|
1. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cellular and molecular life sciences : CMLS, 2018. 75(2): p. 193-208. 2. Zlotogorski-Hurvitz, A., et al., Human saliva-derived exosomes: comparing methods of isolation. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2015. 63(3): p. 181-189. 3. Baranyai, T., et al., Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLOS ONE, 2015. 10(12): p. e0145686. 4. Knepper, M.A. and T. Pisitkun, Exosomes in urine: Who would have thought…? Kidney International, 2007. 72(9): p. 1043-1045. 5. Zlotogorski-Hurvitz, A., et al., Human Saliva-Derived Exosomes: Comparing Methods of Isolation. Journal of Histochemistry & Cytochemistry, 2015. 63(3): p. 181-189. 6. Thakur, B.K., et al., Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res, 2014. 24(6): p. 766-9. 7. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013. 200(4): p. 373-83. 8. Gyorgy, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 2011. 68(16): p. 2667-2688. 9. Gyorgy, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011. 68(16): p. 2667-88. 10. Robbins, P.D., A. Dorronsoro, and C.N. Booker, Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest, 2016. 126(4): p. 1173-80. 11. Peterson, M.F., et al., Integrated systems for exosome investigation. Methods, 2015. 87: p. 31-45. 12. Tan, S., et al., Cell or cell membrane-based drug delivery systems. Theranostics, 2015. 5(8): p. 863-881. 13. Tkach, M., J. Kowal, and C. Théry, Why the need and how to approach the functional diversity of extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018. 373(1737): p. 20160479. 14. Contreras-Naranjo, J.C., H.J. Wu, and V.M. Ugaz, Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip, 2017. 17(21): p. 3558-3577. 15. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology, 2013. 200(4): p. 373-383. 16. Carnino, J.M., H. Lee, and Y. Jin, Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respiratory Research, 2019. 20(1). 17. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Research International, 2018. 2018. 18. Lobb, R.J., et al., Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles, 2015. 4: p. 27031. 19. Merchant, M.L., et al., Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clinical Applications, 2010. 4(1): p. 84-96. 20. Taylor, D.D. and S. Shah, Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods, 2015. 87: p. 3-10. 21. Gamez-Valero, A., et al., Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents. Scientific Reports, 2016. 6. 22. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. E968-E977. 23. Tauro, B.J., et al., Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012. 56(2): p. 293-304. 24. Kanwar, S.S., et al., Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab on a Chip, 2014. 14(11): p. 1891-1900. 25. Chen, C., et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on a Chip, 2010. 10(4): p. 505-511. 26. Clayton, A., et al., Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods, 2001. 247(1): p. 163-174. 27. Li, P., et al., Progress in Exosome Isolation Techniques. Theranostics, 2017. 7(3): p. 789-804. 28. Szatanek, R., et al., Isolation of extracellular vesicles: Determining the correct approach (Review). International journal of molecular medicine, 2015. 36(1): p. 11-17. 29. Strong, E.B., et al., Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Sci Rep, 2019. 9(1): p. 7. 30. Singh, A.T., et al., Paper-Based Sensors: Emerging Themes and Applications. Sensors (Basel), 2018. 18(9). 31. Lopez-Marzo, A.M. and A. Merkoci, Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip, 2016. 16(17): p. 3150-76. 32. Altundemir, S., A.K. Uguz, and K. Ulgen, A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics, 2017. 11(4). 33. Li, L., et al., Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals. Analytical and Bioanalytical Chemistry, 2018. 410(8): p. 2253-2262. 34. Xue, P., et al., Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed Microdevices, 2015. 17(2): p. 39. 35. Szatanek, R., et al., The Methods of Choice for Extracellular Vesicles (EVs) Characterization. International Journal of Molecular Sciences, 2017. 18(6). 36. Serrano-Pertierra, E., et al., Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study. Bioengineering (Basel), 2019. 6(1). 37. Chevillet, J.R., et al., Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(41): p. 14888-14893. 38. Royo, F., et al., Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. Journal of Extracellular Vesicles, 2016. 5. 39. Colombo, M., G. Raposo, and C. Thery, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, Vol 30, 2014. 30: p. 255-289. 40. Usman, W.M., et al., Efficient RNA drug delivery using red blood cell extracellular vesicles. Nature Communications, 2018. 9. 41. Sokolova, V., et al., Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces, 2011. 87(1): p. 146-50. 42. Rikkert, L.G., et al., Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. Journal of Extracellular Vesicles, 2019. 8(1). 43. Ashcroft, B.A., et al., Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomedical Microdevices, 2012. 14(4): p. 641-649. 44. Yuana, Y., et al., Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost, 2010. 8(2): p. 315-23. 45. Hoo, C.M., et al., A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research, 2008. 10: p. 89-96. 46. Lawrie, A.S., et al., Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sanguinis, 2009. 96(3): p. 206-212. 47. Vestad, B., et al., Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. Journal of Extracellular Vesicles, 2017. 6(1): p. 1-11. 48. Soo, C.Y., et al., Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology, 2012. 136(2): p. 192-197. 49. Maas, S.L., M.L. Broekman, and J. de Vrij, Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles. Methods Mol Biol, 2017. 1545: p. 21-33. 50. Vogel, R., et al., A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. Journal of Extracellular Vesicles, 2016. 5. 51. Coumans, F.A., et al., Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles, 2014. 3: p. 25922. 52. Morales-Kastresana, A., et al., Labeling Extracellular Vesicles for Nanoscale Flow Cytometry. Scientific Reports, 2017. 7. 53. Headland, S.E., et al., Cutting-Edge Analysis of Extracellular Microparticles using ImageStream(X) Imaging Flow Cytometry. Scientific Reports, 2014. 4. 54. Lee, J., et al., Enhanced paper-based ELISA for simultaneous EVs/exosome isolation and detection using streptavidin agarose-based immobilization. Analyst, 2020. 145(1): p. 157-164. 55. Ueda, K., et al., Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep, 2014. 4: p. 6232. 56. Chiriaco, M.S., et al., Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. Sensors, 2018. 18(10). 57. Doldan, X., et al., Electrochemical Sandwich Immunosensor for Determination of Exosomes Based on Surface Marker-Mediated Signal Amplification. Anal Chem, 2016. 88(21): p. 10466-10473. 58. Mincheva-Nilsson, L., et al., Isolation and Characterization of Exosomes from Cultures of Tissue Explants and Cell Lines. Curr Protoc Immunol, 2016. 115: p. 14 42 1-14 42 21. 59. Lakshmipriya, T., et al., A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst, 2013. 138(10): p. 2863-2870. 60. Woodley, D.T., et al., Interactions of basement membrane components. Biochim Biophys Acta, 1983. 761(3): p. 278-83. 61. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A, 2016. 113(8): p. E968-77. 62. Nakamura, K., et al., Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts. J Dermatol Sci, 2016. 84(1): p. 30-39. 63. Kumar, D., et al., Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget, 2015. 6(5): p. 3280-91.
|