|
1. Breiman, L. (2001). Random Forests, Machine Learning, 45(1), 5-32 2. Cao, G., Wang, S., Wei, B., Yin, Y., & Yang, G. (2013). A hybrid CNN-RF method for electron microscopy images segmentation. Tissue Engineering, J. Biomim Biomater Tissue Eng, 18, 2. 3. Dietterich, T.G. (2002). Ensemble Learning. Machine Learning, 1-15 4. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In icml, 96, 148-156. 5. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778 6. Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1646-1654 7. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 1097-1105 8. Kumar, A., Lyndon, D., Kim, J., & Feng, D. (2016). Subfigure and Multi-Label Classification using a Fine-Tuned Convolutional Neural Network. In CLEF (Working Notes), 318-321 9. LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with gradient-based learning. In Shape, contour and grouping in computer vision, 319-345 10. Lim, S., Lee, K., Byeon, O., & Kim, T. (2001). Efficient iris recognition through improvement of feature vector and classifier. ETRI journal, 23(2), 61-70. 11. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359. 12. Rosenstein, M. T., Marx, Z., Kaelbling, L. P., & Dietterich, T. G. (2005). To transfer or not to transfer. In NIPS 2005 workshop on transfer learning, 898,1-4 13. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536. 14. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, 815-823 15. Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 35(5), 1285-1298. 16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826 17. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1-9 18. Wang, H. (2018). ANET: Automated Optical Inspection Network. 19. Yin, X., Han, J., Yang, J., & Yu, P. S. (2006). Efficient classification across multiple database relations: A crossmine approach. IEEE Transactions on Knowledge and Data Engineering, 18(6), 770-783. 20.Zhang, H., Liu, D., & Xiong, Z. (2017). Cnn-based text image super-resolution tailored for ocr. In 2017 IEEE Visual Communications and Image Processing
|