帳號:guest(3.129.72.26)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阿努邦
作者(外文):Anupam Ruturaj Tripathy
論文名稱(中文):聚乙烯亞胺/氮摻雜還原氧化石墨烯/氧化鋅奈米棒之層狀複合電極於室溫下之二氧化碳感測器設計
論文名稱(外文):Polyethylenimine/Nitrogen Doped Reduced Graphene Oxide/ZnO Nanorods Layered Nanocomposites for Carbon Dioxide Sensing at Room Temperature
指導教授(中文):李昇憲
戴念華
指導教授(外文):Li, Sheng-Shian
Tai, Nyan-Hwa
口試委員(中文):彭殿王
李紫原
口試委員(外文):Perng, Diahn-Warng
Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:107035422
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:67
中文關鍵詞:二氧化碳感測器非侵入式氧化鋅還原氧化石墨烯高分子聚合物慢性阻塞性肺部呼吸道疾病
外文關鍵詞:CO2 sensorNon-invasiveZnOrGOPolymerCOPD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:513
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
慢性肺阻塞病(COPD)為全球主要死因之一,患有嚴重COPD的患者無論病情是否惡化皆容易造成氣道阻塞,導致血液中二氧化碳 (CO2) 濃度升高並且引發急性呼吸衰竭。為了監測患者呼出氣體中的 CO2 濃度,非侵入性正壓呼吸器 (NIPV) 是主要且關鍵的療法。然而,NIPV具有低成本的優點,除此之外,與動脈採血等侵入式技術相比,它更為方便,例如不需要使用ICU設置重症監護室,也不須具備臨床技巧。
由於CO2的化學惰性,對其進行高靈敏度檢測是一項挑戰,已發表的文獻中只有少數材料可以有效地偵測 CO2。本研究將N 摻雜還原氧化石墨烯 (NrGO) 和聚乙烯亞胺 (PEI)逐層噴塗在由水熱法製成的 ZnO奈米棒 (ZNR)上,製備出可在在室溫下檢測CO2的PEI/NrGO/ZNR 感測器。由於垂直排列的 ZNR 擁有高縱橫比,可以防止 NrGO 和 PEI 的 3D 多孔氣體吸收層在噴塗過程中團聚。在室溫下 5% CO2與相對濕度13%的條件下,PEI/NrGO 和 PEI/NrGO/ZNR 感測器分別顯示 1.22% 和 8.63% 的感測靈敏度。 總體而言,PEI/NrGO/ZNR 奈米複合材料的感測靈敏度比 PEI/NrGO 高 7 倍以上,於 3、5、7、9 和 11% 的CO2氣體環境,PEI/NrGO/ZNR 感測器分別顯示 5.60%、8.63%、11.50%、14.14% 和 16.98% 的感測靈敏度,並具有出色的線性曲線擬合R2 = 0.9989。
PEI/NrGO/ZNR層狀奈米複合感測器的氣體感測機制可歸因於物理化學吸附過程,其中在富含胺的3D 網絡狀PEI/NrGO層上吸附的氣體分子,透過酸鹼反應和鹼催化水合作用分別產生氨基甲酸酯和碳酸。NrGO具有微孔和167.8 m2/g 的比表面積,有助於 CO2 的物理吸附。此外,於氣體脫附過程中加熱,可以在每次測試後完全恢復到起始電流。本研究製備的感測器在循環測試中表現出優異的穩定性和可重複性,因此可藉由非侵入式的方式監測患者呼氣中的 CO2濃度。
Chronic obstructive pulmonary disease (COPD) is the major cause of death worldwide. The patients with severe COPD with or without exacerbation tend to have airflow obstruction, which leads to increased levels of carbon dioxide (CO2) and subsequent hypercapnic respiratory failure. To monitor the CO2 level of the breath from patients, non-invasive positive pressure ventilation (NIPV) is a major and crucial therapeutic choice. However, NIPV provides advantages of low cost, and it is more convenient such as no requirement of ICU setting as well as it does not require airway skills as compared to invasive techniques like arterial blood sampling.
The chemical inertness of the CO2 makes it difficult to detect with great sensitivity, and only a few materials can do. In this work, we developed optimum layer by layer spray coatings of N-doped reduced graphene oxide (NrGO) and polyethylenimine (PEI) over hydrothermally produced ZnO nanorods (ZNR) to fabricate a PEI/NrGO/ZNR sensor for CO2 detection at ambient temperature (RT). The high aspect ratio of vertically aligned ZNR prevents the agglomeration of 3D porous gas absorbing layers of NrGO and PEI during spray coatings. In the presence of 5 vol% CO2 in air (13% relative humidity) at RT, the PEI/NrGO and PEI/NrGO/ZNR sensors show 1.22 and 8.63% responses, respectively. Overall, the sensing response of the PEI/NrGO/ZNR nanocomposite is more than seven times higher than that of PEI/NrGO. Upon exposure to 3, 5, 7, 9, and 11 vol% of CO2, the PEI/NrGO/ZNR sensor shows 5.60, 8.63, 11.50, 14.14, and 16.98% responses, respectively, with an excellent linear curve fitting of R2 = 0.9989. The gas sensing mechanism of the PEI/NrGO/ZNR layered nanocomposite sensor is a physicochemical adsorption process in which absorbed gas molecules on the 3D networked amine rich PEI/NrGO layers yielded carbamate and carbonic acids via standard acid-base and base-catalyzed hydration, respectively. The NrGO, possessing a specific surface area of 167.8 m2/g with ultra-micropores, aids the physisorption of CO2. Furthermore, full recovery to the base current can be achieved in each sensing cycle using a thermal-assisted recovery mechanism. Additionally, the sensors exhibit high stability and repeatability for sequentially tested operations, making them suitable for non-invasive CO2 monitoring in patients.
摘要 ii
ABSTRACT iv
ACKNOWLEDGEMENT vi
TABLE OF CONTENT viii
LIST OF FIGURES xi
LIST OF TABLES xiii
Chapter 1 1
1 Introduction 1
1.1 Overview 1
1.2 Research Motivation 4
1.3 Gas Sensor 8
1.4 Gas Sensing Property 10
1.5 Gas Sensor Technology 11
1.5.1 Metal Oxide Semiconductor 11
1.5.2 Conductive Polymer Composites 12
1.5.3 Carbon Nanomaterial 13
1.6 Previous work in our lab 14
Chapter 2 15
2 Literature Review 15
2.1 Zinc Oxide (ZnO) 15
2.1.1 Zinc Oxide Nano Crystal Structure 15
2.1.2 Zinc Oxide Nanorods 17
2.1.3 Synthesis Zinc Oxide Nanorod 17
2.2 Reduced Graphene Oxide 20
2.3 Polyethylenimine (PEI) 23
2.4 Gas Sensing Mechanism 24
Chapter 3 27
3 Experimental Procedure and Characterization Techniques 27
3.1 Sensor Fabrication 27
3.1.1 Electrode Fabrication Process 27
3.1.2 ZNR Hydrothermal Growth Process 29
3.1.3 Preparation of Graphene Oxide 30
3.1.4 Preparation of Nitrogen-Doped Reduced Graphene Oxide 31
3.1.5 Preparation of NrGO dispersion 31
3.1.6 Preparation of PEI dispersion 31
3.1.7 Sensing Layer Deposition: 31
3.2 Materials Analysis Instruments 32
3.3 Gas Sensing Measurement Setup and Process 33
Chapter 4 36
4 Result and Discussion 36
4.1 PEI/NrGO/ZNR 36
4.1.1 Scanning Electron Microscopy 36
4.1.2 Transmission Electron Microscopy 40
4.1.3 X-ray Diffraction Spectroscopy 40
4.1.4 Raman Spectroscopy 42
4.1.5 FTIR 43
4.1.6 Brunauer-Emmett-Teller 44
4.1.7 Thermogravimetric analysis 44
4.1.8 X-Ray Photo Electron Spectroscopy 46
4.1.9 Electrical Characterization 47
4.1.10 Sensing Performance Study 49
Chapter 5 55
5 Conclusions and Future Work 55
5.1 Conclusions 55
5.2 Future Work 56
References 58

[1] S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu, T. Zhang, H. Ning, Review on Smart Gas Sensing Technology, Sensors (Basel, Switzerland) 19(17) (2019) 3760.
[2] S. Srinives, T. Sarkar, R. Hernandez, A. Mulchandani, A miniature chemiresistor sensor for carbon dioxide, Analytica chimica acta 874 (2015) 54-58.
[3] World Health Organization, Air pollution, 2018. www.who.int/health-topics/air-pollution#tab=tab_1.
[4] R.T. Burnett, C.A. Pope, M. Ezzati, C. Olives, S.S. Lim, S. Mehta, H.H. Shin, G. Singh, B. Hubbell, M. Brauer, H.R. Anderson, K.R. Smith, J.R. Balmes, N.G. Bruce, H. Kan, F. Laden, A. Pruess-Ustuen, M.C. Turner, S.M. Gapstur, W.R. Diver, A. Cohen, An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure, Environmental Health Perspectives 122(4) (2014) 397-403.
[5] WHO Regional Office for Europe, Air quality guidelines : Global update 2005., 2005. http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf?ua=1.
[6] R.J. Griffin, The sources and impacts of tropospheric particulate matter, Nature Education Knowledge 4(5) (2013) 1.
[7] J.M. Daisey, W.J. Angell, M.G. Apte, Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information, Indoor Air 13(1) (2003) 53-64.
[8] K. Koistinen, D. Kotzias, S. Kephalopoulos, C. Schlitt, P. Carrer, M. Jantunen, S. Kirchner, J. McLaughlin, L. Molhave, E.O. Fernandes, B. Seifert, The INDEX project: executive summary of a European Union project on indoor air pollutants, Allergy 63(7) (2008) 810-9.
[9] World Health Organization, Air quality guidelines for Europe, 2000. https://apps.who.int/iris/handle/10665/107335. (Accessed No. 91.
[10] D. Schwela, G. Haq, C. Huizenga, W.-J. Han, H. Fabian, M. Ajero, Urban air pollution in Asian cities: Status, challenges and management, Routledge2006.
[11] C. Bur, M.E. Andersson, A.L. Spetz, A. Schütze, Detecting Volatile Organic Compounds in the ppb Range With Gas Sensitive Platinum Gate SiC-Field Effect Transistors, IEEE Sensors Journal 14(9) (2014) 3221-3228.
[12] C. Bur, M. Bastuck, A. Lloyd Spetz, M. Andersson, A. Schütze, Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics, Sensors and Actuators B: Chemical 193 (2014) 931-940.
[13] C. Jia, S. Batterman, C. Godwin, VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers, Atmospheric Environment 42(9) (2008) 2083-2100.
[14] S. Batterman, J.Y. Chin, C. Jia, C. Godwin, E. Parker, T. Robins, P. Max, T. Lewis, Sources, concentrations, and risks of naphthalene in indoor and outdoor air, Indoor air 22(4) (2012) 266-278.
[15] J.A. Bernstein, N. Alexis, H. Bacchus, I.L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S.M. Tarlo, The health effects of nonindustrial indoor air pollution, Journal of Allergy and Clinical Immunology 121(3) (2008) 585-591.
[16] J. Lelieveld, J.S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature 525(7569) (2015) 367-371.
[17] C.A. Pope Iii, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, JAMA 287(9) (2002) 1132-1141.
[18] G. D'Amato, G. Liccardi, M. D'Amato, M. Cazzola, Outdoor air pollution, climatic changes and allergic bronchial asthma, Eur Respir J 20(3) (2002) 763-76.
[19] A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sensors and Actuators B: Chemical 171-172 (2012) 25-42.
[20] D.N. Hai, L.V. Tung, D.K. Van, T.T. Binh, H.L. Phuong, N.D. Trung, N.D. Son, H.T. Giang, N.M. Hung, P.M. Khue, Lead Environmental Pollution and Childhood Lead Poisoning at Ban Thi Commune, Bac Kan Province, Vietnam, Biomed Res Int 2018 (2018) 5156812-5156812.
[21] V.G. Berezkin, Adsorption phenomena in gas-liquid chromatography, Journal of Chromatography A 65(1) (1972) 227-240.
[22] J. Beauchamp, F. Kirsch, A. Buettner, Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules, Journal of Breath Research 4(2) (2010) 026006.
[23] L. Järvi, I. MammareIIa, W. Eugster, A. Ibrom, E. Siivola, E. DeIIwik, P. Keronen, G. Burba, T. Vesala, Comparison of net CO 2 fluxes measured with open-and closed-path infrared gas analyzers in an urban complex environment, Boreal Environment Research 14(4) (2009).
[24] R. Engelbrecht, A compact NIR fiber-optic diode laser spectrometer for CO and CO2:: analysis of observed 2f wavelength modulation spectroscopy line shapes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60(14) (2004) 3291-3298.
[25] K. Isobe, K. Koba, S. Ueda, K. Senoo, S. Harayama, Y. Suwa, A simple and rapid GC/MS method for the simultaneous determination of gaseous metabolites, Journal of microbiological methods 84(1) (2011) 46-51.
[26] E. Matisová, M. Dömötörová, Fast gas chromatography and its use in trace analysis, Journal of Chromatography A 1000(1) (2003) 199-221.
[27] M.A. Raza, A. Habib, Z. Kanwal, S.S. Hussain, M.J. Iqbal, M. Saleem, S. Riaz, S. Naseem, Optical CO2 Gas Sensing Based on TiO2 Thin Films of Diverse Thickness Decorated with Silver Nanoparticles, Advances in Materials Science and Engineering 2018 (2018) 2780203.
[28] H.L. Kaplan, Effects of irritant gases on avoidance/escape performance and respiratory response of the baboon, Toxicology 47(1) (1987) 165-179.
[29] K. Permentier, S. Vercammen, S. Soetaert, C. Schellemans, Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department, International journal of emergency medicine 10(1) (2017) 14.
[30] C. Firl, R. Argudin, New OSHA Rescue Requirements for Confined Space Retrieval: What You Should Know, Occupational health & safety (Waco, Tex.) 84(11) (2015) 16, 18, 20-1.
[31] J.F. Devine, Chronic obstructive pulmonary disease: an overview, Am Health Drug Benefits 1(7) (2008) 34-42.
[32] R.M. Turner, M. DePietro, B. Ding, Overlap of Asthma and Chronic Obstructive Pulmonary Disease in Patients in the United States: Analysis of Prevalence, Features, and Subtypes, JMIR Public Health Surveill 4(3) (2018) e60-e60.
[33] X. Li, X. Cao, M. Guo, M. Xie, X. Liu, Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis for the Global Burden of Disease Study 2017, BMJ 368 (2020) m234.
[34] C. Witham, Volcanic Gases and Aerosols Guidelines, Durham: IVHHN (2005).
[35] P.J. Barnes, Immunology of asthma and chronic obstructive pulmonary disease, Nat Rev Immunol 8(3) (2008) 183-92.
[36] K.F. Chung, I.M. Adcock, Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction, European Respiratory Journal 31(6) (2008) 1334.
[37] I. Rahman, The role of oxidative stress in the pathogenesis of COPD: implications for therapy, Treat Respir Med 4(3) (2005) 175-200.
[38] W.A. Pryor, K. Stone, Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite, Ann N Y Acad Sci 686 (1993) 12-27; discussion 27-8.
[39] P.A. Kirkham, P.J. Barnes, Oxidative Stress in COPD, Chest 144(1) (2013) 266-273.
[40] A.J. McGuinness, E. Sapey, Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms, Journal of Clinical Medicine 6(2) (2017).
[41] M. Konishi, E. Akiyama, H. Suzuki, N. Iwahashi, N. Maejima, K. Tsukahara, K. Hibi, M. Kosuge, T. Ebina, K. Sakamaki, Y. Matsuzawa, M. Endo, S. Umemura, K. Kimura, Hypercapnia in patients with acute heart failure, ESC Heart Fail 2(1) (2015) 12-19.
[42] D. Castro, M. Keenaghan, Arterial Blood Gas, (2019).
[43] J.B. West, Causes of carbon dioxide retention in lung disease, N Engl J Med 284(22) (1971) 1232-6.
[44] T.M. McKeever, G. Hearson, G. Housley, C. Reynolds, W. Kinnear, T.W. Harrison, A.-M. Kelly, D.E. Shaw, Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study, Thorax 71(3) (2016) 210-215.
[45] J.H. Mehta, G.W. Williams, B.C.H. II, N.K. Grewal, E.E. George, The relationship between minute ventilation and end tidal CO2 in intubated and spontaneously breathing patients undergoing procedural sedation, PLoS one 12(6) (2017).
[46] A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification, Pure and Applied Chemistry 63(9) (1991) 1247-1250.
[47] S. Fanget, S. Hentz, P. Puget, J. Arcamone, M. Matheron, E. Colinet, P. Andreucci, L. Duraffourg, E. Myers, M. Roukes, Gas sensors based on gravimetric detection—A review, Sensors and Actuators B: Chemical 160(1) (2011) 804-821.
[48] V. Bochenkov, G. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, Metal oxide nanostructures and their applications 3 (2010) 31-52.
[49] C.A. Zito, T.M. Perfecto, A.-C. Dippel, D.P. Volanti, D. Koziej, Low-Temperature Carbon Dioxide Gas Sensor Based on Yolk–Shell Ceria Nanospheres, ACS Applied Materials & Interfaces 12(15) (2020) 17745-17751.
[50] P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review, Sci. Lett. J 4(4) (2015) 126.
[51] D. Degler, Trends and Advances in the Characterization of Gas Sensing Materials Based on Semiconducting Oxides, Sensors 18(10) (2018) 3544.
[52] G.H. Jain, MOS gas sensors: What determines our choice?, 2011 Fifth International Conference on Sensing Technology, 2011, pp. 66-72.
[53] H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors 7(3) (2007) 267-307.
[54] E. Llobet, Gas sensors using carbon nanomaterials: A review, Sensors and Actuators B: Chemical 179 (2013) 32-45.
[55] G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science 277(5330) (1997) 1232.
[56] K. Madhusoodanan, T. Vimalkumar, K. Vijayakumar, Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis, Bulletin of Materials Science 38(3) (2015) 583-591.
[57] A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc Oxide-From Synthesis to Application: A Review, Materials (Basel) 7(4) (2014) 2833-2881.
[58] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Science and technology of advanced materials (2009).
[59] Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, W.I. Milne, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensors and Actuators B: Chemical 143(2) (2010) 606-619.
[60] M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing, The Journal of Physical Chemistry C 115(26) (2011) 12763-12773.
[61] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices, Materials Today 10(5) (2007) 40-48.
[62] D. Yu, T. Trad, J.T. McLeskey, V. Craciun, C.R. Taylor, ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates, Nanoscale Res Lett, 2010, pp. 1333-1339.
[63] Y. Wang, ZnO Nanorods for Gas Sensors, Nanorods and Nanocomposites, IntechOpen2020.
[64] N.A. Alshehri, A.R. Lewis, C. Pleydell-Pearce, T.G.G. Maffeis, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications, Journal of Saudi Chemical Society 22(5) (2018) 538-545.
[65] L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey, Journal of sol-gel science and technology 39(1) (2006) 7-24.
[66] M.N. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, Y. Sun, The kinetics of the hydrothermal growth of ZnO nanostructures, Thin Solid Films 515(24) (2007) 8679-8683.
[67] R.S. Sundaram, 3 - Chemically derived graphene, in: V. Skákalová, A.B. Kaiser (Eds.), Graphene, Woodhead Publishing2014, pp. 50-80.
[68] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the american chemical society 80(6) (1958) 1339-1339.
[69] N.R. Tanguy, M. Arjmand, N. Yan, Sensors/Biosensors: Nanocomposite of Nitrogen-Doped Graphene/Polyaniline for Enhanced Ammonia Gas Detection (Adv. Mater. Interfaces 16/2019), Advanced Materials Interfaces 6(16) (2019) 1970101.
[70] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon 50(9) (2012) 3210-3228.
[71] H.-T. Chou, H.-J. Lee, C.-Y. Lee, N.-H. Tai, H.-Y. Chang, Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold, Bioresource Technology 169 (2014) 532-536.
[72] R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials, Advances in Colloid and Interface Science 270 (2019) 1-27.
[73] E. Chalangar, H. Machhadani, S.-H. Lim, K.F. Karlsson, O. Nur, M. Willander, H. Pettersson, Influence of morphology on electrical and optical properties of graphene/Al-doped ZnO-nanorod composites, Nanotechnology 29(41) (2018) 415201.
[74] X. Shen, H. Du, R.H. Mullins, R.R. Kommalapati, Polyethylenimine Applications in Carbon Dioxide Capture and Separation: From Theoretical Study to Experimental Work, Energy Technology 5(6) (2017) 822-833.
[75] F. Mani, M. Peruzzini, P. Stoppioni, CO2 absorption by aqueous NH3 solutions: speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study, Green Chemistry 8(11) (2006) 995-1000.
[76] S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Advances 5(5) (2015) 3306-3351.
[77] F. El-Taib Heakal, W.R. Abd-Ellatif, N.S. Tantawy, A.A. Taha, Characterization of electrodeposited undoped and doped thin ZnO passive films on zinc metal in alkaline HCO3−/CO32− buffer solution, RSC Advances 8(69) (2018) 39321-39333.
[78] A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Reports on progress in physics 72(12) (2009) 126501.
[79] G.H. Jun, S.H. Jin, B. Lee, B.H. Kim, W.-S. Chae, S.H. Hong, S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells, Energy & Environmental Science 6(10) (2013) 3000-3006.
[80] R.R. Kumar, T. Murugesan, A. Dash, C.-H. Hsu, S. Gupta, A. Manikandan, A.k. Anbalagan, C.-H. Lee, N.-H. Tai, Y.-L. Chueh, H.-N. Lin, Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study, Applied Surface Science 536 (2021) 147933.
[81] X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, Z. Lin, X. Zhang, The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity, Carbon 50(10) (2012) 3407-3415.
[82] S.K. Bikkarolla, F. Yu, W. Zhou, P. Joseph, P. Cumpson, P. Papakonstantinou, A three-dimensional Mn 3 O 4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media, Journal of Materials Chemistry A 2(35) (2014) 14493-14501.
[83] H. Liu, T. Kuila, N.H. Kim, B.-C. Ku, J.H. Lee, In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties, Journal of Materials Chemistry A 1(11) (2013) 3739-3746.
[84] H. Heydari, M.B. Gholivand, A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite, Applied Physics A 123(3) (2017) 187.
[85] Z. Lin, G. Waller, Y. Liu, M. Liu, C.-P. Wong, Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction, Advanced Energy Materials 2(7) (2012) 884-888.
[86] F. Wang, P. Liu, T. Nie, H. Wei, Z. Cui, Characterization of a polyamine microsphere and its adsorption for protein, International journal of molecular sciences 14(1) (2013) 17-29.
[87] S.-Y. Lee, S.-J. Park, Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers, Journal of Colloid and Interface Science 389(1) (2013) 230-235.
[88] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Pérez, CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15, Applied Surface Science 256(17) (2010) 5323-5328.
[89] C. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A.A. Iliadis, M. Kompitsas, Low–Temperature Hydrogen Sensors Based on Au Nanoclusters and Schottky Contacts on ZnO Films Deposited by Pulsed Laser Deposition on Si and ${\hbox {SiO}} _ {2} $ Substrates, IEEE Sensors Journal 7(3) (2007) 448-454.
[90] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Advances 2(10) (2012) 4498-4506.
[91] S. Kanaparthi, S.G. Singh, Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection, ACS Applied Nano Materials 2(2) (2019) 700-706.
[92] Y.J. Jeong, C. Balamurugan, D.W. Lee, Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method, Sensors and Actuators B: Chemical 229 (2016) 288-296.
[93] A. Prud’homme, F. Nabki, Comparison between Linear and Branched Polyethylenimine and Reduced Graphene Oxide Coatings as a Capture Layer for Micro Resonant CO2 Gas Concentration Sensors, Sensors 20(7) (2020).
[94] D. Sun, Y. Luo, M. Debliquy, C. Zhang, Graphene-enhanced metal oxide gas sensors at room temperature: a review, Beilstein journal of nanotechnology 9(1) (2018) 2832-2844.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *