帳號:guest(3.135.207.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘佳欣
作者(外文):Pan, Chia-Hsin
論文名稱(中文):冰水主機系統之預測模型及實證研究
論文名稱(外文):Prediction Model of Chilled Water System and an Empirical Study
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):吳建瑋
陳子立
口試委員(外文):Wu, Chien-Wei
Chen, Tzu-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:107034504
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:39
中文關鍵詞:焓值冰水主機系統主成分分析倒傳遞類神經網路
外文關鍵詞:EnthalpyChilled Water SystemPrincipal Component AnalysisBack Propagation Neural Network
相關次數:
  • 推薦推薦:0
  • 點閱點閱:462
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在冰水主機系統中,外氣焓值是一個舉足輕重的外部參數,雖然無法控制但卻影響了系統中許多的相關因子,其中我們發現,以焓值50千焦耳/公斤(kJ/kg)為分界,小於50 kJ/kg與大於50 kJ/kg兩者的系統有著不同的表現。當焓值小於50 kJ/kg時,冰水系統的各項參數分布會呈現較為不規則的分布,因此傳統的線性迴歸較難以準確預測。此外,冰水主機的耗電預測系統一般皆是由廠務人員依經驗輸入相關參數,但這有可能會造成具有潛在影響力的因子被遺漏,進而影響模型的預測表現;且因系統內部因子總共多達17種,如冷卻水進水溫度、冰水出水溫度、冷凝器趨近溫度等等,難以確定哪些是最重要的因子。因此,本研究乃是針對焓值小於50 kJ/kg的冰水主機系統,先使用主成分分析(PCA)揀選最具影響力的主成分作為模型輸入變數、並藉此找出可能造成機差的因子,再使用倒傳遞類神經網路(BPN)進行建模與預測分析,期望能建立一個準確的耗電預測系統以供未來使用。
In the chilled water system, the enthalpy is an important external parameter; although it is uncontrollable, it affects many related factors in the system. We found that the demarcation line of chiller water systems is an enthalpy value of 50 kJ/kg. When enthalpy is less than 50 kJ/kg, the data distribution of chilled water system’s parameters are more irregular, estimating the performance through traditional linear regression thus becomes unfeasible. Furthermore, the input parameters of prediction system of chilled water system are usually determined by experience, but this may make some potentially influential factors are ignored, having an effect on the performance of prediction system. Furthermore, the related parameters in the system have about 17 types, such as the temperature of chilled water out of chiller, the temperature of cooling water into chiller, and the approach temperature of condenser, so it is hard to determine which factor is the most important. As such, this study focuses on system under enthalpy value below 50 kJ/kg, choosing the most influential components by Principal component analysis (PCA) as input parameters, finding out factors that results in the machine difference, and further utilizing Back Propagation Neural Networks (BPN) for modeling and predictive analysis to build an accurate prediction system of chilled water system.
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 3
1.3論文架構 4
第二章 文獻回顧 5
2.1冰水主機系統 5
2.2 主成分分析 7
2.3 倒傳遞類神經網路 9
第三章 研究方法 13
3.1降低資料維度 13
3.1.1主成分分析原理 13
3.1.2 主成分個數選擇 15
3.1.3 負荷向量 16
3.2 建立預測模型 16
3.2.1倒傳遞類神經網路原理 16
3.2.2資料預處理 20
3.2.3 模型評估與分析 20
第四章 實證研究 22
4.1 系統情境與因子說明 22
4.2 建立冰機耗電預測模型 23
4.2.1主成分選擇 24
4.2.2預測模型之參數與架構設定 26
4.3 重要影響參數 30
第五章 結論與未來研究 35
5.1 結論 35
5.2 未來研究 36
參考文獻 37

Abdi, H., & Williams, L. J. (2010). Overview principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
Alpaydin, E. (2014). Introduction to machine learning. Cambridge, England: The MIT Press.
Chang Y. C. (2005). Verification for the promotion of chiller performance audits. Journal of refrigeration and air conditioning professional engineer, 2, 61-67.
Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE communications surveys & tutorials, 21(4), 3039-3071.
Chien, C. F., Chen, Y. J., Han, Y. T., Hsieh, M. K., Lee, C. M., Shih, T., Wu, M.Y. & Yang, W. W. (2018). AI and big data analytics for wafer fab energy saving and chiller optimization to empower intelligent manufacturing. 2018 e-Manufacturing & design collaboration symposium (eMDC), Taiwan.
Cliff, N. (1988). The eigenvalues-greater-than-one rule and the reliability of components. Psychological bulletin, 103(2), 276-279.
Ding, C. (2011). Principal component analysis of water quality monitoring data in XiaSha region. 2011 International conference on remote sensing, environment and transportation engineering, United States.
Hadri, A., Chougdali, K., & Touahni, R. (2016). Intrusion detection system using PCA and fuzzy PCA techniques. 2016 International conference on advanced communication systems and information security (ACOSIS), Morocco.
Laguna, M., & Marti, R. (2002). Neural network prediction in a system for optimizing simulations. IIE transactions, 34(3), 273-282.
Li, A., Wang, F., Li, R., Zhu, B., Huang, D., & Chen, G. (2017). The optimal control strategy for chilled water system in central air-conditioning systems. IECON 2017: 43rd Annual conference of the IEEE industrial electronics society (IES), China.
Mei, N., Yan, L., Qian, F., & Li, W. (2017). Energy efficiency prediction of screw chillers on BP neural network optimized by improved genetic algorithm. 2017 International conference on computer technology, electronics and communication (ICCTEC), China.
Nasruddin N., Aisyah, N., Alhamid, M. I., Saha, B. B., Sholahudin, S., & Lubis, A. (2019). Solar absorption chiller performance prediction based on the selection of principal component analysis. Case studies in thermal engineering, 13, 100391.
Rajendran, S., Kaul, A., Nath, R., Arora, A. S., & Chauhan, S. (2014). Comparison of PCA and 2D-PCA on indian faces. 2014 International conference on signal propagation and computer technology (ICSPCT), India.
Shang, Y., & Liu, X. (2019). Energy conservation optimization of compression water chiller based on critical stability constrain. 2019 3rd International conference on green energy and applications (ICGEA), China.
Shlens, J. (2014). A tutorial on principal component analysis.
Xie, L., Wei, R. X., & Hou, Y. (2008). Ship equipment fault grade assessment model based on back propagation neural network and genetic algorithm. 2008 International conference on management science and engineering 15th annual conference proceedings, United States.
Xu, T., Liu, X., & Yang, X. (2011). Ship trajectory online prediction based on BP neural network algorithm. 2011 International conference of information technology, computer engineering and management sciences, United States.
Yu, Y., Li, Y., Li, Y. J., Wang, J. M., Lin, D. H., & Ye, W. P. (2006). Tooth decay diagnosis using back propagation neural network. 2006 International conference on machine learning and cybernetics, China.
Zheng, B., Li, D., Yin, H., Gao, F., & Dong, N. (2018). Optimization based on ANN-GA algorithm for set point in refrigeration process. 2018 13th World congress on intelligent control and automation (WCICA), China.
洪士哲(2011)。冰水主機系統應用類神經網路策略之節能最佳化研究(未出版之碩士論文)。國立勤益科技大學,台中市。
陳建成(2018)。空調系統冰水主機有效管理之節能實例分析(未出版之碩士論文)。國立中興大學,台中市。
張育維(2013)。改良式類神經網路預測模式於股價預測之研究。北商學報,23,1-18。
黃秀梅、蘇高玄(2008)。基於 PCA 的支持向量迴歸分析於房價預測。東方學報,29,155-162。
詹添順(2017)。應用類神經網路與基因演算法於混合型冰水主機群之負載分配最佳化(未出版之博士論文)。國立台北科技大學,台北市。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *