|
1. Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20(10), 1263-1271. 2. Al-Alawi, S. M., Abdul-Wahab, S. A., & Bakheit, C. S. (2008). Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environmental Modelling & Software, 23(4), 396-403. 3. Ciampi, A., Thiffault, J., Nakache, J. P., & Asselain, B. (1986). Stratification by stepwise regression, correspondence analysis and recursive partition: a comparison of three methods of analysis for survival data with covariates. Computational Statistics & Data Analysis, 4(3), 185-204. 4. Hermiston, R. T., & Faulkner, J. A. (1971). Prediction of maximal oxygen uptake by a stepwise regression technique. Journal of Applied Physiology, 30(6), 833-837. 5. Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems, 67, 431-438. 6. Ku, W., Storer, R. H., & Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30(1), 179-196. 7. Li, K., Hu, C., Liu, G., & Xue, W. (2015). Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis. Energy and Buildings, 108, 106-113. 8. Liao, X., Li, Q., Yang, X., Zhang, W., & Li, W. (2008). Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Structural and Multidisciplinary Optimization, 35(6), 561-569. 9. Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. 10. Tso, G. K., & Yau, K. K. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy, 32(9), 1761-1768. 11. Wong, J. K. L., Mason, A. J., Neve, M. J., & Sowerby, K. W. (2006). Base station placement in indoor wireless systems using binary integer programming. IEE Proceedings-Communications, 153(5), 771-778. 12. Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286.
|