|
1. Basiron, H., Jaya Kumar, Y., Ong, S. G., Ngo, H. C., & C Suppiah, P, “A review on automatic text summarization approaches,” Journal of Computer Science, 12(4), 178-190, 2016. 2. Becher, M., Endres-Niggemeyer, B., & Fichtner, G., “Scenario forms for web information seeking and summarizing in bone marrow transplantation,” In COLING-02: Multilingual Summarization and Question Answering, 2002. 3. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C., “A neural probabilistic language model,” Journal of machine learning research, 3(Feb), 1137-1155, 2003. 4. Bilgin, M., & Şentürk, İ. F., “Sentiment analysis on Twitter data with semi-supervised Doc2Vec,” In International Conference on Computer Science and Engineering (UBMK), pp. 661-666, IEEE, 2017. 5. Blair, W. R., Tetuan, D. J., Turcotte, W. E., (2006). U.S. Patent No. 7,072,061. Washington, DC: U.S. Patent and Trademark Office. 6. Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C., “Class-based n-gram models of natural language,” Computational linguistics, 18(4), 467-479, 1992. 7. Chaimongkol, P., & Aizawa, A., (2013), “Utilizing LDA Clustering for Technical Term Extraction,” In Proceedings of the 19th Annual Meeting of the Association for Natural Language Processing (ANLP), pp. 686-689. 8. Crosby, D., “The ideal transformer”, IRE Transactions on Circuit Theory, 5, pp. 145, 1958. 9. De Rybel, T., Singh, A., Vandermaar, J. A., Wang, M., Marti, J. R., & Srivastava, K. D., “Apparatus for online power transformer winding monitoring using bushing tap injection,” IEEE Transactions on Power Delivery, 24(3), pp. 996-1003, 2009. 10. Ercan, G. & Cicekli, I., “Using lexical chains for keyword extraction,” Information Processing & Management,” 43(6), 1705-1714, 2007. 11. Gaikwad, D. K., & Mahender, C. N., “A review paper on text summarization,” International Journal of Advanced Research in Computer and Communication Engineering, 5(3), 154-160, 2016. 12. Garbade, M. J., “A quick introduction to text summarization in machine learning,” In Toward Data Science, Retrieved from https://towardsdatascience.com/a-quick-introduction-to-text-summarization-in-machine-learning-3d27ccf18a9f, 2018. 13. Gockenbach, E., & Borsi, H., “Condition monitoring and diagnosis of power transformers,” In 2008 International Conference on Condition Monitoring and Diagnosis, pp. 894-897, IEEE. 14. Grbovic, M., & Cheng, H., (2018, July), “Real-time personalization using embeddings for search ranking at Airbnb,” In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 311-320. 15. Greenbacker, C. F., “Towards a framework for abstractive summarization of multimodal documents,” In Proceedings of the ACL Student Session, pp. 75-80, Association for Computational Linguistics, 2011. 16. Guénoche, A., Hansen, P., & Jaumard, B., “Efficient algorithms for divisive hierarchical clustering with the diameter criterion,” Journal of classification, 8(1), pp. 5-30, 1991. 17. Gupta, V., & Lehal, G. S., “A survey of text summarization extractive techniques,” Journal of emerging technologies in web intelligence, 2(3), 258-268, 2010. 18. Gupta, M. S., “Georg Simon Ohm and Ohm's Law”, IEEE Transactions on Education, 23(3), pp. 156-162, 1980. 19. Harris, Z. S., “Distributional structure,” Word, 10(2-3), 146-162, 1954. 20. Helen, A., “Automatic Abstractive Summarization Task for New Article,” EMITTER International Journal of Engineering Technology, 6(1), pp. 22-34, 2018. 21. Hardeniya, N., “NLTK essentials,” Packt Publishing Ltd, Birmingham, 2015. 22. Herrera, J. P. & Pury, P. A., “Statistical keyword detection in literary corpora,” The European Physical Journal B, 63(1), 135-146, 2008. 23. Hovy, E., & Lin, C. Y., “Automated text summarization and the SUMMARIST”. Advances in automatic text summarization, 14, 1999. 24. Kaikhah, K., “Text summarization using neural networks,” Faculty Publications-Computer Science, 2004. 25. Kikuchi, Y., Hirao, T., Takamura, H., Okumura, M., & Nagata, M., “Single document summarization based on nested tree structure,” In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 315-320, 2014. 26. Kohonen, T., “The self-organizing map,” Neurocomputing, vol. 21, no. 1-3, Pages 1-6, 1998. 27. Korshunov A., “Keyterm extraction from microblogs' messages using Wikipedia-based keyphraseness measure,” In 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 925-931, IEEE, 2012. 28. Kupiec, J., Pedersen, J., & Chen, F., “A trainable document summarizer,” In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 68-73, 1995. 29. Kulkarni, S. V., & Khaparde, S. A., “Transformer engineering: design and practice,” (Vol. 25). CRC press, 2004. 30. Jain, A. K., Murty, M. N., & Flynn, P. J., “Data clustering: a review,” ACM computing surveys (CSUR), 31(3), pp. 264-323, 1999. 31. Johnson, S. C., “Hierarchical clustering schemes,” Psychometrika, 32(3), pp. 241-254, 1967. 32. Liau, B. Y., & Tan, P. P., “Gaining customer knowledge in low cost airlines through text mining,” Industrial Management & Data Systems, 114(9), pp. 1344-1359, 2014. 33. Lau, J. H., & Baldwin, T., “An empirical evaluation of doc2vec with practical insights into document embedding generation,” arXiv preprint arXiv:1607.05368,2016. 34. Le, Q., & Mikolov, T., “Distributed representations of sentences and documents,” In International conference on machine learning, pp. 1188-1196, 2014. 35. Li, D., Li, S., Li, W., Wang, W. & Qu, W., (2010, July), “A semi-supervised key phrase extraction approach: learning from title phrases through a document semantic network,” In Proceedings of the ACL 2010 conference short papers, pp. 296-300, Association for Computational Linguistics. 36. Li, J., Huang, G., Fan, C., Sun, Z., & Zhu, H., “Key word extraction for short text via word2vec, doc2vec, and textrank,” Turkish Journal of Electrical Engineering & Computer Sciences, 27(3), 1794-1805, 2019. 37. Liu, Z., Li, P., Zhang, Y., & Sun, M., “Clustering to find exemplar terms for keyphrase extraction,” Proceeding, In Conference on Empirical Methods in Natural Language Processing, Volume 1-Volume 1 (pp. 257-266). Association for Computational Linguistics, 2009. 38. MacQueen, J., “Some methods for classification and analysis of multivariate observations,” In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1, 14, pp 281-297, 1967. 39. Mallett, D., Elding, J., & Nascimento, M. A., “Information-content based sentence extraction for text summarization,” In International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004, Vol. 2, pp. 214-218, IEEE. 40. Matsumoto, H., Shibako, Y., Shiihara, Y., Nagata, R., & Neba, Y., “Three-phase lines to Single-phase Coil Planar Contactless Power Transformer,” IEEE Transactions on Industrial Electronics, 65(4), pp. 2904-2914, 2018. 41. Mehri. A., & Darooneh. A. H., “Keyword extraction by non-extensivity measure,” Physical Review E, 83(5), 056106. 42. Mihalcea, R., “Graph-based ranking algorithms for sentence extraction, applied to text summarization,” In Proceedings of the ACL Interactive Poster and Demonstration Sessions, pp. 170-173, 2004 43. Mikolov, T., Chen, K., Corrado, G., & Dean, J. “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. 44. Nagpal, A., Jatain, A., & Gaur, D., “Review based on Data Clustering Algorithms,” IEEE Conference on Information and Communication Technologies, 2013. 45. Nandi, R. N., Zaman, M. A., Al Muntasir, T., Sumit, S. H., Sourov, T., & Rahman, M. J. U. (2018, September), “Bangla news recommendation using doc2vec,” In 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1-5, IEEE. 46. Nenkova, A., Maskey, S., & Liu, Y., “Automatic summarization” Foundations and Trends® in Information Retrieval, 5(2–3), 103-233, 2011. 47. Neto, J. L., Freitas, A. A., & Kaestner, C. A., “Automatic text summarization using a machine learning approach,” In Brazilian Symposium on Artificial Intelligence, pp. 205-215, Springer, Berlin, Heidelberg, 2002. 48. Quinlan, J. R., “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81-106, 1986. 49. Oya, T., Mehdad, Y., Carenini, G., & Ng, R., “A template-based abstractive meeting summarization: Leveraging summary and source text relationships,” In Proceedings of the 8th International Natural Language Generation Conference (INLG), pp. 45-53, 2014. 50. Page, L., Brin, S., Motwani, R., & Winograd, T., “The pagerank citation ranking: Bringing order to the web,” Stanford InfoLab, 1999. 51. Pyrhönen, J., Montonen, J., Lindh, P., Vauterin, J., & Otto, M., “Replacing copper with new carbon nanomaterials in electrical machine windings,” International Review of Electrical Engineering (IREE), 2015. 52. Radev, D. R., Jing, H., Styś, M., & Tam, D., “Centroid-based summarization of multiple documents,” Information Processing & Management, 40(6), 919-938, 2004. 53. Saggion, H., & Poibeau, T., “Automatic text summarization: Past, present and future.” In Multi-Source, Multilingual Information Extraction and Summarization pp. 3-21, Springer, Berlin, Heidelberg, 2013. 54. Salton, G. & McGill, M. J., “Introduction to modern information retrieval,” McGraw Hill Book Company, 1983. 55. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W. P. & Lin, C. T., “A review of clustering techniques and developments,” Neurocomputing, 267, 664-681, 2017. 56. Siddiqi, S. & Sharan, A., “Keyword and keyphrase extraction techniques: a literature review,” International Journal of Computer Applications, 109(2), 2015. 57. Smith, R. T., Taylor, S., & Maher, S., “Modelling electromagnetic induction via accelerated electron motion,” Journal of Physics, 93(7), pp. 802-806, 2014. 58. Trappey, A. J., Trappey, C. V. & Govindarajan, U. H., “Knowledge extraction of rfq engineering documents for smart manufacturing,” In 22th International Conference Advances in Materials and Processing Techniques, Taipei, Taiwan, 2018. 59. Uysal, A. K., & Gunal, S., “The impact of preprocessing on text classification,” Information Processing & Management, 50(1), pp. 104-112, 2014. 60. Uzun, Y., “Keyword extraction using Naive Bayes,” In Bilkent University, Department of Computer Science, Turkey, 2005. 61. VRL, N. (2009, December), “An unsupervised approach to domain-specific term extraction,” In Australasian Language Technology Association Workshop 2009, pp. 94. 62. Wong, K. F., Wu, M., & Li, W., “Extractive summarization using supervised and semi-supervised learning,” In Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1, (pp. 985-992). Association for Computational Linguistics, 2008. 63. Wongvasu, N., “Methodologies for providing rapid and effective response to request for quotation (RFQ) of mass customization products,” Dissertation Abstracts International 62-10B, pp. 372, 2001. 64. Wu, Y. F. B., Li, Q., Bot, R. & Chen, X. “Domain-specific keyphrase extraction,” In Proceedings of the 14th ACM international conference on Information and knowledge management, pp. 283-284, ACM, 2005. 65. Xue, B., Fu, C., & Shaobin, Z., (2014, June), “A study on sentiment computing and classification of sina weibo with word2vec,” In IEEE International Congress on Big Data, pp. 358-363, IEEE, 2014. 66. Yogan, J. K., Goh, O. S., Halizah, B., Ngo, H. C., & Puspalata, C., “A review on automatic text summarization approaches,” Journal of Computer Science, 12(4), 178-190, 2016. 67. Yousefi-Azar, M., & Hamey, L., “Text summarization using unsupervised deep learning,” Expert Systems with Applications, 68, 93-105, 2017. 68. Zhang, K., Xu, H., Tang, J., & Li. J., “Keyword extraction using support vector machine,” In international conference on web-age information management pp. 85-96, Springer, Berlin, Heidelberg, 2006. 69. Zhang, C., Wang, X., Yu, S., & Wang, Y. (2018, June), “Research on Keyword Extraction of Word2vec Model in Chinese Corpus,” In 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), pp. 339-343, IEEE. 70. 王韋智 (2018),以多語系自然語言理解與機器學習為基之智慧型專利摘要系統(指導教授:張瑞芬),碩士論文,國立清華大學,工業工程與工程管理學系。
|