|
[1] R.W.Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Proc. Phys. Soc. London. 18 (1901) 269–275. https://doi.org/10.1088/1478-7814/18/1/325. [2] U.Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), J. Opt. Soc. Am. 31 (1941) 213. https://doi.org/10.1364/josa.31.000213. [3] R. H. RITCHIE, Plasma losses by fast electrons in thin films, Phys. Rev. 106 (1956) 8. https://journals.aps.org/pr/pdf/10.1103/PhysRev.106.874%0Ahttps://link.aps.org/doi/10.1103/PhysRev.106.874%0Apapers3://publication/doi/10.1103/PhysRev.106.874. [4] A.Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift Für Phys. 216 (1968) 398–410. https://doi.org/10.1007/BF01391532. [5] E.Kretschmann, H.Raether, Radiative decay of non radiative surface plasmons excited by light, Zeitschrift Für Naturforsch. A. 23 (1968) 2135–2136. https://doi.org/10.1515/zna-1968-1247. [6] Z.M.Abd El-Fattah, V.Mkhitaryan, J.Brede, L.Fernández, C.Li, Q.Guo, A.Ghosh, A.R.Echarri, D.Naveh, F.Xia, J.E.Ortega, F.J.García De Abajo, Plasmonics in atomically thin crystalline silver films, ACS Nano. 13 (2019) 7771–7779. https://doi.org/10.1021/acsnano.9b01651. [7] F.H.L.Koppens, D.E.Chang, F.J.García De Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11 (2011) 3370–3377. https://doi.org/10.1021/nl201771h. [8] M.Liu, X.Yin, E.Ulin-Avila, B.Geng, T.Zentgraf, L.Ju, F.Wang, X.Zhang, A graphene-based broadband optical modulator, Nature. 474 (2011) 64–67. https://doi.org/10.1038/nature10067. [9] A.Manjavacas, F.J.García de Abajo, Tunable plasmons in atomically thin gold nanodisks, Nat. Commun. 5 (2014) 3548. https://doi.org/10.1038/ncomms4548. [10] R.Yu, V.Pruneri, F.J.Garciá De Abajo, Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas, Sci. Rep. 6 (2016) 1–7. https://doi.org/10.1038/srep32144. [11] R.A.Maniyara, D.Rodrigo, R.Yu, J.Canet-Ferrer, D.S.Ghosh, R.Yongsunthon, D.E.Baker, A.Rezikyan, F.J.García de Abajo, V.Pruneri, Tunable plasmons in ultrathin metal films, Nat. Photonics. 13 (2019) 328–333. https://doi.org/10.1038/s41566-019-0366-x. [12] G.Kästle, H.G.Boyen, B.Koslowski, A.Plettl, F.Weigl, P.Ziemann, Growth of thin, flat, epitaxial (111) oriented gold films on c-cut sapphire, Surf. Sci. 498 (2002) 168–174. https://doi.org/10.1016/S0039-6028(01)01685-5. [13] C.Jeppesen, N.A.Mortensen, A.Kristensen, The effect of Ti and ITO adhesion layers on gold split-ring resonators, Appl. Phys. Lett. 97 (2010) 2012–2015. https://doi.org/10.1063/1.3532096. [14] B.Lahiri, R.Dylewicz, R.M.DeLa Rue, N.P.Johnson, Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs), Opt. Express. 18 (2010) 11202. https://doi.org/10.1364/oe.18.011202. [15] P.R.West, S.Ishii, G.V.Naik, N.K.Emani, V.M.Shalaev, A.Boltasseva, Searching for better plasmonic materials, Laser Photonics Rev. 4 (2010) 795–808. https://doi.org/10.1002/lpor.200900055. [16] D.Gu, C.Zhang, Y.-K.Wu, L.J.Guo, Ultra-smooth and thermally-stable ag-based thin films with sub-nanometer roughness by Al doping, ACS Nano. 8 (2014) 10343–10351. [17] C.W.Cheng, Y.J.Liao, C.Y.Liu, B.H.Wu, S.S.Raja, C.Y.Wang, X.Li, C.K.Shih, L.J.Chen, S.Gwo, Epitaxial aluminum-on-sapphire films as a plasmonic material platform for ultraviolet and full visible spectral regions, ACS Photonics. 5 (2018) 2624–2630. https://doi.org/10.1021/acsphotonics.7b01366. [18] Seok Ho Song, Dispersion relation of SPPs on thin metal films,. http://optics.hanyang.ac.kr/~shsong/11-Dispersion relation of SPPs on thin metal films.pdf. [19] U.Guler, A.Boltasseva, V.M.Shalaev, Refractory plasmonics, Science. 344 (2014) 263–264. https://doi.org/10.1126/science.1252722. [20] A.Boltasseva, H.A.Atwater, Low-loss plasmonic metamaterials, Science. 331 (2011) 290–291. https://doi.org/10.1126/science.1198258. [21] A.Boltasseva, V.M.Shalaev, All that glitters need not be gold, Science. 347 (2015) 1308–1310. https://doi.org/10.1126/science.aaa8282. [22] G.Y.Yang, H.Peng, H.B.Guo, S.K.Gong, Deposition of TiN/TiAlN multilayers by plasma-activated EB-PVD: tailored microstructure by jumping beam technology, Rare Met. 36 (2017) 651–658. https://doi.org/10.1007/s12598-016-0824-2. [23] G.C.Lain, F.Cemin, C.M.Menezes, C.Aguzzoli, I.J.R.Baumvol, S.S.Tomiello, C.A.Figueroa, Bias influence on titanium interlayer for titanium nitride films, Surf. Eng. 32 (2016) 279–283. https://doi.org/10.1179/1743294415Y.0000000097. [24] A.Mumtaz, W.H.Class, Color of titanium nitride prepared by reactive dc magnetron sputtering, J. Vac. Sci. Technol. 20 (1981) 345–348. https://doi.org/10.1116/1.571461. [25] D.Steinmüller-Nethl, R.Kovacs, E.Gornik, P.Rödhammer, Excitation of surface plasmons on titanium nitride films: Determination of the dielectric function, Thin Solid Films. 237 (1994) 277–281. https://doi.org/10.1016/0040-6090(94)90273-9. [26] A.P.Hibbins, J.R.Sambles, C.R.Lawrence, Surface plasmon-polariton study of the optical dielectric function of titanium nitride, J. Mod. Opt. 45 (1998) 2051–2062. https://doi.org/10.1080/09500349808231742. [27] G.V.Naik, J.L.Schroeder, X.Ni, A.V.Kildishev, T.D.Sands, A.Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express. 2 (2012) 478. https://doi.org/10.1364/OME.2.000478. [28] H.Reddy, U.Guler, Z.Kudyshev, A.V.Kildishev, V.M.Shalaev, A.Boltasseva, Temperature-dependent optical properties of plasmonic titanium nitride thin films, ACS Photonics. 4 (2017) 1413–1420. https://doi.org/10.1021/acsphotonics.7b00127. [29] D.Shah, H.Reddy, N.Kinsey, V.M.Shalaev, A.Boltasseva, Optical properties of plasmonic ultrathin TiN films, Adv. Opt. Mater. 5 (2017) 1–5. https://doi.org/10.1002/adom.201700065. [30] C.M.Zgrabik, E.L.Hu, Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications, Opt. Mater. Express. 5 (2015) 2786. https://doi.org/10.1364/ome.5.002786. [31] D.Steinmüller-Nethl, R.Kovacs, E.Gornik, P.Rödhammer, Excitation of surface plasmons on titanium nitride films: determination of the dielectric function, Thin Solid Films. 237 (1994) 277–281. https://doi.org/10.1016/0040-6090(94)90273-9. [32] G.V.Naik, J.L.Schroeder, X.Ni, A.V.Kildishev, T.D.Sands, A.Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths, Opt. Mater. Express. 2 (2012) 478. https://doi.org/10.1364/OME.2.000478. [33] D.Shah, H.Reddy, N.Kinsey, V.M.Shalaev, A.Boltasseva, Optical Properties of Plasmonic Ultrathin TiN Films, Adv. Opt. Mater. 5 (2017) 1–5. https://doi.org/10.1002/adom.201700065. [34] R.P.Sugavaneshwar, S.Ishii, T.D.Dao, A.Ohi, T.Nabatame, T.Nagao, Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications, ACS Photonics. 5 (2018) 814–819. https://doi.org/10.1021/acsphotonics.7b00942. [35] A.Moatti, J.Narayan, High-quality TiN/AlN thin film heterostructures on c-sapphire, Acta Mater. 145 (2018) 134–141. https://doi.org/10.1016/j.actamat.2017.11.044. [36] D.Fomra, R.Secondo, K.Ding, V.Avrutin, N.Izyumskaya, Ü.Özgür, N.Kinsey, Plasmonic titanium nitride via atomic layer deposition: A low-temperature route, J. Appl. Phys. 127 (2020). https://doi.org/10.1063/1.5130889. [37] K.Hansen, M.Cardona, A.Dutta, C.Yang, Plasma enhanced atomic layer deposition of plasmonic TiN ultrathin films using TDMATi and NH3, Materials (Basel). 13 (2020). https://doi.org/10.3390/ma13051058. [38] H.A.Smith, S.Elhamri, K.G.Eyink, L.Grazulis, M.J.Hill, T.C.Back, A.M.Urbas, B.M.Howe, A.N.Reed, Epitaxial titanium nitride on sapphire: Effects of substrate temperature on microstructure and optical properties, J. Vac. Sci. Technol. A. 36 (2018) 03E107. https://doi.org/10.1116/1.5022068. [39] W.P.Guo, R.Mishra, C.W.Cheng, B.H.Wu, L.J.Chen, M.T.Lin, S.Gwo, Titanium nitride epitaxial films as a plasmonic material platform: Alternative to gold, ACS Photonics. 6 (2019) 1848–1854. https://doi.org/10.1021/acsphotonics.9b00617. [40] K.C.Maurya, V.M.Shalaev, A.Boltasseva, B.Saha, Reduced optical losses in refractory plasmonic titanium nitride thin films deposited with molecular beam epitaxy, Opt. Mater. Express. 10 (2020) 2679. https://doi.org/10.1364/ome.405259. [41] R.Mishra, C.-W.Chang, A.Dubey, Z.-Y.Chiao, T.-J.Yen, H.W.Howard Lee, Y.-J.Lu, S.Gwo, Optimized titanium nitride epitaxial film for refractory plasmonics and solar energy harvesting, J. Phys. Chem. C. 2021 (2021). https://doi.org/10.1021/acs.jpcc.1c03053. [42] R.Mishra, C.-W.Chang, A.Dubey, Z.-Y.Chiao, T.-J.Yen, H.W.Howard Lee, Y.-J.Lu, S.Gwo, Optimized Titanium Nitride Epitaxial Film for Refractory Plasmonics and Solar Energy Harvesting, J. Phys. Chem. C. 2021 (2021). https://doi.org/10.1021/acs.jpcc.1c03053. [43] H.A.Wriedt, J.L.Murray, The N-Ti (nitrogen-titanium) system, Bull. Alloy Phase Diagrams. 8 (1987) 378–388. https://doi.org/10.1007/BF02869274. [44] V.Abalakin, Section 14: Geophysics, astronomy, and acoustics, in: W.M.Haynes, D.R.Lide, T.J.Bruno (Eds.), CRC Handb. Chem. Phys., 97th ed., Taylor & Francis Group, New York, 2017: p. 17. [45] J.F.Shackelford, Appendix 1: Physical and chemical data for the elements, in: Introd. to Mater. Sci. Eng., Pearson Higher Education, Upper Saddle River, New Jersey, 2015: pp. A1–A3. https://doi.org/10.1017/CBO9781107415324.004. [46] H.O.Pierson, Carbides of Group VI, in: Handb. Refract. Carbides Nitrides, Elsevier, Westwood, New Jersey, 1996: pp. 100–117. https://doi.org/10.1016/B978-081551392-6.50007-6. [47] G.VSamsonov, Chapter VI. Mechanical properties of the elements, in: G.VSamsonov (Ed.), Handb. Physicochem. Prop. Elem., 1 st, Springer US, New York, 1968: pp. 438–443. https://doi.org/10.1007/978-1-4684-6066-7. [48] E.J.Zeman, G.C.Schatz, An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd, J. Phys. Chem. 91 (1987) 634–643. https://doi.org/10.1021/j100287a028. [49] H.Ehrenreich, H.R.Philipp, Optical properties of Ag and Cu, Phys. Rev. 128 (1962) 1622–1629. [50] D.Gerard, S.K.Gray, Aluminium plasmonics, J. Phys. D. Appl. Phys. 48 (2015) 184001. https://doi.org/10.1088/0022-3727/48/18/184001. [51] P.Patsalas, N.Kalfagiannis, S.Kassavetis, Optical properties and plasmonic performance of titanium nitride, Materials (Basel). 8 (2015) 3128–3154. https://doi.org/10.3390/ma8063128. [52] M.Kumar, N.Umezawa, S.Ishii, T.Nagao, Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach, ACS Photonics. 3 (2016) 43–50. https://doi.org/10.1021/acsphotonics.5b00409. [53] M.A.Herman, Molecular beam epitaxy: Fundamentals and current status, 1st Ed., Heidelberg, Germany, 1989. https://doi.org/10.1524/zkri.1990.190.3-4.315. [54] F.LISCIO, Self-assembled magnetic nanostructures prepared by molecular beam epitaxy on low energy surfaces, University of Roma Tre, 2009. [55] 吳靖宙,張憲彰,掃描式探針顯微鏡於生物樣本的量測與應用,科儀新知. 23 (2002) 88–99. https://doi.org/10.1201/9781420075250. [56] N.A.Saveskul, N.A.Titova, E.M.Baeva, A.V.Semenov, A.V.Lubenchenko, S.Saha, H.Reddy, S.I.Bogdanov, E.E.Marinero, V.M.Shalaev, A.Boltasseva, V.S.Khrapai, A.I.Kardakova, G.N.Goltsman, Superconductivity behavior in epitaxial TiN films points to surface magnetic disorder, Phys. Rev. Appl. 12 (2019) 1. https://doi.org/10.1103/PhysRevApplied.12.054001. [57] J.S.Chawla, X.Y.Zhang, D.Gall, Effective electron mean free path in TiN(001), J. Appl. Phys. 113 (2013) 1–6. https://doi.org/10.1063/1.4790136. [58] D.Shah, A.Catellani, H.Reddy, N.Kinsey, V.Shalaev, A.Boltasseva, A.Calzolari, Controlling the plasmonic properties of ultrathin TiN films at the atomic level, ACS Photonics. 5 (2018) 2816–2824. https://doi.org/10.1021/acsphotonics.7b01553.
|