帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳致嘉
作者(外文):Chen, Chih-Chia
論文名稱(中文):開發紙基系統以同時使用多種抗體富集胞外體
論文名稱(外文):Development of a Paper-based System for Enrichment of Extracellular Vesicles Using Multiple Antibodies Simultaneously
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-Chen
口試委員(中文):北森武彥
賴品光
口試委員(外文):Kitamori, Takehiko
Lai, Pin-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:107035517
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:59
中文關鍵詞:胞外體紙基裝置紙基平台生物性標誌
外文關鍵詞:extracellular vesiclespaper-based devicesurface functionalizationbiomarker
相關次數:
  • 推薦推薦:0
  • 點閱點閱:157
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胞外體已經在生物研究領域方面獲得的極大的關注,由於胞外體擁有許多獨特的地方,像是做為細胞間傳遞訊息的橋樑,以及具有做為預防與診斷疾病的生物標誌。我們不只對於胞外體傳遞訊息的特徵感到好奇,也想透過胞外體所表現的生物特徵去判斷我們器官的健康狀態。在我們想要了解身體器官間的溝通前,我們首先必須知道如何將胞外體成功的分離出來。
目前為止也已經有許多分離胞外體的方法,像是差速高速離心法(differential ultracentrifigation),是廣為被使用的分離胞外體方式,然而分離過程十分的耗時、操作的器材也相對比較笨重且昂貴,回收率也相對較低,而且在極高的轉速之下,也容易造成胞外體降解,並使蛋白質群聚等不好的現象。因此在分離胞外體的系統上,我們選擇使用紙基裝置做為我們分離胞外體的平台。目標是希望可以打造擁有以下優點的紙基裝置: 方便、快速、低成本,以及藉由它高篩選率的特性,將我們的目標胞外體成功的從溶液中分離出來。除了做出更簡便的實驗步驟外,我們最後希望可以透過我們的紙基裝置利用不同的抗體同時分離出帶有不同表面抗原的胞外體,將整體分離的效率達到最大化。
Extracellular vesicles (EVs) have been caught a lot of attention in several biological fields recently. Due to its variable characteristics such as intercellular communication, signal transporting and potentials as diagnostic and prognostic biomarkers, we are curious about not only the messages EVs carry, but also our organs are in a good situation or not. To know the inside world of communication in our body, working on isolating EVs is the first and priority step.
Currently, there are several methods in isolating EVs. Differential ultracentrifugation is a method that has been widely used to isolate EVs. However, the process is time-costly, cumbersome, and required expensive instruments. Additionally, due to the high acceleration in centrifugation, it may cause degradation in EVs and the co-precipitation of protein aggregates. Therefore, we chose to use paper-based devices as our isolation platform. Our goal is to build up a device, which has the following advantages: convenient, quick, low budget, and high selectivity in capturing our target EVs. Despite the simple protocol, we tend to isolate different types of EVs simultaneously using one paper-based device.
摘要 1
Abstract 2
致謝詞 3
Table of Contents 4
List of Figures 6
List of Tables 8
List of Abbreviations 9
Chapter 1 Introduction 10
1-1 Background 10
1-2 Introduction of Extracellular Vesicles 10
1-3 Current isolation techniques 13
1-3-1 EV Enrichment Method 13
1-4 EV Characterization Techniques 16
Chapter 2 Aim of study 19
Chapter 3 Experiment design and method 21
3-1 Experiment design 21
3-2 Extracellular vesicles nurture & collection method 22
3-2-1 HEK293T cell nurture method 23
3-2-2 HEK293T cell collection method 23
3-3 Paper-based preparation 24
3-3-1 Paper-based materials and chemicals : 24
3-3-2 Fabrication of the paper-based devices 24
3-3-3 Surface modification 25
3-4 Eppendorf Container design 26
3-5 Isolation of extracellular vesicles 28
3-5-1 Testing samples 28
3-5-2 Paper-based immunoaffinity devices 29
3-6 Microscopy Characterization 29
3-6-1 PE-biotin Examination 30
3-6-2 EV Characterization 30
3-7 Resistive Pulse Sensing (RPS) – Qnano Characterization 31
3-7-1 Instrument Setup and Prepare Calibration 31
3-7-2 Calibration, Washing Upper Fluid Cell and Sample Measurement 33
3-8 Luminescence Characterization 34
3-8-1 EV Capacity Measurement 34
3-8-2 ELISA Detection on Different Antibodies for EV specificity 35
Chapter 4 Results and Discussion 37
4-1 Result of reagents in different proportion 37
4-1-1 PE-biotin Fluorescence Intensity 37
4-1-2 EV Sample Fluorescence Intensity Result 38
4-2 Fluorescence Intensity in different blocking component 39
4-3 Comparison of different surface preparation method 41
4-3-1 PE-biotin Fluorescence Intensity Result 41
4-3-2 EV sample Fluorescence Intensity Result 42
4-4 Comparison of different reagent mixing method 43
4-4-1 PE-biotin Fluorescence Intensity 43
4-4-2 EV sample Fluorescence Intensity Result 44
4-5 Applying Lid Design to Eppendorf Mixing Process 46
4-5-1 EV standard curve by Fluorescence Intensity 46
4-5-2 EV Luminescence curve by Luminescence plate reader 47
4-6 EV Capture rate Characterized by microscope 50
4-7 EV Capture rate Characterized by Qnano 51
Chapter 5 Conclusions 53
Chapter 6 Future Works 54
Chapter 7 References 55
1. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cellular and molecular life sciences : CMLS, 2018. 75(2): p. 193-208.
2. Zlotogorski-Hurvitz, A., et al., Human saliva-derived exosomes: comparing methods of isolation. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2015. 63(3): p. 181-189.
3. Baranyai, T., et al., Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLOS ONE, 2015. 10(12): p. e0145686.
4. Knepper, M.A. and T. Pisitkun, Exosomes in urine: Who would have thought…? Kidney International, 2007. 72(9): p. 1043-1045.
5. Zlotogorski-Hurvitz, A., et al., Human Saliva-Derived Exosomes: Comparing Methods of Isolation. Journal of Histochemistry & Cytochemistry, 2015. 63(3): p. 181-189.
6. Thakur, B.K., et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res, 2014. 24(6): p. 766-9.
7. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83.
8. Gyorgy, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 2011. 68(16): p. 2667-2688.
9. Gyorgy, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011. 68(16): p. 2667-88.
10. Robbins, P.D., A. Dorronsoro, and C.N. Booker, Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest, 2016. 126(4): p. 1173-80.
11. Peterson, M.F., et al., Integrated systems for exosome investigation. Methods, 2015. 87: p. 31-45.
12. Tan, S., et al., Cell or cell membrane-based drug delivery systems. Theranostics, 2015. 5(8): p. 863-881.
13. Tkach, M., J. Kowal, and C. Théry, Why the need and how to approach the functional diversity of extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018. 373(1737): p. 20160479.
14. Contreras-Naranjo, J.C., H.J. Wu, and V.M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip, 2017. 17(21): p. 3558-3577.
15. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology, 2013. 200(4): p. 373-383.
16. Carnino, J.M., H. Lee, and Y. Jin, Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respiratory Research, 2019. 20(1).
17. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Research International, 2018. 2018.
18. Lobb, R.J., et al., Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles, 2015. 4: p. 27031.
19. Merchant, M.L., et al., Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clinical Applications, 2010. 4(1): p. 84-96.
20. Taylor, D.D. and S. Shah, Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods, 2015. 87: p. 3-10.
21. Gamez-Valero, A., et al., Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents. Scientific Reports, 2016. 6.
22. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. E968-E977.
23. Tauro, B.J., et al., Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012. 56(2): p. 293-304.
24. Kanwar, S.S., et al., Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab on a Chip, 2014. 14(11): p. 1891-1900.
25. Chen, C., et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on a Chip, 2010. 10(4): p. 505-511.
26. Clayton, A., et al., Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods, 2001. 247(1): p. 163-174.
27. Li, P., et al., Progress in Exosome Isolation Techniques. Theranostics, 2017. 7(3): p. 789-804.
28. Szatanek, R., et al., Isolation of extracellular vesicles: Determining the correct approach (Review). International journal of molecular medicine, 2015. 36(1): p. 11-17.
29. Strong, E.B., et al., Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Sci Rep, 2019. 9(1): p. 7.
30. Singh, A.T., et al., Paper-Based Sensors: Emerging Themes and Applications. Sensors (Basel), 2018. 18(9).
31. Lopez-Marzo, A.M. and A. Merkoci, Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip, 2016. 16(17): p. 3150-76.
32. Altundemir, S., A.K. Uguz, and K. Ulgen, A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 2017. 11(4).
33. Li, L., et al., Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals. Analytical and Bioanalytical Chemistry, 2018. 410(8): p. 2253-2262.
34. Xue, P., et al., Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed Microdevices, 2015. 17(2): p. 39.
35. Szatanek, R., et al., The Methods of Choice for Extracellular Vesicles (EVs) Characterization. International Journal of Molecular Sciences, 2017. 18(6).
36. Serrano-Pertierra, E., et al., Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study. Bioengineering (Basel), 2019. 6(1).
37. Chevillet, J.R., et al., Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(41): p. 14888-14893.
38. Royo, F., et al., Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. Journal of Extracellular Vesicles, 2016. 5.
39. Colombo, M., G. Raposo, and C. Thery, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, Vol 30, 2014. 30: p. 255-289.
40. Usman, W.M., et al., Efficient RNA drug delivery using red blood cell extracellular vesicles. Nature Communications, 2018. 9.
41. Sokolova, V., et al., Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces, 2011. 87(1): p. 146-50.
42. Rikkert, L.G., et al., Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. Journal of Extracellular Vesicles, 2019. 8(1).
43. Ashcroft, B.A., et al., Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomedical Microdevices, 2012. 14(4): p. 641-649.
44. Yuana, Y., et al., Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost, 2010. 8(2): p. 315-23.
45. Hoo, C.M., et al., A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research, 2008. 10: p. 89-96.
46. Lawrie, A.S., et al., Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sanguinis, 2009. 96(3): p. 206-212.
47. Vestad, B., et al., Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. Journal of Extracellular Vesicles, 2017. 6(1): p. 1-11.
48. Soo, C.Y., et al., Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology, 2012. 136(2): p. 192-197.
49. Maas, S.L., M.L. Broekman, and J. de Vrij, Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles. Methods Mol Biol, 2017. 1545: p. 21-33.
50. Vogel, R., et al., A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. Journal of Extracellular Vesicles, 2016. 5.
51. Coumans, F.A., et al., Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles, 2014. 3: p. 25922.
52. Morales-Kastresana, A., et al., Labeling Extracellular Vesicles for Nanoscale Flow Cytometry. Scientific Reports, 2017. 7.
53. Headland, S.E., et al., Cutting-Edge Analysis of Extracellular Microparticles using ImageStream(X) Imaging Flow Cytometry. Scientific Reports, 2014. 4.
54. Lee, J., et al., Enhanced paper-based ELISA for simultaneous EVs/exosome isolation and detection using streptavidin agarose-based immobilization. Analyst, 2020. 145(1): p. 157-164.
55. Ueda, K., et al., Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep, 2014. 4: p. 6232.
56. Chiriaco, M.S., et al., Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. Sensors, 2018. 18(10).
57. Doldan, X., et al., Electrochemical Sandwich Immunosensor for Determination of Exosomes Based on Surface Marker-Mediated Signal Amplification. Anal Chem, 2016. 88(21): p. 10466-10473.
58. Mincheva-Nilsson, L., et al., Isolation and Characterization of Exosomes from Cultures of Tissue Explants and Cell Lines. Curr Protoc Immunol, 2016. 115: p. 14 42 1-14 42 21.
59. Lakshmipriya, T., et al., A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst, 2013. 138(10): p. 2863-2870.
60. Woodley, D.T., et al., Interactions of basement membrane components. Biochim Biophys Acta, 1983. 761(3): p. 278-83.
61. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A, 2016. 113(8): p. E968-77.
62. Nakamura, K., et al., Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts. J Dermatol Sci, 2016. 84(1): p. 30-39.
63. Kumar, D., et al., Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget, 2015. 6(5): p. 3280-91.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *