帳號:guest(18.217.209.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃 蘋
作者(外文):Huang, Pin
論文名稱(中文):以支持向量機分類具優先序的萃智趨勢解答辨識
論文名稱(外文):Prioritized TRIZ Trend Solution Identification Using Support Vector Machine
指導教授(中文):許棟樑
葉維彰
指導教授(外文):Sheu, Dong-Liang
Yeh, Wei-Chang
口試委員(中文):黃乾怡
蔡若鵬
口試委員(外文):Huang, Chian-Yi
Tsai, Ruo-Peng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:107034526
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:184
中文關鍵詞:萃智演化趨勢支持向量機
外文關鍵詞:TRIZEvolutionary TrendSupport Vector Machine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
在傳統的萃智解題方法中,如使用演化趨勢,解題者必須將所有潛在可能的演化趨勢都檢查過,才能得到幾個解答模型。這樣的過程費時且仰賴專家的經驗,不同的專家也會得到不同的解答。因此本研究發展出一套以支持向量機為基礎的數理方法辨識萃智趨勢解答,取代傳統完全依賴個別專家知識的邏輯推理方式。數理量化方法讓使用者可以快速且有效地得到具有優先序的解答,這些解答來自目前的趨勢與已被許多專家解答過的案例資料庫,這些都是前人的經驗和知識的累積,並且透過客觀的數理方法可以取代原本專家主觀的個人判斷。本研究提供萃智解題方法的典範轉移新模式。
本研究貢獻如下:
應用支持向量機於趨勢解題工具,比傳統的趨勢解題更快速、客觀有效, 且可重複地辨識趨勢問題的解題模型,並能夠累積專家經驗,成為自我學習的系統。
開啟以各種數理分類器辨識解答的研究機會,並能應用於如趨勢、效應、標準解、發明原則等各種萃智解題工具。
In traditional TRIZ problem solving, for example using trends, the problem solver needs to look through many potential trends to locate a small number of solution models. The process is time consuming, highly subjective depending on individual’s expertise, and hardly repeatable if judged by different experts. Instead of purely relying on logical reasoning and expert’s knowledge, this research developed a mathematical approach to identify TRIZ trend solution models using support vector machine. The use of quantitative methods allows the users quickly and objectively to obtain solution models with priority based on existing trends and solved database which is the cumulative judgements of many expert knowledge instead of individual expert’s judgment. This provides a paradigm-shift new TRIZ-based problem-solving approach.
The contributions of this research include: (1) Using the support vector machine to identify suitable trends for problem solving with priority which is faster, effective, objective, repeatable, and is cabale of accumulating TRIZ experts’ experience in problem solving compared to traditional TRIZ problem solving. (2) Implying and opening up many research opportunities for using various mathematical classifiers to identify various TRIZ problem solving tools, such as trends, effects, standards, inventive principles, etc.
第一章 緒論 4
1.1 研究背景與動機 4
1.2 研究目的 5
1.3 研究成果與貢獻 5
1.4 研究架構 5
第二章 文獻探討 7
2.1 萃智簡介 7
2.2 演化趨勢 8
2.3 演化趨勢之推論質化解題流程 15
2.4 支持向量機 (SUPPORT VECTOR MACHINES, SVM) 17
2.4 線性分割 (Linear Separating) 18
2.4.1 硬性邊界分類器 (Hard-Margin Classifier) 20
第三章 研究方法 27
3.1 支持向量機分類研究流程 27
3.2 數理化與方法定義 30
3.1.1 演化趨勢量化解題流程 30
3.1.2 分類方法之定義 31
3.1.2.1 以二元且嚴謹的方式定義屬性與功能參數 31
3.1.2.2 以二元且寬鬆的方式定義屬性與功能參數 31
3.1.2.3 以三元的方式定義屬性與功能參數 32
3.3 標準化陣列介紹 34
3.2.1 問題特徵陣列:問題模式化 35
3.2.2 解答陣列 37
3.2.3 案例陣列 38
3.2.4 趨勢特徵陣列 39
3.4 支持向量機分類方法介紹 42
3.3.1 支持向量機分類概念 42
3.3.2 標準化陣列之分類方法 44
3.5 相關權重設定 57
3.6 K疊交叉驗證法與敏感度分析 58
第四章 軟體架構 63
4.1 軟體首頁 63
4.2 由標準化格式外部檔案輸入問題模型的介面 63
4.3 由軟體頁面輸入問題模型的介面 64
4.4 解答模型輸出介面 65
第五章 案例驗證 67
5.1 支持向量機排序之權重設定 67
5.1.1 以二元且寬鬆的方式定義屬性權重與功能權重之權重 67
5.1.2 以二元且嚴謹的方式定義屬性權重與功能權重之權重 69
5.1.3 以三元的方式定義屬性權重與功能權重之權重 70
5.2 K疊交叉驗證法與敏感度分析 72
5.2.1 以二元且寬鬆的方式定義屬性與功能參數之K疊交叉驗證 72
5.2.2 以二元且嚴謹的方式定義屬性與功能參數之K疊交叉驗證 76
5.2.3 以三元的方式定義屬性與功能參數之K疊交叉驗證 80
5.2.4 K疊交叉驗證與敏感度分析總結 84
5.3 資料庫外部案例驗證 85
第六章 結論與建議 88
6.1 結論 88
6.2 貢獻 88
6.3 未來研究方向 89
參考文獻 90
附錄一 演化趨勢列表 95
附錄二 屬性列表 167
附錄三 功能列表 176
王耀庭(2016),基於萃智的系統化專利迴避再生與強化手法,工業工程與工程管理系碩士論文。
呂宗興(2012),萃智趨勢分析與應用之研究,國立清華大學,工業工程與工程管理系博士論文。
沈穎廷(2009),運用田口法、模糊理論以及TRIZ於產品之重新設計,國立臺灣大學,工學院機械工程學系碩士論文。
邱聖家(2013),使用相似性指標辨識萃智解答模型以相關趨勢辨識為例,國立清華大學,工業工程與工程管理系碩士論文。
周依穎(2014),整合TRIZ發明原則與演化趨勢於產品研發之問題解決-以電子晶片是防潮櫃為例。
張家瑋(2012),功能-屬性-效應知識庫之研究,國立清華大學,工業工程與工程管理系博士論文。
許棟樑(譯)(2010),DarrellMann著,萃智系統性創新上手,台北市:鼎茂圖書出版股份有限公司。
許棟樑(2015/9),萃智創新工具精通:上冊,亞卓國際顧問股份有限公司,四版,ISBN 978-986-85795-2-1。
陳佳宏(2011),基於功能屬性之通用問題與解答模式:自動辨識解答發明原則和趨勢,國立清華大學,工業工程與工程管理系博士論文。
陳家杰(2007),集群分析於二元變數上的研究,銘傳大學,應用統計資訊學系碩士論文。
黃承龍、陳穆臻、王界人(2004),支援向量機於信用評等之應用,計量管理期刊,vol.1(2),pp.155-172。
黃鈺婷(2010),以功能屬性關係辨識相關技術演化趨勢,國立清華大學,工業工程與工程管理系碩士論文。
廖坤祈(2011),整合TRIZ與品質機能展開法評估產品未來演化趨勢,國立成功大學,機械工程學系碩士論文。
鄧乃誠(2015),基於功能屬性相似性具優先序的萃智趨勢解答辨識,國立清華大學,工業工程與工程管理系碩士論文。
簡禎富、許嘉裕(2018),大數據分析與資料挖礦,第二版,前程文化事業股份有限公司,中華卓越經營決策協會,298-303頁。
Cavallucci, D., & Weill, R. D. (2001). Integrating Altshuller's development laws for technical systems into the design process. CIRP Annals-Manufacturing Technology, 50(1), 115-120.
Chen, S. M., Yeh, M. S., & Hsiao, P. Y. (1995). A comparison of similarity measures of fuzzy values. Fuzzy sets and systems, 72(1), 79-89.
Cong, H., & Tong, L. H. (2008). Grouping of TRIZ Inventive Principles to facilitate automatic patent classification. Expert Systems with Applications,34(1), 788-795.
Faith, D. P. (1983). Asymmetric binary similarity measures. Oecologia, 57(3), 287-290.
George J, K, & Bo, Y. (2008). Fuzzy sets and fuzzy logic, theory and applications.
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 857-871.
Mann, D. (2001). An introduction to TRIZ: The theory of inventive problem solving. Creativity and Innovation Management, 10(2), 123-125.
Mann, D. (2004). Fan Technology: Evolutionary Potential and Evolutionary Limits.
Mann, D. L. (2003). Better technology forecasting using systematic innovation methods. Technological Forecasting and Social Change, 70(8), 779-795.
Meyer, A. D. S., Garcia, A. A. F., Souza, A. P. D., & Souza Jr, C. L. D. (2004). Comparison of similarity coefficients used for cluster analysis with dominant markers in maize (Zea mays L). Genetics and Molecular Biology, 27(1), 83-91.
Pappis, C. P. (1991). Value approximation of fuzzy systems variables. Fuzzy Sets and Systems, 39(1), 111-115.
Sheu, D. Daniel and Sheng Chia Chiu. (2017). Prioritized Relevant Trend Identification for Problem Solving Based on Quantitative Measures, Computers & Industrial Engineering, (DOI:10.1016/j.cie.2016.03.028.) (SCI/3.195)
Verhaegen, P. A., D’hondt, J., Vertommen, J., Dewulf, S., & Duflou, J. R. (2009). Relating properties and functions from patents to TRIZ trends. CIRP Journal of Manufacturing Science and Technology, 1(3), 126-130.
Yoon, J., & Kim, K. (2011). An automated method for identifying TRIZ evolution trends from patents. Expert Systems with Applications, 38(12), 15540-15548.
Zadeh, L. A. (1989), Knowledge representation in fuzzy logic, IEEE Transactions on knowledge and data engineering 1 (1), Invited Paper. 
林宗勳,SVM簡介及人臉辨識,2019.12.02擷取,https://reurl.cc/QpKa82
支持向量機(SVM)--原理篇,2019.11.22擷取,https://reurl.cc/e5KkjM
SVM(support vector machine)支援向量機原理詳解,2019.12.02擷取,https://reurl.cc/VabWyN
SVM-支援向量機原理詳解與實踐之一,2019.12.02擷取,https://reurl.cc/alKx6Y
R筆記 - (14)Support Vector Machine/Regression(支持向量機SVM ),2020.03.29擷取,https://rpubs.com/skydome20/R-Note14-SVM-SVR
R-shiny,2020.05.18擷取,https://shiny.rstudio.com/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *