|
1. P.P. Rosen, S. Groshen, P.E. Saigo, D.W. Kinne, and S. Hellman, "Pathological prognostic factors in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma: a study of 644 patients with median follow-up of 18 years," J Clin Oncol, 7(9), pp. 1239-51, 1989. 2. J.W. Hadden, "The immunology and immunotherapy of breast cancer: an update," International Journal of Immunopharmacology, 21(2), pp. 79-101, 1999. 3. K. Holland, I. Sechopoulos, R.M. Mann, G.J. den Heeten, C.H. van Gils, and N. Karssemeijer, "Influence of breast compression pressure on the performance of population-based mammography screening," Breast Cancer Research, 19, pp. 126-133, 2017. 4. L. Harris, H. Fritsche, R. Mennel, L. Norton, P. Ravdin, S. Taube, M.R. Somerfield, D.F. Hayes, and R.C. Bast, "American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer," Journal of Clinical Oncology, 25(33), pp. 5287-5312, 2007. 5. M.J. Duffy, A. van Dalen, C. Haglund, L. Hansson, R. Klapdor, R. Lamerz, O. Nilsson, C. Sturgeon, and O. Topolcan, "Clinical utility of biochemical markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines," European Journal of Cancer, 39(6), pp. 718-727, 2003. 6. F. Asad-Ur-Rahman and M.W. Saif, "Elevated level of serum Carcinoembryonic Antigen (CEA) and search for a malignancy: A Case Report," Cureus, 8(6), pp. 648-656, 2016. 7. S. Rontogianni, E. Synadaki, B. Li, M.C. Liefaard, E.H. Lips, J. Wesseling, W. Wu, and M. Altelaar, "Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping," Communications Biology, 2, pp. 325-338, 2019. 8. H. Wang, R. Peng, J.J. Wang, Z.L. Qin, and L.X. Xue, "Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage," Clinical Epigenetics, 10, pp. 10-18, 2018. 9. S. Shantikumar, A. Caporali, and C. Emanueli, "Role of microRNAs in diabetes and its cardiovascular complications," Cardiovascular Research, 93(4), pp. 583-593, 2012. 10. B.M. Ryan, A.I. Robles, and C.C. Harris, "Genetic variation in microRNA networks: the implications for cancer research," Nature Reviews Cancer, 10(6), pp. 389-402, 2010. 11. H.M. Heneghan, N. Miller, R. Kelly, J. Newell, and M.J. Kerin, "Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease," Oncologist, 15(7), pp. 673-682, 2010. 12. M. Swellam, A. Ramadan, E.A. El-Hussieny, N.M. Bakr, N.M. Hassan, M.E. Sobeih, and L.R. EzzElArab, "Clinical significance of blood-based miRNAs as diagnostic and prognostic nucleic acid markers in breast cancer: Comparative to conventional tumor markers," Journal of Cellular Biochemistry, 120(8), pp. 12321-12330, 2019. 13. G. Cecene, S. Ak, G.G. Eskiler, E. Demirdogen, E. Erturk, S. Gokgoz, V. Polatkan, U. Egeli, B. Tunca, G. Tezcan, U. Topal, S. Tolunay, and I. Tasdelen, "Circulating miR-195 as a therapeutic biomarker in turkish breast cancer patients," Asian Pac J Cancer Prev, 17(9), pp. 4241-4246, 2016. 14. W.P. Yu, X. Liang, X.D. Li, Y. Zhang, Z.Q. Sun, Y. Liu, and J.X. Wang, "MicroRNA-195: a review of its role in cancers," Oncotargets and Therapy, 11, pp. 7109-7123, 2018. 15. J. Fluitman, "Microsystems technology: Objectives," Sensors and Actuators a-Physical, 56(1-2), pp. 151-166, 1996. 16. H.W. Qu, "CMOS MEMS fabrication technologies and devices," Micromachines, 7(1), pp. 14-35, 2016. 17. C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C. Paulus, M. Schienle, M. Augustyniak, and R. Thewes, "CMOS DNA sensor array with integrated a/d conversion based on label-free capacitance measurement," IEEE Journal of Solid-State Circuits, 41(12), pp. 2956-2964, 2006. 18. J.J. Sniegowski, "Chemical-mechanical polishing: Enhancing the manufacturability of MEMS, " Micromachining and Microfabrication Process Technology Ii, 2879, pp.104-115. 1996. 19. A.N. Kozitsina, T.S. Svalova, N.N. Malysheva, A.V. Okhokhonin, M.B. Vidrevich, and K.Z. Brainina, "Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis," Biosensors-Basel, 8(2), pp.34-69, 2018. 20. M.A. Morales and J.M. Halpern, "Guide to selecting a biorecognition element for biosensors," Bioconjugate Chemistry, 60(1), pp. 3231-3239, 2018. 21. S. Liebana and G.A. Drago, "Bioconjugation and stabilisation of biomolecules in biosensors," Essays in Biochemistry, 60(1), pp. 59-68, 2016. 22. P.P. Shah, L.E. Hutchinson, and S.S. Kakar, "Emerging role of microRNAs in diagnosis and treatment of various diseases including ovarian cancer," Journal of ovarian research, 2(1), pp. 11-20, 2009. 23. W. Shu, E.D. Laue, and A.A. Seshia, "Investigation of biotin-streptavidin binding interactions using microcantilever sensors," Biosens Bioelectron, 22(9-10), pp. 2003-2009, 2007. 24. N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, "Introduction to biosensors," Essays in Biochemistry, 60(1), pp. 1-8, 2016. 25. M.P. Byfield and R.A. Abuknesha, " Biochemical aspects of biosensors," Biosensors and Bioelectronics, 9(4-5), pp. 373-400, 1994. 26. A. Ahmed, J.V. Rushworth, N.A. Hirst, and P.A. Millner, "Biosensors for whole-cell bacterial detection," Clinical microbiology reviews, 27(3), pp. 631-646, 2014. 27. K.-I. Chen, B.-R. Li, and Y.-T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano today, 6(2), pp. 131-154, 2011. 28. H.L. Cheng, C.Y. Fu, W.C. Kuo, Y.W. Chen, Y.S. Chen, Y.M. Lee, K.H. Li, C.C. Chen, H.P. Ma, P.C. Huang, Y.L. Wang, and G.B. Lee, "Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system," Lab on a Chip, 18(19), pp.2917-2925, 2018. 29. N. Lu, A. Gao, P. Dai, S. Song, C. Fan, Y. Wang, and T. Li, "CMOS-Compatible silicon nanowire Field-Effect Transistors for ultrasensitive and label-free micrornas sensing," Small, 10(10), pp. 2022-2028, 2014. 30. S. Damiati, U.B. Kompella, S.A. Damiati, and R. Kodzius, " Microfluidic devices for drug delivery systems and drug screening," Genes, 9(2), pp. 103-127, 2018. 31. J.C. Liou, T.Y. Su, and Ieee, "Investigation of the DNA droplet CMOS/MEMS chip microfluidic channels geometry, " IEEE International Symposium on Next-Generation Electronics. pp. 208-209, 2018. 32. K.H. Lee, J.O. Lee, M.J. Sohn, B. Lee, S.H. Choi, S.K. Kim, J.B. Yoon, and G.H. Cho, "One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor," Biosensors and Bioelectronics, 26(4), pp. 1373-1379, 2010. 33. Y.H. Kuo, Y.S. Chen, P.C. Huang, and G.B. Lee, "A CMOS-based capacitive biosensor for detection of a breast cancer microRNA biomarker," IEEE Open Journal of Nanotechnology, pp. 1-6, 2020. 34. J.S. Daniels and N. Pourmand, "Label-Free impedance biosensors: opportunities and challenges," Electroanalysis, 19(12), pp. 1239-1257, 2007. 35. A. Dizon and M.E. Orazem, "On the impedance response of interdigitated electrodes," Electrochimica Acta, 327, pp. 13-42, 2019. 36. J. Oberlander, Z.B. Jildeh, P. Kirchner, L. Wendeler, A. Bromm, H. Iken, P. Wagner, M. Keusgen, and M.J. Schoning, "Study of interdigitated electrode arrays using experiments and finite element models for the evaluation of sterilization processes," Sensors, 15(10), pp. 26115-26127, 2015. 37. C.R. Rodrigues, C. Muller, and D.J.M. Neto, "Hysteresis settling technique for CMOS comparators based on substrate voltage," Electronics Letters, 49(1), pp. 27-28, 2013. 38. M.S. Lu, Y.C. Chen, and P.C. Huang, "5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine," Biosenssors and Bioelectronics, 26(3), pp. 1093-1097, 2010. 39. J.T. Villanueva, Q. Huang, N.O. Fischer, G. Arya, and D.J. Sirbuly, "Nanofiber-based total internal reflection microscopy for characterizing colloidal systems at the microscale," Journal of Physical Chemistry C, 122(38), pp. 22114-22124, 2018. 40. Y. Rosenberg-Hasson, L. Hansmann, M. Liedtke, I. Herschmann, and H.T. Maecker, "Effects of serum and plasma matrices on multiplex immunoassays," Immunologic research, 58(2-3), pp. 224-233, 2014. 41. C.G. Gray and P.J. Stiles, "Nonlinear electrostatics: the Poisson–Boltzmann equation," European Journal of Physics, 39(5), pp. 053002-053029, 2018. 42. Allen J. Bard and Larry R. Faulkner, "Electrochemical methods: fundamentals and applications, New York: Wiley, 2001, 2nd ed," Russian Journal of Electrochemistry, 38(12), pp. 1364-1365, 2002. 43. E. Gongadze, S. Petersen, U. Beck, and U. van Rienen, "Classical models of the interface between an electrode and an electrolyte," pp.1-7, 2020. 44. R.D. Silva, G.I. Wirth, and L. Brusamarello, "A novel and accurate time-domain description of MOSFET low-frequency noise based on random telegraph signals," International Journal of Modern Physics B, 24(30), pp. 5885-5894, 2010. 45. G.Y. Xu, J. Abbott, and D. Ham, " Optimization of CMOS-ISFET-based biomolecular sensing: Analysis and demonstration in DNA detection," Ieee Transactions on Electron Devices, 63(8), pp. 3249-3256, 2016. 46. P. Georgiou and C. Toumazou, "ISFET threshold voltage programming in CMOS using hot-electron injection," Electronics Letters, 45(22), pp. 1112-1113, 2009. 47. C. Chang and M.S. Lu, "CMOS Ion Sensitive Field Effect Transistors for highly sensitive detection of DNA hybridization," IEEE Sensors Journal, pp. 8930-8937, 2020. 48. Y.W. Chen, T.Y. Tai, C.P. Hsu, I. Sarangadharan, A.K. Pulikkathodi, H.L. Wang, R. Sukesan, G.Y. Lee, J.I. Chyi, C.C. Chen, G.B. Lee, and Y.L. Wang, "Direct detection of DNA using electrical double layer gated high electron mobility transistor in high ionic strength solution with high sensitivity and specificity," Sensors and Actuators B: Chemical, 271, pp. 110-117, 2018. 49. Y.W. Chen, W.C. Kuo, T.Y. Tai, C.P. Hsu, I. Sarangadharan, A.K. Pulikkathodi, S.L. Wang, R. Sukesan, H.Y. Lin, K.W. Kao, C.L. Hsu, C.C. Chen, and Y.L. Wang, "Highly sensitive and rapid MicroRNA detection for cardiovascular diseases with electrical double layer (EDL) gated AlGaN/GaN high electron mobility transistors," Sensors and Actuators B: Chemical, 262, pp. 365-370, 2018. 50. I.Y. Huang, R.S. Huang, and L.H. Lo, "Improvement of integrated Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications," Sensors and Actuators B: Chemical, 94(1), pp. 53-64, 2003.. 51. S.B. Nimse, K. Song, M.D. Sonawane, D.R. Sayyed, and T. Kim, "Immobilization techniques for microarray: challenges and applications," Sensors, 14(12), pp. 22208-22229, 2014.
|