帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝芷觀
作者(外文):Hsieh, Chih-Kuan
論文名稱(中文):擴增實境的室內導航設計對尋路任務績效及空間知識習得之影響
論文名稱(外文):Effects of indoor navigation design in augmented reality on wayfinding task performance and spatial knowledge acquisition
指導教授(中文):李昀儒
指導教授(外文):Lee, Yun-Ju
口試委員(中文):温玉瑭
黃瀅瑛
口試委員(外文):WEN, Yu-Tang
Huang, Ying-Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:107034567
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:室內導航導航介面空間知識習得尋路任務擴增實境
外文關鍵詞:indoor navigationnavigation interfacespatial knowledge acquisitionwayfindingaugmented reality
相關次數:
  • 推薦推薦:0
  • 點閱點閱:326
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
只要具備在空間中移動的需求,尋路問題便會頻繁地出現。在不熟悉的環境中人們可能經歷迷航的挫折,甚至影響未來對於執行尋路任務的焦慮感。尋路困難在多樓層的室內尤其明顯,由於多樓層的室內具有三維移動的特性,以及建築造成的封閉性,造成尋路者更大的困難。三維地圖被證實能夠有較快的空間知識學習和較高的尋路信心,二維地圖除了是最常見的呈現方式,同時被證實擁有較好的路徑知識學習效果,箭頭式導航則是擴增實境導航中最常使用的介面。本研究旨在評估能夠兼顧尋路表現及空間知識學習的介面,並且測試它們在擴增實境環境中是否與過去紙本地圖研究的結果是否不同。
本研究比較箭頭式導航、二維地圖和三維地圖在尋路表現和空間知識學習的差異,三種介面在穿戴式擴增實境環境中進行比較,並徵求30位20至29歲健康女性使用擴增實境眼鏡在陌生建築中進行導航。導航結束後進行指向任務、場景再認和路徑知識等測驗以評估使用三種介面對空間知識(俯瞰知識及路徑知識)的學習效果。同時導航過程中的暫停、失誤的次數,以及其尋路距離作為尋路任務的評估指標。本研究也蒐集影響尋路任務績效及空間學習效果的因素,例如空間熟悉度、性別、視覺空間工作記憶能力及方向感能力以排除可能的偏誤。
結果顯示箭頭式導航在尋路績效上優於三維地圖,且在較簡單的路徑上更為明顯。同時,箭頭式導航與二維地圖在提供相同導航資訊時,兩者的尋路績效及路徑知識學習並無差異。另外,導航任務的主觀負荷差異主要來自於介面提供的導航資訊量,而介面類型的差異影響較小。建議未來研究量化導航路線複雜度及建築特性,以深入探討不同介面在各種環境中的尋路績效,並且建議將導航功能(定位、追蹤與路徑引導)與導航介面作為實驗操弄變項,以釐清兩者對尋路導航的影響及可能的交互作用。
The wayfinding issue always exists as long as people need to move in the environment. In an unfamiliar environment, people may experience disorientation and even cause anxiety about performing wayfinding tasks. The difficulties in wayfinding tasks are particularly evident in multilevel buildings. The multilevel buildings three-dimensional movement characteristics and the closedness caused by the walls, which makes wayfinding much more difficult. A three-dimension map is verified with faster spatial knowledge acquisition and higher confidence. A two-dimension map is the most common form on paper maps, and arrow navigation was the most commonly used interface in augmented reality navigation. The present study aims to evaluate an interface that can balance both wayfinding performance and spatial knowledge acquisition and examine whether the spatial knowledge acquisition and wayfinding performance in the augmented reality glasses different from the results of previous studies doing by paper maps.
The current experiment compared the differences in wayfinding performance and spatial knowledge acquisition among the arrow navigation, two-dimension map, and three-dimension map. Three maps were employed to the participants by a wearable augmented reality environment. Thirty healthy women aged 20 to 29 were participated in the experiment to wear the augmented reality glasses and navigate in an unfamiliar building. After navigation, they conducted pointing tasks, scene recognition, and route knowledge questionnaires to evaluate spatial knowledge acquisition differences. Meanwhile, the number of pauses, error steps and walking distance during the navigation were recorded to evaluate the wayfinding performance. The present study also collected factors that affected the performance of wayfinding tasks and spatial acquisition, such as familiarity, gender, visual-spatial working memory, and sense of direction to control the possible bias.
The results showed that arrow navigation was superior to three-dimensional maps in wayfinding performance, and it is more evident on straightforward routes. The result also revealed no difference in wayfinding performance and route knowledge acquisition when the arrow navigation and the two-dimensional map provided the same navigation information. In addition, the differences in the subjective task load of the navigation tasks mainly resulted from the amount of navigation information provided by the interface, but not the difference of the interface form. Quantification of the complexity in the routes and the architectural characteristics are recommended to explore further the wayfinding performance of different interfaces in various environments. Navigation functions (positioning, tracking, and route guidance) and interfaces are recommended to design as independent variables in future research to clarify the impact on wayfinding tasks and the interaction between them.
摘要 II
第一章 緒論 9
1.2. 研究目的與假設 10
1.3. 研究架構與流程 11
第二章 文獻回顧 13
2.1 尋路行為 13
2.1.1. 影響尋路的因素 13
2.1.2. 尋路績效 14
2.1.3. 室內尋路 14
2.2 空間知識 15
2.2.1. 空間知識的習得 16
2.2.2. 影響空間知識習得的因素 17
2.2.3. 空間知識習得之量測 19
2.3 導航系統定義 20
2.3.1. 室內定位導航介面 20
2.3.2. 導航介面的差異 22
2.4. 小結 24
第三章 研究方法 24
3.1 問題定義與描述 24
3.2 實驗流程 25
3.2.1. 研究對象與使用器材 25
3.2.2. 實驗材料 25
3.3 實驗方法與步驟 29
3.4 數據分析 34
3.5 統計方法 38
第四章 結果 39
4.1 個人特質 40
4.2 尋路績效 42
4.3 俯瞰知識學習 48
4.4 路徑知識學習 53
4.5 主觀評估 55
第五章 討論 57
5.1 導航介面對室內尋路績效的影響 57
5.2 導航介面對室內空間知識學習的影響 59
5.3 導航介面在主觀評估的差異 61
5.4 研究限制 62
第六章 結論與未來方向 63
參考文獻 64
附錄A- 任務負荷主觀量表(NASA-TLX) 70
附錄B- 系統易用性量表(System Usability Scale, SUS) 71
附錄C- 路徑知識測驗 72
Allen, G. L. (2004). Human Spatial Memory: Remembering Where (1st ed.), London, England: Psychology Press.
Bigler, S., Brügger, A., Utzinger, F., & Richter, K. F. (2014, September). Up, down, turn around: Assisted wayfinding involving level changes. In International Conference on Spatial Cognition (pp. 176-189). Springer, Cham.
Brooks, L. R. (1967). The suppression of visualization by reading. The Quarterly journal of experimental psychology, 19(4), 289-299. doi: 10.1080/14640746708400105
Carpman, J. R., & Grant, M. A. (2001). Design that cares: planning health facilities for patients and visitors, 3rd ed. Chicago: American Hospital Publishing Inc.
Chase. W. G., & Chi. M. T. H. (1979). Cognitive skill: Implications for spatial skill in-large-scale environments. In J. Harvey (Ed.), Cognition, social behavior, and the environment, Potomac. MD: Erlbaum
Chen, J. L., & Stanney, K. M. (1999). A theoretical model of wayfinding in virtual environments: Proposed strategies for navigational aiding. Presence, 8(6), 671-685. doi: 10.1162/105474699566558
Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of environmental psychology, 24(3), 329-340. doi: 10.1016/j.jenvp.2004.08.006
Fallah, N., Apostolopoulos, I., Bekris, K., & Folmer, E. (2013). Indoor human navigation systems: A survey. Interacting with Computers, 25(1), 21-33. doi: 10.1093/iwc/iws010
Fan, Q., Sun, B., Sun, Y., & Zhuang, X. (2017). Performance enhancement of MEMS-based INS/UWB integration for indoor navigation applications. IEEE Sensors Journal, 17(10), 3116-3130. doi: 10.1109/JSEN.2017.2689802
Fontaine, S. (2001, September). Spatial cognition and the processing of verticality in underground environments. In International Conference on Spatial Information Theory (pp. 387-399). Springer, Berlin, Heidelberg.
Gärling, T., Lindberg, E., & Mäntylä, T. (1983). Orientation in buildings: Effects of familiarity, visual access, and orientation aids. Journal of Applied Psychology, 68(1), 177. doi: 10.1037//0021-9010.68.1.177
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447. doi: 10.1016/S0160-2896(02)00116-2
Holscher, C., Mellinger, T., Vrachliotis, G., Brosamle, M., & Knauff, M. (2006). Up the down staircase: Wayfinding strategies in multi-level buildings. Journal of Environmental Psychology, 26(4), 284-299. doi: 10.1016/j.jenvp.2006.09.002
Kelley, J. F. (1984). An iterative design methodology for user friendly natural language office information applications. ACM Transaction son Office Information Systems, 2, 26-41. doi: 10.1145/357417.357420
Koch, C., Neges, M., König, M., & Abramovici, M. (2014). Natural markers for augmented reality-based indoor navigation and facility maintenance. Automation in Construction, 48, 18-30. doi: 10.1016/j.autcon.2014.08.009
Kozlowski, L. T., & Bryant, K. J. (1977). Sense of direction, spatial orientation, and cognitive maps. Journal of Experimental Psychology: human perception and performance, 3(4), 590. doi: 10.1037/0096-1523.3.4.590
Kulyukin, V., Gharpure, C., Nicholson, J., & Pavithran, S. (2004). RFID in robot-assisted indoor navigation for the visually impaired. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems Vol. 2,( pp. 1979-1984). IEEE.
Lawton, C.A. (1994). Gender Differences In Way-Finding Strategies - Relationship To Spatial Ability And Spatial Anxiety. Proceedings of the American Psychological Society, pp. 765-779. doi: 10.1007/BF01544230
Lawton, C. A. (1996). Strategies for indoor wayfinding: The role of orientation. Journal of environmental psychology, 16(2), 137-145. doi: 10.1006/jevp.1996.0011
Lorenz, A., Thierbach, C., Baur, N., & Kolbe, T. H. (2013). Map design aspects, route complexity, or social background? Factors influencing user satisfaction with indoor navigation maps. Cartography and Geographic Information Science, 40(3), 201-209. doi: 10.1080/15230406.2013.807029
Lu, Y., & Ye, Y. (2019). Can people memorize multilevel building as volumetric map? A study of multilevel atrium building. Environment and Planning B: Urban Analytics and City Science, 46(2), 225-242. doi: 10.1177/2399808317705659
Lynch, K.(1960). The Image of City. Cambridge, MA and London, England: The MIT Press.
Ma, Z., Poslad, S., Bigham, J., Zhang, X., & Men, L. (2017). A BLE RSSI ranking based indoor positioning system for generic smartphones. In 2017 Wireless Telecommunications Symposium (pp. 1-8). IEEE.
Mulloni, A., Seichter, H., & Schmalstieg, D. (2011). Handheld augmented reality indoor navigation with activity-based instructions. Proceedings of the 13th international conference on human computer interaction with mobile devices and services, 211-220. doi: 10.1145/2037373.2037406
Münzer, S., Zimmer, H. D., & Baus, J. (2012). Navigation assistance: A trade-off between wayfinding support and configural learning support. Journal of experimental psychology: applied, 18(1), 18. doi: 10.1037/a0026553
Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of environmental psychology, 26(4), 300-308. doi: 10.1016/j.jenvp.2006.08.001
Rehman, U., & Cao, S. (2016). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151. doi: 10.1109/THMS.2016.2620106
Rossano, M. J., & Moak, J. (1998). Spatial representations acquired from computer models: Cognitive load, orientation specificity and the acquisition of survey knowledge. British Journal of Psychology, 89, 481–497. doi: 10.1111/j.2044-8295.1998.tb02698.x
Shumaker, S. A., & Reizenstein, J. E. (1982). Environmental factors affecting inpatient stress in acute care hospitals. In G.W. Evans (Eds.), Environmental stress (pp. 179-223). New York, NY: Cambridge university press.
Takeuchi, Y. (1992). Sense of direction and its relationship with geographical orientation, personality traits and mental ability. Japanese Journal of Educational Psychology, 40, 47–53. doi: 10.5926/jjep1953.40.1_47
Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive psychology, 14(4), 560-589. doi: 10.1016/0010-0285(82)90019-6
Vanclooster, A., Van de Weghe, N., & De Maeyer, P. (2016). Integrating indoor and outdoor spaces for pedestrian navigation guidance: A review. Transactions in GIS, 20(4), 491-525. doi: 10.1111/tgis.12178
Witmer, B. G., Sadowski, W. J., & Finkelstein, N. M. (2002). VE-based training strategies for acquiring survey knowledge. Presence: Teleoperators & Virtual Environments, 11(1), doi: 10.1162/105474602317343622
邱皓政 (2010)。量化研究與統計分析-SPSS資料分析範例。臺北市:五南。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *