|
[1] S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu, T. Zhang, H. Ning, Review on Smart Gas Sensing Technology, Sensors (Basel, Switzerland) 19(17) (2019) 3760. [2] S. Srinives, T. Sarkar, R. Hernandez, A. Mulchandani, A miniature chemiresistor sensor for carbon dioxide, Analytica chimica acta 874 (2015) 54-58. [3] World Health Organization, Air pollution, 2018. www.who.int/health-topics/air-pollution#tab=tab_1. [4] R.T. Burnett, C.A. Pope, M. Ezzati, C. Olives, S.S. Lim, S. Mehta, H.H. Shin, G. Singh, B. Hubbell, M. Brauer, H.R. Anderson, K.R. Smith, J.R. Balmes, N.G. Bruce, H. Kan, F. Laden, A. Pruess-Ustuen, M.C. Turner, S.M. Gapstur, W.R. Diver, A. Cohen, An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure, Environmental Health Perspectives 122(4) (2014) 397-403. [5] WHO Regional Office for Europe, Air quality guidelines : Global update 2005., 2005. http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf?ua=1. [6] R.J. Griffin, The sources and impacts of tropospheric particulate matter, Nature Education Knowledge 4(5) (2013) 1. [7] J.M. Daisey, W.J. Angell, M.G. Apte, Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information, Indoor Air 13(1) (2003) 53-64. [8] K. Koistinen, D. Kotzias, S. Kephalopoulos, C. Schlitt, P. Carrer, M. Jantunen, S. Kirchner, J. McLaughlin, L. Molhave, E.O. Fernandes, B. Seifert, The INDEX project: executive summary of a European Union project on indoor air pollutants, Allergy 63(7) (2008) 810-9. [9] World Health Organization, Air quality guidelines for Europe, 2000. https://apps.who.int/iris/handle/10665/107335. (Accessed No. 91. [10] D. Schwela, G. Haq, C. Huizenga, W.-J. Han, H. Fabian, M. Ajero, Urban air pollution in Asian cities: Status, challenges and management, Routledge2006. [11] C. Bur, M.E. Andersson, A.L. Spetz, A. Schütze, Detecting Volatile Organic Compounds in the ppb Range With Gas Sensitive Platinum Gate SiC-Field Effect Transistors, IEEE Sensors Journal 14(9) (2014) 3221-3228. [12] C. Bur, M. Bastuck, A. Lloyd Spetz, M. Andersson, A. Schütze, Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics, Sensors and Actuators B: Chemical 193 (2014) 931-940. [13] C. Jia, S. Batterman, C. Godwin, VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers, Atmospheric Environment 42(9) (2008) 2083-2100. [14] S. Batterman, J.Y. Chin, C. Jia, C. Godwin, E. Parker, T. Robins, P. Max, T. Lewis, Sources, concentrations, and risks of naphthalene in indoor and outdoor air, Indoor air 22(4) (2012) 266-278. [15] J.A. Bernstein, N. Alexis, H. Bacchus, I.L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S.M. Tarlo, The health effects of nonindustrial indoor air pollution, Journal of Allergy and Clinical Immunology 121(3) (2008) 585-591. [16] J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature 525(7569) (2015) 367-371. [17] C.A. Pope Iii, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, JAMA 287(9) (2002) 1132-1141. [18] G. D'Amato, G. Liccardi, M. D'Amato, M. Cazzola, Outdoor air pollution, climatic changes and allergic bronchial asthma, Eur Respir J 20(3) (2002) 763-76. [19] A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sensors and Actuators B: Chemical 171-172 (2012) 25-42. [20] D.N. Hai, L.V. Tung, D.K. Van, T.T. Binh, H.L. Phuong, N.D. Trung, N.D. Son, H.T. Giang, N.M. Hung, P.M. Khue, Lead Environmental Pollution and Childhood Lead Poisoning at Ban Thi Commune, Bac Kan Province, Vietnam, Biomed Res Int 2018 (2018) 5156812-5156812. [21] V.G. Berezkin, Adsorption phenomena in gas-liquid chromatography, Journal of Chromatography A 65(1) (1972) 227-240. [22] J. Beauchamp, F. Kirsch, A. Buettner, Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules, Journal of Breath Research 4(2) (2010) 026006. [23] L. Järvi, I. MammareIIa, W. Eugster, A. Ibrom, E. Siivola, E. DeIIwik, P. Keronen, G. Burba, T. Vesala, Comparison of net CO 2 fluxes measured with open-and closed-path infrared gas analyzers in an urban complex environment, Boreal Environment Research 14(4) (2009). [24] R. Engelbrecht, A compact NIR fiber-optic diode laser spectrometer for CO and CO2:: analysis of observed 2f wavelength modulation spectroscopy line shapes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60(14) (2004) 3291-3298. [25] K. Isobe, K. Koba, S. Ueda, K. Senoo, S. Harayama, Y. Suwa, A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites, Journal of microbiological methods 84(1) (2011) 46-51. [26] E. Matisová, M. Dömötörová, Fast gas chromatography and its use in trace analysis, Journal of Chromatography A 1000(1) (2003) 199-221. [27] M.A. Raza, A. Habib, Z. Kanwal, S.S. Hussain, M.J. Iqbal, M. Saleem, S. Riaz, S. Naseem, Optical CO2 Gas Sensing Based on TiO2 Thin Films of Diverse Thickness Decorated with Silver Nanoparticles, Advances in Materials Science and Engineering 2018 (2018) 2780203. [28] H.L. Kaplan, Effects of irritant gases on avoidance/escape performance and respiratory response of the baboon, Toxicology 47(1) (1987) 165-179. [29] K. Permentier, S. Vercammen, S. Soetaert, C. Schellemans, Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department, International journal of emergency medicine 10(1) (2017) 14. [30] C. Firl, R. Argudin, New OSHA Rescue Requirements for Confined Space Retrieval: What You Should Know, Occupational health & safety (Waco, Tex.) 84(11) (2015) 16, 18, 20-1. [31] J.F. Devine, Chronic obstructive pulmonary disease: an overview, Am Health Drug Benefits 1(7) (2008) 34-42. [32] R.M. Turner, M. DePietro, B. Ding, Overlap of Asthma and Chronic Obstructive Pulmonary Disease in Patients in the United States: Analysis of Prevalence, Features, and Subtypes, JMIR Public Health Surveill 4(3) (2018) e60-e60. [33] X. Li, X. Cao, M. Guo, M. Xie, X. Liu, Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis for the Global Burden of Disease Study 2017, BMJ 368 (2020) m234. [34] C. Witham, Volcanic Gases and Aerosols Guidelines, Durham: IVHHN (2005). [35] P.J. Barnes, Immunology of asthma and chronic obstructive pulmonary disease, Nat Rev Immunol 8(3) (2008) 183-92. [36] K.F. Chung, I.M. Adcock, Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction, European Respiratory Journal 31(6) (2008) 1334. [37] I. Rahman, The role of oxidative stress in the pathogenesis of COPD: implications for therapy, Treat Respir Med 4(3) (2005) 175-200. [38] W.A. Pryor, K. Stone, Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite, Ann N Y Acad Sci 686 (1993) 12-27; discussion 27-8. [39] P.A. Kirkham, P.J. Barnes, Oxidative Stress in COPD, Chest 144(1) (2013) 266-273. [40] A.J. McGuinness, E. Sapey, Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms, Journal of Clinical Medicine 6(2) (2017). [41] M. Konishi, E. Akiyama, H. Suzuki, N. Iwahashi, N. Maejima, K. Tsukahara, K. Hibi, M. Kosuge, T. Ebina, K. Sakamaki, Y. Matsuzawa, M. Endo, S. Umemura, K. Kimura, Hypercapnia in patients with acute heart failure, ESC Heart Fail 2(1) (2015) 12-19. [42] D. Castro, M. Keenaghan, Arterial Blood Gas, (2019). [43] J.B. West, Causes of carbon dioxide retention in lung disease, N Engl J Med 284(22) (1971) 1232-6. [44] T.M. McKeever, G. Hearson, G. Housley, C. Reynolds, W. Kinnear, T.W. Harrison, A.-M. Kelly, D.E. Shaw, Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study, Thorax 71(3) (2016) 210-215. [45] J.H. Mehta, G.W. Williams, B.C.H. II, N.K. Grewal, E.E. George, The relationship between minute ventilation and end tidal CO2 in intubated and spontaneously breathing patients undergoing procedural sedation, PLoS one 12(6) (2017). [46] A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification, Pure and Applied Chemistry 63(9) (1991) 1247-1250. [47] S. Fanget, S. Hentz, P. Puget, J. Arcamone, M. Matheron, E. Colinet, P. Andreucci, L. Duraffourg, E. Myers, M. Roukes, Gas sensors based on gravimetric detection—A review, Sensors and Actuators B: Chemical 160(1) (2011) 804-821. [48] V. Bochenkov, G. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, Metal oxide nanostructures and their applications 3 (2010) 31-52. [49] C.A. Zito, T.M. Perfecto, A.-C. Dippel, D.P. Volanti, D. Koziej, Low-Temperature Carbon Dioxide Gas Sensor Based on Yolk–Shell Ceria Nanospheres, ACS Applied Materials & Interfaces 12(15) (2020) 17745-17751. [50] P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review, Sci. Lett. J 4(4) (2015) 126. [51] D. Degler, Trends and Advances in the Characterization of Gas Sensing Materials Based on Semiconducting Oxides, Sensors 18(10) (2018) 3544. [52] G.H. Jain, MOS gas sensors: What determines our choice?, 2011 Fifth International Conference on Sensing Technology, 2011, pp. 66-72. [53] H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors 7(3) (2007) 267-307. [54] E. Llobet, Gas sensors using carbon nanomaterials: A review, Sensors and Actuators B: Chemical 179 (2013) 32-45. [55] G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science 277(5330) (1997) 1232. [56] K. Madhusoodanan, T. Vimalkumar, K. Vijayakumar, Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis, Bulletin of Materials Science 38(3) (2015) 583-591. [57] A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc Oxide-From Synthesis to Application: A Review, Materials (Basel) 7(4) (2014) 2833-2881. [58] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Science and technology of advanced materials (2009). [59] Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, W.I. Milne, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensors and Actuators B: Chemical 143(2) (2010) 606-619. [60] M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing, The Journal of Physical Chemistry C 115(26) (2011) 12763-12773. [61] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices, Materials Today 10(5) (2007) 40-48. [62] D. Yu, T. Trad, J.T. McLeskey, V. Craciun, C.R. Taylor, ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates, Nanoscale Res Lett, 2010, pp. 1333-1339. [63] Y. Wang, ZnO Nanorods for Gas Sensors, Nanorods and Nanocomposites, IntechOpen2020. [64] N.A. Alshehri, A.R. Lewis, C. Pleydell-Pearce, T.G.G. Maffeis, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications, Journal of Saudi Chemical Society 22(5) (2018) 538-545. [65] L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey, Journal of sol-gel science and technology 39(1) (2006) 7-24. [66] M.N. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, Y. Sun, The kinetics of the hydrothermal growth of ZnO nanostructures, Thin Solid Films 515(24) (2007) 8679-8683. [67] R.S. Sundaram, 3 - Chemically derived graphene, in: V. Skákalová, A.B. Kaiser (Eds.), Graphene, Woodhead Publishing2014, pp. 50-80. [68] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society 80(6) (1958) 1339-1339. [69] N.R. Tanguy, M. Arjmand, N. Yan, Sensors/Biosensors: Nanocomposite of Nitrogen-Doped Graphene/Polyaniline for Enhanced Ammonia Gas Detection (Adv. Mater. Interfaces 16/2019), Advanced Materials Interfaces 6(16) (2019) 1970101. [70] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon 50(9) (2012) 3210-3228. [71] H.-T. Chou, H.-J. Lee, C.-Y. Lee, N.-H. Tai, H.-Y. Chang, Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold, Bioresource Technology 169 (2014) 532-536. [72] R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials, Advances in Colloid and Interface Science 270 (2019) 1-27. [73] E. Chalangar, H. Machhadani, S.-H. Lim, K.F. Karlsson, O. Nur, M. Willander, H. Pettersson, Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites, Nanotechnology 29(41) (2018) 415201. [74] X. Shen, H. Du, R.H. Mullins, R.R. Kommalapati, Polyethylenimine Applications in Carbon Dioxide Capture and Separation: From Theoretical Study to Experimental Work, Energy Technology 5(6) (2017) 822-833. [75] F. Mani, M. Peruzzini, P. Stoppioni, CO2 absorption by aqueous NH3 solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study, Green Chemistry 8(11) (2006) 995-1000. [76] S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Advances 5(5) (2015) 3306-3351. [77] F. El-Taib Heakal, W.R. Abd-Ellatif, N.S. Tantawy, A.A. Taha, Characterization of electrodeposited undoped and doped thin ZnO passive films on zinc metal in alkaline HCO3−/CO32− buffer solution, RSC Advances 8(69) (2018) 39321-39333. [78] A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Reports on progress in physics 72(12) (2009) 126501. [79] G.H. Jun, S.H. Jin, B. Lee, B.H. Kim, W.-S. Chae, S.H. Hong, S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells, Energy & Environmental Science 6(10) (2013) 3000-3006. [80] R.R. Kumar, T. Murugesan, A. Dash, C.-H. Hsu, S. Gupta, A. Manikandan, A.k. Anbalagan, C.-H. Lee, N.-H. Tai, Y.-L. Chueh, H.-N. Lin, Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study, Applied Surface Science 536 (2021) 147933. [81] X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, Z. Lin, X. Zhang, The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity, Carbon 50(10) (2012) 3407-3415. [82] S.K. Bikkarolla, F. Yu, W. Zhou, P. Joseph, P. Cumpson, P. Papakonstantinou, A three-dimensional Mn 3 O 4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media, Journal of Materials Chemistry A 2(35) (2014) 14493-14501. [83] H. Liu, T. Kuila, N.H. Kim, B.-C. Ku, J.H. Lee, In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties, Journal of Materials Chemistry A 1(11) (2013) 3739-3746. [84] H. Heydari, M.B. Gholivand, A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite, Applied Physics A 123(3) (2017) 187. [85] Z. Lin, G. Waller, Y. Liu, M. Liu, C.-P. Wong, Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction, Advanced Energy Materials 2(7) (2012) 884-888. [86] F. Wang, P. Liu, T. Nie, H. Wei, Z. Cui, Characterization of a polyamine microsphere and its adsorption for protein, International journal of molecular sciences 14(1) (2013) 17-29. [87] S.-Y. Lee, S.-J. Park, Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers, Journal of Colloid and Interface Science 389(1) (2013) 230-235. [88] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Pérez, CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15, Applied Surface Science 256(17) (2010) 5323-5328. [89] C. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A.A. Iliadis, M. Kompitsas, Low–Temperature Hydrogen Sensors Based on Au Nanoclusters and Schottky Contacts on ZnO Films Deposited by Pulsed Laser Deposition on Si and ${\hbox {SiO}} _ {2} $ Substrates, IEEE Sensors Journal 7(3) (2007) 448-454. [90] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Advances 2(10) (2012) 4498-4506. [91] S. Kanaparthi, S.G. Singh, Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection, ACS Applied Nano Materials 2(2) (2019) 700-706. [92] Y.J. Jeong, C. Balamurugan, D.W. Lee, Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method, Sensors and Actuators B: Chemical 229 (2016) 288-296. [93] A. Prud’homme, F. Nabki, Comparison between Linear and Branched Polyethylenimine and Reduced Graphene Oxide Coatings as a Capture Layer for Micro Resonant CO2 Gas Concentration Sensors, Sensors 20(7) (2020). [94] D. Sun, Y. Luo, M. Debliquy, C. Zhang, Graphene-enhanced metal oxide gas sensors at room temperature: a review, Beilstein journal of nanotechnology 9(1) (2018) 2832-2844. |