. Wei, J. Li, G. Yao, B. Yu, D. Ni, A.L. Gibson, X. Lan, Y. Jiang, W. Cai, X. Wang, Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable Nanogenerators, ACS Nano. 12 (2018) 12533–12540. [225] M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Y. Gu, T. Sasaki, A. Suzuki, J. v. Forrester, H.R. Bourne, P.N. Devreotes, C.D. McCaig, J.M. Penninger, Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN, Nature. 442 (2006) 457–460. [226] C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Adv Energy Mater. 9 (2019). 249 [227] W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, Z.L. Wang, Integrated charge excitation triboelectric nanogenerator, Nat Commun. 10 (2019). [228] Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat Commun. 12 (2021). [229] H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou, F. Xie, Y. Ma, Z. Li, H. Li, Q. Zheng, X. Qu, Y. Fan, Z.L. Wang, H. Zhang, Z. Li, Symbiotic cardiac pacemaker, Nat Commun. 10 (2019). [230] H. Ryu, H. moon Park, M.K. Kim, B. Kim, H.S. Myoung, T.Y. Kim, H.J. Yoon, S.S. Kwak, J. Kim, T.H. Hwang, E.K. Choi, S.W. Kim, Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators, Nat Commun. 12 (2021). [231] Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source, Sci Adv. 2 (2016). 250 [232] Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu, Y. Jin, Y. Ma, Y. Zou, X. Wang, Z. An, W. Tang, W. Zhang, F. Yang, Y. Liu, X. Lang, Z. Xu, Z. Li, Z.L. Wang, In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator, ACS Nano. 10 (2016) 6510–6518. [233] D. Zhao, J. Zhuo, Z. Chen, J. Wu, R. Ma, X. Zhang, Y. Zhang, X. Wang, X. Wei, L. Liu, C. Pan, J. Wang, J. Yang, F. Yi, G. Yang, Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities, Nano Energy. 90 (2021). [234] Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie, M. Yao, H. Tai, Y. Jiang, J. Chen, Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator, Adv Mater. 33 (2021). [235] H. Zhang, J. Zhang, Z. Hu, L. Quan, L. Shi, J. Chen, W. Xuan, Z. Zhang, S. Dong, J. Luo, Waist-wearable wireless respiration sensor based on triboelectric effect, Nano Energy. 59 (2019) 75–83. [236] J. Tian, R. Shi, Z. Liu, H. Ouyang, M. Yu, C. Zhao, Y. Zou, D. Jiang, J. Zhang, Z. Li, Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation, Nano Energy. 59 (2019) 705–714. 251 [237] R. Edwards, K.G. Harding, Bacteria and wound healing, (n.d.). [238] G.S. Ashcroft, K. Lei, W. Jin, G. Longenecker, A.B. Kulkarni, T. Greenwell-Wild, H. Hale-Donze, G. Mcgrady, X.-Y. Song, S.M. Wahl, Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing, 2000. [239] F. Gao, T. Shao, Y. Yu, Y. Xiong, L. Yang, Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action, Nat Commun. 12 (2021) 745. [240] T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen, X. Zhang, C. Wu, Z. Mao, G. Luo, X. Chen, J. Deng, Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases, Nat Commun. 11 (2020). [241] G. Kim, Y.E.L. Koo, H. Xu, M.A. Philbert, R. Kopelman, Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells, Anal Chem. 82 (2010) 2165–2169. 252 [242] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process, Angewandte Chemie - International Edition. 45 (2006) 6962–6984. [243] B.R. Locke, K.Y. Shih, Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water, Plasma Sources Sci Technol. 20 (2011). [244] H. Hou, X. Zeng, X. Zhang, Production of Hydrogen Peroxide by Photocatalytic Processes, Angewandte Chemie - International Edition. 59 (2020) 17356–17376. [245] Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Piezo-catalysis for nondestructive tooth whitening, Nat Commun. 11 (2020). [246] Y.J. Lin, I. Khan, S. Saha, C.C. Wu, S.R. Barman, F.C. Kao, Z.H. Lin, Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates, Nat Commun. 12 (2021). [247] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Thin-®lm thermoelectric devices with high room-temperature ®gures of merit, 2001. 253 [248] M.S. Park, J.H. Song, J.E. Medvedeva, M. Kim, I.G. Kim, A.J. Freeman, Electronic structure and volume effect on thermoelectric transport in p -type Bi and Sb tellurides, Phys Rev B Condens Matter Mater Phys. 81 (2010). [249] V.T. Nooshabadi, M. Khanmohamadi, E. Valipour, S. Mahdipour, A. Salati, Z.V. Malekshahi, S. Shafei, E. Amini, S. Farzamfar, J. Ai, Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model, J Biomed Mater Res A. 108 (2020) 2138–2149. [250] H. Liu, C. Wang, C. Li, Y. Qin, Z. Wang, F. Yang, Z. Li, J. Wang, A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing, RSC Adv. 8 (2018) 7533–7549. [251] X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma, Z. Zhu, Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze-thawing, Radiation Physics and Chemistry. 79 (2010) 606–611. [252] R. Ahmadi, J.D. de Bruijn, Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels, J Biomed Mater Res A. 86 (2008) 824–832. 254 [253] Y. Zhang, L. Xu, Z. Liu, X. Cui, Z. Xiang, J. Bai, D. Jiang, J. Xue, C. Wang, Y. Lin, Z. Li, Y. Shan, Y. Yang, L. Bo, Z. Li, X. Zhou, Self-powered pulsed direct current stimulation system for enhancing osteogenesis in MC3T3-E1, Nano Energy. 85 (2021). [254] M. Ashrafi, T. Alonso-Rasgado, M. Baguneid, A. Bayat, The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals, Vet Dermatol. 27 (2016) 235-e57. [255] C. Chen, X. Bai, Y. Ding, I.S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering, Biomater Res. 23 (2019). [256] A.K. Dubey, S.D. Gupta, B. Basu, Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces, J Biomed Mater Res B Appl Biomater. 98 B (2011) 18–29. [257] Y. Wang, M. Rouabhia, Z. Zhang, Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis, Biochim Biophys Acta Gen Subj. 1860 (2016) 1551–1559. [258] N. Tang, R. Zhang, Y. Zheng, J. Wang, M. Khatib, X. Jiang, C. Zhou, R. Omar, W. Saliba, W. Wu, M. Yuan, D. Cui, H. Haick, Highly Efficient Self-Healing 255 Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring, Adv Mater. 34 (2022). [259] Y. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y. Xue, C. Lin, B. Lei, Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing, ACS Nano. 14 (2020) 2904–2916. [260] J. Zhu, H. Zhou, E.M. Gerhard, S. Zhang, F.I. Parra Rodríguez, T. Pan, H. Yang, Y. Lin, J. Yang, H. Cheng, Smart bioadhesives for wound healing and closure, Bioact Mater. 19 (2023) 360–375. [261] M. Guo, Y. Wang, B. Gao, B. He, Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management, ACS Nano. 15 (2021) 15316–15327. [262] Y. Yang, Multi-tier computing networks for intelligent IoT, Nat Electron. 2 (2019) 4–5. [263] W. Shi, Y. Guo, Y. Liu, When Flexible Organic Field-Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things, Adv Mater. 32 (2020). 256 [264] G. Li, Z. Ma, C. You, G. Huang, E. Song, R. Pan, H. Zhu, J. Xin, B. Xu, T. Lee, Z. An, Z. Di, Y. Mei, Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust, 2020. [265] M. Mayer, A.J. Baeumner, A Megatrend Challenging Analytical Chemistry: Biosensor and Chemosensor Concepts Ready for the Internet of Things, Chem Rev. 119 (2019) 7996–8027. [266] L. da Xu, W. He, S. Li, Internet of things in industries: A survey, IEEE Trans Industr Inform. 10 (2014) 2233–2243. [267] A. Whitmore, A. Agarwal, L. da Xu, The Internet of Things—A survey of topics and trends, Information Systems Frontiers. 17 (2015) 261–274. [268] G.-D. Sim, J.A. Krogstad, K.M. Reddy, K.Y. Xie, G.M. Valentino, T.P. Weihs, K.J. Hemker, Nanotwinned metal MEMS films with unprecedented strength and stability, 2017. [269] P.P. Ray, Internet of Robotic Things: Concept, Technologies, and Challenges, IEEE Access. 4 (2016) 9489–9500. 257 [270] H.L. Park, Y. Lee, N. Kim, D.G. Seo, G.T. Go, T.W. Lee, Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics, Adv Mater. 32 (2020). [271] J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Nanomaterials: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli, Sci Adv. 1 (2015). [272] Y. Asano, K. Okada, M. Inaba, Design principles of a human mimetic humanoid: Humanoid platform to study human intelligence and internal body system, 2017. [273] Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu, M. Foshey, B. Li, T. Palacios, A. Torralba, W. Matusik, Learning human–environment interactions using conformal tactile textiles, Nat Electron. 4 (2021) 193–201. [274] B. Ciui, A. Martin, R.K. Mishra, T. Nakagawa, T.J. Dawkins, M. Lyu, C. Cristea, R. Sandulescu, J. Wang, Chemical Sensing at the Robot Fingertips: Toward Automated Taste Discrimination in Food Samples, ACS Sens. 3 (2018) 2375–2384. 258 [275] J. Kim, A.S. Campbell, B.E.F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring, Nat Biotechnol. 37 (2019) 389–406. [276] A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable Chemical Sensors: Present Challenges and Future Prospects, ACS Sens. 1 (2016) 464–482.. [277] Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, W. Gao, Wireless battery-free wearable sweat sensor powered by human motion, 2020. [278] Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong, W. Cheng, Disruptive, Soft, Wearable Sensors, Adv Mater. 32 (2020). [279] M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Power generation for wearable systems, Energy Environ Sci. 14 (2021) 2114–2157. [280] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation, Energy Environ Sci. 8 (2015) 887–896. [281] P. Jiang, L. Zhang, H. Guo, C. Chen, C. Wu, S. Zhang, Z.L. Wang, Signal Output of Triboelectric Nanogenerator at Oil–Water–Solid Multiphase 259 Interfaces and its Application for Dual-Signal Chemical Sensing, Adv Mater. 31 (2019). [282] Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z.L. Wang, Self-Powered Triboelectric Nanosensor with Poly(tetrafluoroethylene) Nanoparticle Arrays for Dopamine Detection, ACS Nano. 9 (2015) 8376–8383. [283] H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C. Ping Wong, Y. Bando, Z.L. Wang, Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol, Nano Energy. 2 (2013) 693–701. [284] Y. Su, M. Yao, G. Xie, H. Pan, H. Yuan, M. Yang, H. Tai, X. Du, Y. Jiang, Improving sensitivity of self-powered room temperature NO2 sensor by triboelectric-photoelectric coupling effect, Appl Phys Lett. 115 (2019). [285] Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process, Adv Mater. 26 (2014) 4690–4696. [286] X. Zhang, Y. Zheng, D. Wang, F. Zhou, Solid-liquid triboelectrification in smart U-tube for multifunctional sensors, Nano Energy. 40 (2017) 95–106. 260 [287] S. Chatterjee, S.R. Burman, I. Khan, S. Saha, D. Choi, S. Lee, Z.H. Lin, Recent advancements in solid-liquid triboelectric nanogenerators for energy harvesting and self-powered applications, Nanoscale. 12 (2020) 17663–17697. [288] Z.H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water-solid surface contact electrification and its use for harvesting liquid-wave energy, Angewandte Chemie - International Edition. 52 (2013) 12545–12549. [289] S. Yoon, E.W. Miller, Q. He, P.H. Do, C.J. Chang, A bright and specific fluorescent sensor for mercury in water, cells, and tissue, Angewandte Chemie - International Edition. 46 (2007) 6658–6661. [290] D. Dai, J. Yang, Y. Wang, Y.W. Yang, Recent Progress in Functional Materials for Selective Detection and Removal of Mercury (II) Ions, Adv Funct Mater. 31 (2021). [291] L. Zhang, H. Chang, A. Hirata, H. Wu, Q.K. Xue, M. Chen, Nanoporous gold based optical sensor for sub-ppt detection of mercury ions, ACS Nano. 7 (2013) 4595–4600. 261 [292] J. Du, B. Zhu, X. Chen, Urine for plasmonic nanoparticle-based colorimetric detection of mercury ion, Small. 9 (2013) 4104–4111. [293] Y. Zhao, Z. Zhong, Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy, J Am Chem Soc. 128 (2006) 9988–9989. [294] Y.H. Tsao, R.A. Husain, Y.J. Lin, I. Khan, S.W. Chen, Z.H. Lin, A self-powered mercury ion nanosensor based on the thermoelectric effect and chemical transformation mechanism, Nano Energy. 62 (2019) 268–274. [295] M. Hu, H. Tian, J. He, Unprecedented Selectivity and Rapid Uptake of CuS Nanostructures toward Hg(II) Ions, ACS Appl Mater Interfaces. (2019). [296] J.W. Lee, H.J. Cho, J. Chun, K.N. Kim, S. Kim, C.W. Ahn, I.W. Kim, J.-Y. Kim, S.-W. Kim, C. Yang, † Jeong, M. Baik, Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement, n.d. [297] J. Chun, J.W. Kim, W.S. Jung, C.Y. Kang, S.W. Kim, Z.L. Wang, J.M. Baik, Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments, Energy Environ Sci. 8 (2015) 3006–3012. 262 [298] D. Choi, D.W. Kim, D. Yoo, K.J. Cha, M. La, D.S. Kim, Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf, Nano Energy. 36 (2017) 250–259. [299] T.A.L. Burgo, F. Galembeck, G.H. Pollack, Where is water in the triboelectric series?, J Electrostat. 80 (2016) 30–33. [300] H. Cho, J. Chung, G. Shin, J.Y. Sim, D.S. Kim, S. Lee, W. Hwang, Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures, Nano Energy. 56 (2019) 56–64.
|