帳號:guest(18.117.105.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王亮鈞
作者(外文):Wang, Liang-Jyun
論文名稱(中文):陣列化PDMS/BT多孔微結構用於可撓性電容式壓力感測器之研製
論文名稱(外文):Development of Flexible Capacitive Pressure Sensors Using Arrayed Polydimethylsiloxane/Barium Titanate Porous Microstructures
指導教授(中文):李昇憲
楊啟榮
指導教授(外文):Li, Sheng-Shian
Yang, Chii-Rong
口試委員(中文):方維倫
鄭兆珉
口試委員(外文):Fang, Wei-Leun
Cheng, Chao-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:107035502
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:69
中文關鍵詞:電容式壓力傳感器高靈敏度多孔PDMS鈦酸鋇
外文關鍵詞:capacitive pressure sensorhigh sensitivityporous PDMSbarium titanate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
可穿戴設備和電子皮膚已成為我們日常生活中最先進的電子應用,且在近年來,柔性壓力感測器受到許多關注,它在健康監控、人機介面、人工智慧等方面,皆有潛在的應用。柔性壓力感測器實際應用中的關鍵因素是靈敏度。為了提高感測器的靈敏度,我們開發了一種新的多孔微圓柱結構與PDMS的複合結構作為感測器的介電層,相較於實心的柱狀與多孔平面的介電層結構,靈敏度可以提升約2倍。此外為了進一步提高靈敏度性能,我們在介電層中混合鈦酸鋇 (BT),因為它具有超高的相對介電常數。該傳感器靈敏度高(7.847 kPa-1),檢測極限能小至0.2123 Pa。此外該傳感器還具有快速響應時間 (<20 ms) 和釋放時間 (<25 ms)。經過10000次沖擊後,感測器仍保持良好的耐用性,性能表現依舊保持在97%,且在首次與10000次撞擊測試後,都未出現明顯的遲滯效應,這表明傳感器的重複性良好。因此,本研究有助於提供高性能的靈活電容壓力傳感器。
Wearable devices and electric skin have become current state of art electronic applications in our daily life. The key factor in the practical applications of flexible pressure sensors is the sensitivity. To enhance the sensitivity of sensors, we develop a new composite structure of porous micro-cylinder structure with PDMS. Moreover, in order to further improve performance of sensitivity, we mix Barium titanate (BT) in dielectric layer, due to its ultrahigh relative permittivity. The sensor has great sensitivity (7.847 kPa-1), and very small detection limit (0.2123 Pa). Furthermore, the sensor also has rapid response time (<20 ms) and release time (<25 ms). After 10000 times impact, the sensor still sustains great durability and does not appear obvious hysteresis effect both in the first time test and 10000th test. This indicates the repeatability of sensor has in good condition. Hence, this study contributes flexible capacitive pressure sensors with high performance.
Chapter 1 Introduction.............................7
1.1 Motivation.................................7
1.2 Objective and working principle...........9
Chapter 2 Literature Review........................15
2.1 Types of flexible pressure sensors........16
2.1.1 Piezoelectric pressure sensors..........16
2.1.2 Piezoresistive pressure sensors.........18
2.1.3 Triboelectric pressure sensors..........21
2.1.4 Capacitive pressure sensors.............22
2.2 Flexible capacitive pressure review.........24
2.2.1 Micro-structured dielectric layer.......25
2.2.2 Porous PDMS dielectric layer............34
Chapter 3 Experiment procedure....................39
3.1 Fabricating the flexible pressure
sensor....................................40
3.1.1 Fabricating the electrode...............40
3.1.2 Fabricating the porous dielectric
layer...................................40
3.1.3 Fabricate the porous dielectric
layer with barium titanate..............41
3.1.4 Assembling..............................42
3.2 Electromechanical Characterization..........43
Chapter 4 Preliminary Results.....................45
4.1 Characterization of Sensor..................45
4.2 Performance of Sensor.......................47
4.2.1 Finite Element Analysis.................47
4.2.2 Sensitivity of Sensor...................49
4.2.3 Detection Limit of Sensor...............53
4.2.4 Response and Release Time of
Sensor..................................55
4.2.5 Durability of Sensor....................56
4.3 Application of Sensor.......................59
4.3.1 Tactile Sensing.........................59
4.3.2 Health Caring...........................59
Chapter 5 Conclusion an future work...............62
5.1 Conclusion..................................62
5.2 Future work.................................63
References.........................................65

References
[1] Takamatsu, S. et al., Wearable keyboard using conducting polymer electrodes on textiles. Advanced Materials, 2016. 28(22): p. 4485-4488.
[2] Pang, Y. et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS nano, 2018. 12(3): p. 2346-2354.
[3] Wu, Y. et al., Insect-scale fast moving and ultrarobust soft robot. Science Robotics, 2019. 4(32).
[4] Pang, C. et al., Highly skin‐conformal microhairy sensor for pulse signal amplification. Advanced materials, 2015. 27(4): p. 634-640.
[5] Choi, S. et al., Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials. Advanced materials, 2016. 28(22): p. 4203-4218.
[6] Paeng, D. et al., Low‐cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation. Advanced Materials, 2015. 27(17): p. 2762-2767.
[7] Dagdeviren, C. et al., Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme mechanics letters, 2016. 9: p. 269-281.
[8] Park, J. et al., Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Science advances, 2015. 1(9): p. e1500661.
[9] Xu, S. et al., Flexible piezoelectric PMN–PT nanowire-based nanocomposite and device. Nano letters, 2013. 13(6): p. 2393-2398.
[10] Gong, S. et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature communications, 2014. 5(1): p. 1-8.
[11] Pang, C. et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature materials, 2012. 11(9): p. 795-801.
[12] Kim, H. et al., Chemically designed metallic/insulating hybrid nanostructures with silver nanocrystals for highly sensitive wearable pressure sensors. ACS applied materials & interfaces, 2018. 10(1): p. 1389-1398.
[13] He, J. et al., Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. Journal of Materiomics, 2020. 6(1): p. 86-101.
[14] Kim, H.-J. et al., Bacterial nano‐cellulose triboelectric nanogenerator. Nano Energy, 2017. 33: p. 130-137.
[15] Chi, Y. et al., Rice paper-based biodegradable triboelectric nanogenerator. Microelectronic Engineering, 2019. 216: p. 111059.
[16] Paosangthong, W. et al. Recent progress on textile-based triboelectric nanogenerators. Nano Energy, 2019. 55: p. 401-423.
[17] Lee, S. et al., Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy, 2017. 33: p. 1-11.
[18] He, Z. et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS applied materials & interfaces, 2018. 10(15): p. 12816-12823.
[19] Cho, S.H. et al., Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS applied materials & interfaces, 2017. 9(11): p. 10128-10135.
[20] Zang, Y. et al., Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015. 2(2): p. 140-156.
[21] Lee, K. et al., Rough‐Surface‐Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small, 2017. 13(43): p. 1700368.
[22] Chen, X. et al., High‐performance piezoelectric nanogenerators with imprinted P (VDF‐TrFE)/BaTiO3 nanocomposite micropillars for self‐powered flexible sensors. Small, 2017. 13(23): p. 1604245.
[23] Mannsfeld, S.C. et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature materials, 2010. 9(10): p. 859-864.
[24] Tee, B.C.K. et al., Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Advanced Functional Materials, 2014. 24(34): p. 5427-5434.
[25] Boutry, C.M. et al., A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Advanced Materials, 2015. 27(43): p. 6954-6961.
[26] Zeng, X. et al., Tunable, ultrasensitive, and flexible pressure sensors based on wrinkled microstructures for electronic skins. ACS applied materials & interfaces, 2019. 11(23): p. 21218-21226.
[27] Xiong, Y. et al., A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano energy, 2020. 70: p. 104436.
[28] Yang, J. et al., Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS applied materials & interfaces, 2019. 11(16): p. 14997-15006.
[29] Guo, Y. et al., Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method. ACS applied materials & interfaces, 2019. 11(51): p. 48594-48603.
[30] Baek, S. et al., Flexible piezocapacitive sensors based on wrinkled microstructures: toward low-cost fabrication of pressure sensors over large areas. RSC advances, 2017. 7(63): p. 39420-39426.
[31] Yoon, S.G. et al., Highly sensitive piezocapacitive sensor for detecting static and dynamic pressure using ion-gel thin films and conductive elastomeric composites. ACS applied materials & interfaces, 2017. 9(41): p. 36206-36219.
[32] Zheng, Q. et al., High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly (dimethylsiloxane)(PDMS) aerogel films. Nano Energy, 2016. 26: p. 504-512.
[33] Chen, J. et al., Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS applied materials & interfaces, 2016. 8(1): p. 736-744.
[34] Yang, J.C. et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS applied materials & interfaces, 2019. 11(21): p. 19472-19480.
[35] Eaton, W.P. and J.H. Smith, Micromachined pressure sensors: review and recent developments. Smart Materials and Structures, 1997. 6(5): p. 530.
[36] Li, S. et al., Capacitive pressure sensor inlaid a porous dielectric layer of superelastic polydimethylsiloxane in conductive fabrics for detection of human motions. Sensors and Actuators A: Physical, 2020. 312: p. 112106.
[37] Yao, S., P. Swetha, and Y. Zhu, Nanomaterial‐enabled wearable sensors for healthcare. Advanced healthcare materials, 2018. 7(1): p. 1700889.
[38] Ha, M., S. Lim, and H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. Journal of Materials Chemistry B, 2018. 6(24): p. 4043-4064.
[39] Chortos, A., J. Liu, and Z. Bao, Pursuing prosthetic electronic skin. Nature materials, 2016. 15(9): p. 937-950.
[40] Osborn, L.E. et al., Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Science robotics, 2018. 3(19).
[41] Park, S. et al., Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Advanced Materials, 2014. 26(43): p. 7324-7332.
[42] Wang, H. et al. Toward perceptive soft robots: Progress and challenges. Advanced Science, 2018. 5(9): p. 1800541.
[43] Oh, J. et al., Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS nano, 2018. 12(8): p. 7546-7553.
[44] Yang, T. et al., Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 2017. 115: p. 1-37.
[45] Research, G.V. Flexible Electronics Market By Components (Display, Battery, Sensors, Memory), By Application (Consumer Electronics, Automotive, Healthcare, Industrial) And Segment Forecast To 2024. 2016; Available from: https://www.grandviewresearch.com/industry-analysis/flexible-electronics-market.
[46] Persano, L. et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nature communications, 2013. 4(1): p. 1-10.
[47] Fan, F.-R. et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano letters, 2012. 12(6): p. 3109-3114.
[48] Yang, X. et al., A flexible ionic liquid-polyurethane sponge capacitive pressure sensor. Sensors and Actuators A: Physical, 2019. 285: p. 67-72.
[49] Niu, H. et al., Highly Morphology‐Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermis‐Dermis‐Inspired Interlocked Asymmetric‐Nanocone Arrays for Detection of Tiny Pressure. Small, 2020. 16(4): p. 1904774.
[50] Zhou, Q. et al., A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. Journal of Materials Chemistry A, 2019. 7(48): p. 27334-27346.
[51] Kou, H. et al., Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Scientific reports, 2019. 9(1): p. 1-7.
[52] Ma, L. et al., A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. Journal of Materials Chemistry C, 2018. 6(48): p. 13232-13240.
[53] Qian, X. et al., Printable Skin‐driven mechanoluminescence devices via nanodoped matrix modification. Advanced Materials, 2018. 30(25): p. 1800291.
[54] Bai, N. et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nature communications, 2020. 11(1): p. 1-9.
[55] Li, W. et al., A porous and air gap elastomeric dielectric layer for wearable capacitive pressure sensor with high sensitivity and a wide detection range. Journal of Materials Chemistry C, 2020. 8(33): p. 11468-11476.
[56] Li, T. et al., Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small, 2016. 12(36): p. 5042-5048.
[57] Luo, Y. et al., Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS applied materials & interfaces, 2019. 11(19): p. 17796-17803.
[58] Pruvost, M. et al., Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. npj Flexible Electronics, 2019. 3(1): p. 1-6.
[59] Song, Y. et al., Highly compressible integrated supercapacitor–piezoresistance‐sensor system with CNT–PDMS sponge for health monitoring. Small, 2017. 13(39): p. 1702091.
[60] Avolio, A.P. et al., Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension, 2009. 54(2): p. 375-383.
[61] Chen, C.-H. et al., Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension, 1996. 27(2): p. 168-175.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *