帳號:guest(18.227.107.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李喬瑋
作者(外文):Li, Chiao-Wei
論文名稱(中文):利用數據驅動計算非合作賽局之定價均衡的數值實驗
論文名稱(外文):Experiment of a data-driven equilibrium pricing algorithm in a non-cooperative game
指導教授(中文):李雨青
指導教授(外文):Lee, Yu-Ching
口試委員(中文):陳柏安
郭佳瑋
口試委員(外文):Chen, Po-An
Kuo, Chia-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:107034532
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:36
中文關鍵詞:需求學習動態訂價奈許均衡線上學習賽局理論
外文關鍵詞:demand learningdynamic pricingNash equilibriumonline learninggame theoryaggregation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:700
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
近年來動態定價演算法已廣泛使用於價格決策上。我們考慮在未知環境需求曲線的條件下,存在販賣同一商品且相互競爭的多間公司,並假設此需求曲線僅與自身與競爭者之訂價策略有關。本研究設計出一套資料驅動均衡價格演算法並利用歷史資料進行環境需求曲線的估計及最佳化公司利益。在本實驗中我們比較在不同環境假設的狀況下此演算法的收斂情形及探討競爭環境中存在已知公司與否對演算法之影響,並進一步針對歷史資料使用量的差異與估計的準確度進行分析。從數值實驗的結果中可發現各環境假設條件下,在經過一定時間後此演算法之收斂比率均可達百分之九十五以上,因此可由此說明在相互競爭且未知環境需求曲線的賽局中,無論各公司真實環境需求曲線形式為何,均可透過此演算法進行估計及價格決策。
In recent research, demand learning and dynamic pricing algorithm have widely applied in making pricing strategies. We consider a periodic-review pricing problem where there are N firms competing in the market of a commodity in a stationary demand environment. The firm’s demand consists of a linear model which is conditional on both its selling prices and other firms’ with an independent and identically random noise. We design a data-driven equilibrium pricing algorithm where each firm can modify the price over discretized time without knowing the underlying demand function. Each firm’s objective is to sequentially set prices to maximize revenues under demand uncertainty and competition. We conduct the numerical experiments to realize the effectiveness of the algorithm in well specified and misspecified settings. We observe that the fraction of optimal price can reach at least 95% after 10000 periods regardless of the setting of environment and the number of competitors in the market. In other words, our research reveal that no matter what form the true underlying demand curve is, the firms are able to make their pricing strategies well by the algorithm.
Contents
Abstract------------------------------------------------------- i
摘要------------------------------------------------------------ii
List of Tables------------------------------------------------- v
List of Figures------------------------------------------------ vi
Chapter 1 Introduction---------------------------------------- 1
Chapter 2 Literature Review----------------------------------- 3
2.1 Dynamic Pricing Problem------------------------------------ 3
2.2 Demand Learning-------------------------------------------- 4
2.3 Generalized Nash Equilibrium Problems---------------------- 5
2.4 Learning and Pricing in a Competitive Environment---------- 7
Chapter 3 Model----------------------------------------------- 9
3.1 Environment------------------------------------------------ 9
3.2 Algorithm-------------------------------------------------- 11
Chapter 4 Numerical Experiment-------------------------------- 15
4.1 Performance Measure---------------------------------------- 15
4.2 Validating the Difference of Underlying Demand Function---- 16
4.3 Validating the Impact of the Firm with Known Demand Function
--------------------------------------------------------------- 23
4.4 Validating the Effectiveness of Aggregation---------------- 28
Chapter 5 Conclusions and the Future Work---------------------- 32
References----------------------------------------------------- 34

Arrow, K. J., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. Econometrica: Journal of the Econometric Society, 265-290.
Bertsimas, D., & Perakis, G. (2006). Dynamic pricing: A learning approach. In Mathematical and computational models for congestion charging (pp. 45-79). Springer, Boston, MA.
Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing the demand function: Risk bounds and near-optimal algorithms. Operations Research, 57(6), 1407-1420.
Besbes, O., & Zeevi, A. (2015). On the (surprising) sufficiency of linear models for dynamic pricing with demand learning. Management Science, 61(4), 723-739.
Bitran, G. R., & Mondschein, S. V. (1997). Periodic pricing of seasonal products in retailing. Management science, 43(1), 64-79.
Bitran, G. R., & Mondschein, S. V. (1997). Periodic pricing of seasonal products in retailing. Management science, 43(1), 64-79.
Bitran, G. R., & Wadhwa, H. K. S. (1996). A methodology for demand learning with an application to the optimal pricing of seasonal products.
Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice model. Operations Research, 60(4), 965-980.
Chen, B., Chao, X., & Ahn, H. S. (2019). Coordinating pricing and inventory replenishment with nonparametric demand learning. Operations Research, 67(4), 1035-1052.
Cooper, W. L., Homem-de-Mello, T., & Kleywegt, A. J. (2015). Learning and pricing with models that do not explicitly incorporate competition. Operations research, 63(1), 86-103.
Den Boer, A. V., & Zwart, B. (2014). Simultaneously learning and optimizing using controlled variance pricing. Management science, 60(3), 770-783.
Fisher, M., & Raman, A. (1996). Reducing the cost of demand uncertainty through accurate response to early sales. Operations research, 44(1), 87-99.
Gallego, G., & Hu, M. (2014). Dynamic pricing of perishable assets under competition. Management Science, 60(5), 1241-1259.
Gallego, G., & Van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science, 40(8), 999-1020.
Gallego, G., & Van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications to network yield management. Operations research, 45(1), 24-41.
Kachani, S., Perakis, G., & Simon, C. (2007). Modeling the transient nature of dynamic pricing with demand learning in a competitive environment. In Network science, nonlinear science and infrastructure systems (pp. 223-267). Springer, Boston, MA.
Kwon, C., Friesz, T. L., Mookherjee, R., Yao, T., & Feng, B. (2009). Non-cooperative competition among revenue maximizing service providers with demand learning. European Journal of Operational Research, 197(3), 981-996.
Levin, Y., McGill, J., & Nediak, M. (2009). Dynamic pricing in the presence of strategic consumers and oligopolistic competition. Management science, 55(1), 32-46.
McKenzie, L. W. (1959). On the existence of general equilibrium for a competitive market. Econometrica: journal of the Econometric Society, 54-71.
Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica: Journal of the Econometric Society, 520-534.
Rothschild, M. (1974). A two-armed bandit theory of market pricing. Journal of Economic Theory, 9(2), 185-202.
Şen, A., & Zhang, A. X. (2009). Style goods pricing with demand learning. European Journal of Operational Research, 196(3), 1058-1075.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *