帳號:guest(3.147.237.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳昌潤
作者(外文):Wu, Chang-Run
論文名稱(中文):電雙層調控場效電晶體蛋白質感測器的機制與其保存方法研究
論文名稱(外文):Investigation of Mechanism and Preservation Method of Electric Double Layer Modulated FET Protein Sensors
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):李昇憲
林宗宏
陳榮治
口試委員(外文):Li, Sheng-Shian
Lin, Zong-Hong
Chen, Jung-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:107035519
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:53
中文關鍵詞:蛋白質阻抗分析電晶體生醫感測器電雙層
外文關鍵詞:ProteinImpedance analysisFET biosensorElectrical double layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:257
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  心血管疾病(CVD)為世界上致死率最高的疾病,若能早期發現並投以治療
能夠降低心血管疾病病患的死亡率。現今的心血管疾病診斷大多仰賴醫療院所
的大型設備進行血液中生物標記物檢測,這種檢測方法通常耗時且步驟繁複。
過去幾年,本研究團隊開發出一種能在5 分鐘內檢測血液中蛋白質的生醫感測
器。這種電雙層閘極門控場效電晶體生醫感測器具有高靈敏度、寬動態檢測範
圍並且能在生理鹽濃度下進行蛋白質檢測。過去,我們致力於研發感測器,現
在我們著力於研究其感測機制以便我們優化、提升感測器之性能。
  在此研究中,我們首先以我們開發的感測器在 1X PBS 緩衝液中感測
CRP,並改變閘極偏壓來研究蛋白質感測器的表現和機制,並加入阻抗分析來
證實我們所提出的感測機制。感測器在不同閘極偏壓下的汲極電流將被汲取並
轉換為溶液中壓降加以分析,並藉由改變測試樣品離子強度來觀察感測器靈敏
度的變化以證實感測器的電雙層理論。
  為達到居家照護的目標,感測晶片的保存技術的開發是必要的。我們針對
蛋白質感測晶片的保存進行研究,尋找適合的試劑配方來乾燥抗體功能化的感
測晶片以達到長期保存的目標。
Cardiovascular disease (CVD) is one of the deadliest diseases in the world. Early detection and treatment can reduce mortality in patients with cardiovascular disease. Currently, the technology of CVD biomarker detection relies on large equipment and it is expensive, inconvenient and time consuming. A technology for protein biomarker detection in the whole blood within 5 minutes has been developed. This electric double layer (EDL) field-effect transistor (FET) gated biosensor has high sensitivity, wide dynamic detection range and can carry out protein detection at physiological salt concentration. In this study, we focus on the mechanisms of this technology. The gate voltage bias (Vg) and the ionic strength of testing sample were changed to study the effect on sensor performance. And the AC impedance analysis was introduced to demonstrate the sensing mechanism we proposed. To realize the goal of point-of-care, the development of chip storage technology is necessary. The drying process of the antibody-immobilized sensor chip for long term storage was developed by looking for appropriate protectant formulations.
Chapter 1. Introduction 5
Chapter 2. Literature Review 8
2.1 FET based biosensor 8
2.2 Electrical double layer (EDL) and charge screening effect 10
2.3 Electrical double layer (EDL) FET biosensor 12
2.4 Sugar as protectant for antibody drying process 14
Chapter 3. Experimental 16
3.1 Fabrication of extended gate sensor chip 16
3.2 Surface functionalization for extended gate sensor chip 17
3.2.1 Conjugating by primary amine group 18
3.2.2 Conjugating by carboxyl group 19
3.3 Measurement system 20
3.3.1 Portable circuit device 20
3.3.2 Impedance analysis 22
Chapter 4. Results and Discussion 23
4.1 Characteristic of MOSFET in circuit device 23
4.2 Protein detection at different gate voltage 25
4.2.1 Detection with EDL FET gated biosensor 25
4.2.2 Impedance analysis for protein detection 29
4.3 Protein detection in different ionic strength solutions 32
4.4 Mechanism of EDL FET gated biosensors 41
4.5 Drying process of antibody-functionalized sensor chip 44
Chapter 5. Summary and Future Work 48
Chapter 6. Reference 50
[1] J. A. De Lemos D. A. Morrow, J. H. Bentley, T. Omland, M. S. Sabatine, C. H. McCabe, C. Hall, C. P. Cannon and E. Braunwald, "The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes," New England Journal of Medicine, vol. 345, no. 14, pp. 1014-1021, 2001.
[2] T. Keller, T. Zeller, D. Peetz, S. Tzikas, A. Roth, E. Czyz, C. Bickel, S. Baldus, A. Warnholtz, M. Fröhlich, C. R. Sinning and M. S. Eleftheriadis, "Sensitive troponin I assay in early diagnosis of acute myocardial infarction," New England Journal of Medicine, vol. 361, no. 9, pp. 868-877, 2009.
[3] V. M. Miller, M. M. Redfield, and J. P. McConnell, "Use of BNP and CRP as biomarkers in assessing cardiovascular disease: diagnosis versus risk," Current vascular pharmacology, vol. 5, no. 1, pp. 15-25, 2007.
[4] A. S. Shan, A. Anand, Y. Sandoval, K. K. Lee, S. W. Smith, P. D. Adamson, A. R. Chapman, T. Langdon, D. Sandeman, A. Vaswani, F. E. Strachan, A. Ferry, A. G. Stirzaker, A. Reid, A. J. Gray, P. O. Collinson, D. A. McAllister, F. S. Apple, D. E. Newby and N. L. Mills, "High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study," The Lancet, vol. 386, no. 10012, pp. 2481-2488, 2015.
[5] C. H. Chu, I. Sarangadharan, A. Regmi, Y. W. Chen, C. P. Hsu, W. H. Chang, G. Y. Lee, J. I. Chyi, C. C. Chen, S. C. Shiesh, G. B. Lee and Y. L. Wang, "Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum," Scientific reports, vol. 7, no. 1, p. 5256, 2017.
[6] I. Sarangadharan, S. L. Wang, R. Sukesan, P. C. Chen, T. Y. Dai, A. K. Pulikkathodi, C. P. Hsu, H. H. Chiang, Y. M. Liu, and Y. L. Wang, "Single drop whole blood diagnostics: portable biomedical sensor for cardiac troponin I detection," Analytical chemistry, vol. 90, no. 4, pp. 2867-2874, 2018.
[7] I. Sarangadharan, S. L. Wang, T. Y. Tai, A. K. Pulikkathodi, C. P. Hsu, H. H. Chiang, Y. M. Liu, Y. L. Wang, "Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection," Biosensors and Bioelectronics, vol. 107, pp. 259-265, 2018.
[8] Y. T. Chen, C. Y. Hseih, I. Sarangadharan, R. Sukesan1, G. Y. Lee, J. I. Chyi and Y. L. Wang, "Beyond the Limit of Ideal Nernst Sensitivity: Ultra-High Sensitivity of Heavy Metal Ion Detection with Ion-Selective High Electron Mobility Transistors," ECS Journal of Solid State Science and Technology, vol. 7, no. 9, pp. Q176-Q183, 2018.
[9] Y. W. Chen, T. Y. Tai, C. P. Hsu, I. Sarangadharan, A. K. Pulikkathodi, H. L. Wang, R. Sukesan, G. Y. Lee, J. I. Chyi, C. C. Chen, G. B. Lee and Y. L. Wang, "Direct detection of DNA using electrical double layer gated high electron mobility transistor in high ionic strength solution with high sensitivity and specificity," Sensors and Actuators B: Chemical, vol. 271, pp. 110-117, 2018.
[10] H. L. Cheng, C. Y. Fu, W. C. Kuo, Y. W. Chen, Y. S. Chen, Y. M. Lee, K. H. Li, C. C. Chen, H. P. Ma, P. C. Huang, Y. L. Wang and G. B. Lee, "Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system," Lab on a Chip, vol. 18, no. 19, pp. 2917-2925, 2018.
[11] A. Pulikkathodi, I. Sarangadharan, C. Y. Lo, P. H. Chen, C. C. Chen, and Y. L. Wang, "Miniaturized Biomedical Sensors for Enumeration of Extracellular Vesicles," International journal of molecular sciences, vol. 19, no. 8, p. 2213, 2018.
[12] X. Luo and J. J. Davis, "Electrical biosensors and the label free detection of protein disease biomarkers," Chemical Society Reviews, vol. 42, no. 13, pp. 5944-5962, 2013.
[13] W. Zhou, X. Gao, D. Liu, and X. Chen, "Gold nanoparticles for in vitro diagnostics," Chemical Reviews, vol. 115, no. 19, pp. 10575-10636, 2015.
[14] S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang and J. Chen, "Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing," Chemical Society Reviews, vol. 46, no. 22, pp. 6872-6904, 2017.
[15] A. Nehra and K. P. Singh, "Current trends in nanomaterial embedded field effect transistor-based biosensor," Biosensors and Bioelectronics, vol. 74, pp. 731-743, 2015.
[16] M. Daneshpour, K. Omidfar, and H. Ghanbarian, "A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a," Beilstein journal of nanotechnology, vol. 7, no. 1, pp. 2023-2036, 2016.
[17] F. Khorsand, S. Riahi, S. Eynollahi Fard, S. Kashanian, A. Naeemy, B. Larijani, K. Omidfard, "Development of 3-hydroxybutyrate dehydrogenase enzyme biosensor based on carbon nanotube-modified screen-printed electrode," IET nanobiotechnology, vol. 7, no. 1, pp. 1-6, 2013.
[18] K. Omidfar, S. Kia, and B. Larijani, "Development of a colloidal gold-based immunochromatographic test strip for screening of microalbuminuria," Hybridoma, vol. 30, no. 2, pp. 117-124, 2011.
[19] D. M. Watstein and M. P. Styczynski, "Development of a pigment-based whole-cell zinc biosensor for human serum," ACS synthetic biology, vol. 7, no. 1, pp. 267-275, 2017.
[20] M. O. Noor and U. J. Krull, "Silicon nanowires as field-effect transducers for biosensor development: A review," Analytica chimica acta, vol. 825, pp. 1-25, 2014.
[21] K. Islam, A. Suhail, and G. Pan, "A Label-Free and Ultrasensitive Immunosensor for Detection of Human Chorionic Gonadotrophin Based on Graphene FETs," Biosensors, vol. 7, no. 3, p. 27, 2017.
[22] X. Jin, H. Zhang, Y. T. Li, M. M. Xiao, Z. L. Zhang, D. W. Pang, G. Wong, Z. Y. Zhang and G. J. Zhang, "A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus," Microchimica Acta, vol. 186, no. 4, p. 223, 2019.
[23] H. Park, G. Han, S. W. Lee, H. Lee, S. H. Jeong, M. Naqi, A. AlMutairi, Y. J. Kim, J. Lee, W. J. Kim, S. Kim, Y. Yoon and G. Yoo, "Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics," ACS applied materials & interfaces, vol. 9, no. 50, pp. 43490-43497, 2017.
[24] M. J. Schöning and A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)," Analyst, vol. 127, no. 9, pp. 1137-1151, 2002.
[25] Z. Stojek, "The electrical double layer and its structure," in Electroanalytical methods: Springer, 2010, pp. 3-9.
[26] N. Nakatsuka, K. A. Yang, J. M. Abendroth, K. M. Cheung, Xiaobin Xu, H. Yang, C. Zhao, B. Zhu, Y. S. Rim, Y. Yang, P. S. Weiss, M. N. Stojanović and A. M. Andrews, "Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing," Science, vol. 362, no. 6412, pp. 319-324, 2018.
[27] M. S. Chae, J. H. Park, H. W. Son, K. S. Hwang, and T. G. Kim, "IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform," Sensors and Actuators B: Chemical, vol. 262, pp. 876-883, 2018.
[28] S. Cheng, K. Hotani, S. Hideshima, S. Kuroiwa, T. Nakanishi, M. Hashimoto, Y. Mori and Tetsuya Osaka, "Field effect transistor biosensor using antigen binding fragment for detecting tumor marker in human serum," Materials, vol. 7, no. 4, pp. 2490-2500, 2014.
[29] G. S. Kulkarni and Z. Zhong, "Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor," Nano letters, vol. 12, no. 2, pp. 719-723, 2012.
[30] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma and F. P. Widdershoven, "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays," Nature nanotechnology, vol. 10, no. 9, pp. 791-795, 2015.
[31] M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud and L. Torsi, "Capacitance-modulated transistor detects odorant binding protein chiral interactions," Nature communications, vol. 6, p. 6010, 2015.
[32] D. C. Brydges and P. A. Martin, "Coulomb systems at low density: A review," Journal of Statistical Physics, vol. 96, no. 5-6, pp. 1163-1330, 1999.
[33] K. B. Oldham, "A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface," Journal of Electroanalytical Chemistry, vol. 613, no. 2, pp. 131-138, 2008.
[34] R. D. Munje, S. Muthukumar, A. P. Selvam, and S. Prasad, "Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics," Scientific reports, vol. 5, p. 14586, 2015.
[35] H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, "High‐density carrier accumulation in ZnO field‐effect transistors gated by electric double layers of ionic liquids," Advanced Functional Materials, vol. 19, no. 7, pp. 1046-1053, 2009.
[36] A. Panneer Selvam and S. Prasad, "Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide," Future cardiology, vol. 9, no. 1, pp. 137-147, 2013.
[37] N. Liu, R. Chen, and Q. Wan, "Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications," Sensors, vol. 19, no. 15, p. 3425, 2019.
[38] A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhäusser, and M. J. Schöning, "Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices," Sensors and Actuators B: Chemical, vol. 111, pp. 470-480, 2005.
[39] N. Grasmeijer, "Improving protein stabilization by spray drying," Ridderprint, Groningen, 2015.
[40] M. J. Maltesen and M. Van De Weert, "Drying methods for protein pharmaceuticals," Drug Discovery Today: Technologies, vol. 5, no. 2-3, pp. e81-e88, 2008.
[41] H. Schellekens, "Immunogenicity of therapeutic proteins: clinical implications and future prospects," Clinical therapeutics, vol. 24, no. 11, pp. 1720-1740, 2002.
[42] L. L. Chang and M. J. Pikal, "Mechanisms of protein stabilization in the solid state," Journal of pharmaceutical sciences, vol. 98, no. 9, pp. 2886-2908, 2009.
[43] M. C. Manning, D. K. Chou, B. M. Murphy, R. W. Payne, and D. S. Katayama, "Stability of protein pharmaceuticals: an update," Pharmaceutical research, vol. 27, no. 4, pp. 544-575, 2010.
[44] J. F. Carpenter and J. H. Crowe, "An infrared spectroscopic study of the interactions of carbohydrates with dried proteins," Biochemistry, vol. 28, no. 9, pp. 3916-3922, 1989.
[45] L. Slade, H. Levine, and D. S. Reid, "Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety," Critical Reviews in Food Science & Nutrition, vol. 30, no. 2-3, pp. 115-360, 1991.
[46] M. T. Cicerone and C. L. Soles, "Fast dynamics and stabilization of proteins: binary glasses of trehalose and glycerol," Biophysical journal, vol. 86, no. 6, pp. 3836-3845, 2004.
[47] M. A. Mensink, P. V. Bockstal, S. Pieters, L. D. Meyer, H. W. Frijlink, K. V. Maarschalk , W. L. Hinrichs, T. D. Beer, "In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability," International journal of pharmaceutics, vol. 496, no. 2, pp. 792-800, 2015.
[48] S. Yoshioka, T. Miyazaki, Y. Aso, and T. Kawanishi, "Significance of local mobility in aggregation of β-galactosidase lyophilized with trehalose, sucrose or stachyose," Pharmaceutical research, vol. 24, no. 9, pp. 1660-1667, 2007.
[49] M. A. Mensink, H. W. Frijlink, K. van der Voort Maarschalk, and W. L. Hinrichs, "How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions," European Journal of Pharmaceutics and Biopharmaceutics, vol. 114, pp. 288-295, 2017.
[50] W. Tonnis, M. Mensink, A. De Jager, K. Van Der Voort Maarschalk, H. Frijlink, and W. Hinrichs, "Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins," Molecular pharmaceutics, vol. 12, no. 3, pp. 684-694, 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *