帳號:guest(3.144.122.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):倪笛栩
作者(外文):Anand, Nitesh
論文名稱(中文):選擇性雷射熔融製程熔池熱流動力及動態熱應力數值分析與實驗量測
論文名稱(外文):A Numerical and Experimental Investigation of Melt Pool Thermal-Fluid and Thermomechanical Dynamics during Selective Laser Melting
指導教授(中文):陳玉彬
李明蒼
指導教授(外文):Chen, Yu-Bin
Lee, Ming-Tsang
口試委員(中文):李昌駿
葉安洲
羅裕龍
何正榮
口試委員(外文):LEE, CHANG-CHUN
YEH, AN-CHOU
LO, YU-LUNG
HO, JENG-RONG
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033858
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:90
中文關鍵詞:添加劑製造的殘餘應力選擇性雷射熔化數值模擬
外文關鍵詞:Additive manufacturingSelective laser meltingQuasi-transient thermomechanical analysisPowder bed fusionThermal stressInconel 718 superalloy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
選擇性雷射熔化(SLM)是一種積層製造技術,可以通過沿著粉末床在預設掃描路線上對粉末形式的指定材料進行雷射掃描和燒結來製造三維工件。該過程涉及移動的雷射熱源照射粉末床,引起局部的瞬間熱質傳遞,並發生相變,即在熔化的粉末池中熔化和固化。在 SLM 過程中,雷射點附近的高溫梯度會產生很高的殘餘應力,從而導致製造零件失效。為了在合適的計算成本下,充分研究複雜的傳輸過程,本研究提出了一種新穎的準暫態數值模型(跳躍模型)。該模型包括一個定義為橢圓高斯雷射點的體積熱源,沿著掃描路徑跳動。首先,進行暫態熱模擬以獲得用於預測成型外貌的溫度分佈。比較從模擬與實驗獲得的成型外貌溫度分布說明了跳躍模型的準確性和效率。獲得的溫度分佈被用作熱負荷輸入以進行熱機械分析。隨後,熱機械模擬可以預測工件中的殘餘應力。跳躍模型可以有效地預測工件的成型外貌和殘餘應力。此外,計算時間在引入準暫態熱源於熱模擬模型減少60%,而熱機械模擬會減少68%。雖然跳躍模型可以模擬成型外貌和殘餘應力,但無法很精準地預測整體熔池特性。為了有效地預測熔池尺寸和特性,本研究開發了一個全面性的模型。最初,進行數值模擬以獲得在SLM過程中的瞬時熔池溫度和速度分佈。然後將模擬結果與理論分析結合,以開發一個全面性模型。使用過往發表的實驗數據和熔池特性驗證了模型,其雷射功率範圍在 130 W 到 310 W。根據歸一化焓值來確定從傳導模式到鎖孔模式的轉變。該模型可以有效地預測傳導和鎖孔模式下熔池的歸一化高度和面積。
The selective laser melting process is an additive manufacturing technique that can fabricate three-dimensional workpieces by laser scanning and sintering of designated material in powder form on a preset scanning route along a bed of powders. This process involves a moving laser heat source irradiating powder bed which causes local transient mass and heat transfer with phase change, i.e., melting and solidifying, in a pool of melted powders. The high temperature gradient near the laser spot during the SLM process generates high residual stress that can lead to failure of fabricated parts. To fully investigate such a complicated transport process with reasonable computation cost, a novel quasi-transient numerical model (hopping model) is proposed in this study. The model includes a volumetric heat source defined as an elliptical Gaussian laser spot that hops along the scanning path. Initially, a transient thermal simulation is performed to acquire temperature distribution for predicting the molding appearance. The comparison of molding appearance of the workpieces obtained from the simulation with that from experiments illustrates the accuracy and efficiency of the hopping model. The obtained temperature distribution is then utilized as thermal loading inputs to perform the thermo-mechanical analysis. Subsequently, thermo-mechanical simulation can predict the residual stress in the workpieces. The hopping model can effectively predict the molding appearance and residual stresses in the workpieces. Moreover, the computational time is also reduced by introducing a quasi-transient heat source in thermal simulation (60%) as well as in thermo-mechanical simulation (68%). Although the hopping model could simulate the molding appearance and residual stress, the overall melt pool characteristics could not be predicted with high precision. To effectively predict melt pool dimensions and characteristics, a comprehensive model is thus developed. Initially, a numerical simulation is performed to obtain transient melt pool temperature and velocity distribution during SLM. The results are then coupled with theoretical analysis to develop a comprehensive model. The model is validated using experimental data and melt pool characteristics from previous publications over a wide range of laser power, from 130 W to 310 W. The transition from conduction mode to keyhole mode is identified in terms of normalized enthalpy. This model could effectively predict the normalized height and area of the melt pool for both the conduction and keyhole modes.
Abstract---------------------------------------------------------iv
Table of Contents------------------------------------------------v
List of Figures--------------------------------------------------vii
List of Tables---------------------------------------------------x
List of Symbols--------------------------------------------------xi
Chapter 1 – Introduction----------------------------------------1
1.1 Background---------------------------------------------------1
1.2 Literature review--------------------------------------------4
1.2.1 Experimental investigations--------------------------------4
1.2.2 In-situ temperature measurement----------------------------5
1.2.3 Numerical investigations-----------------------------------6
1.3 Motivation and objectives------------------------------------9
Chapter 2 – Numerical Modeling----------------------------------12
2.1 Thermal simulation-------------------------------------------12
2.1.1 Governing equations----------------------------------------14
2.1.2 Marangoni force and recoil pressure------------------------14
2.1.3 Material properties----------------------------------------15
2.1.4 Numerical models-------------------------------------------18
2.1.5 Nusselt number correlation---------------------------------23
2.2 Thermo-mechanical simulation---------------------------------26
2.2.1 Governing equations----------------------------------------28
2.2.2 Boundary conditions----------------------------------------29
2.2.3 Element birth and death------------------------------------30
2.2.4 Material properties----------------------------------------31
Chapter 3 – Experimental Details--------------------------------32
3.1 Sample preparation-------------------------------------------32
3.1.1 Single track samples---------------------------------------32
3.1.2 Multi-track samples----------------------------------------34
3.2 Temperature measurement--------------------------------------36
3.3 Electron Back Scatter Diffraction (EBSD) measurement---------37
Chapter 4 – Results and Discussions-----------------------------38
4.1 Thermal simulation-------------------------------------------38
4.1.1 Molding appearance from experiment-------------------------38
4.1.2 Temperature distribution of IR measurement and full transient model------------------------------------------------------------41
4.1.3 Quasi-transient model--------------------------------------45
4.1.4 Peak temperature and stripe width--------------------------46
4.1.5 Computational resources------------------------------------49
4.2 Thermo-mechanical simulation---------------------------------50
4.2.1 Comparison between effective-transient and quasi-transient model------------------------------------------------------------50
4.2.2 Computational resources------------------------------------52
4.2.3 Temperature and stress distribution------------------------53
4.2.4 Transition temperature and stress variation----------------55
4.2.5 EBSD analysis----------------------------------------------59
4.2.6 Stress analysis for non-overlapping specimen---------------61
4.3 Melt pool characteristics------------------------------------65
4.3.1 Experimental results---------------------------------------65
4.3.2 Temperature and velocity distribution----------------------67
4.3.3 Theoretical analysis---------------------------------------68
4.3.4 Comparison of normalized melt pool dimensions--------------73
Chapter 5 – Conclusions and Future scope------------------------76
5.1 Conclusions--------------------------------------------------76
5.2 Future scope-------------------------------------------------78
References-------------------------------------------------------79

[1] C.K. Chua, K.F. Leong, C.S. Lim, Rapid Prototyping Principles and Applications, Second, World Scientific, Singapore, 2003. https://doi.org/10.1142/9789812778994_0006.
[2] V. Canellidis, V. Dedoussis, N. Mantzouratos, S. Sofianopoulou, Pre-processing methodology for optimizing stereolithography apparatus build performance, Comput. Ind. 57 (2006) 424–436. https://doi.org/10.1016/j.compind.2006.02.004.
[3] P.T. Lan, S.Y. Chou, L.L. Chen, D. Gemmill, Determining fabrication orientations for rapid prototyping with stereolithography apparatus, CAD Comput. Aided Des. 29 (1997) 53–62. https://doi.org/10.1016/S0010-4485(96)00049-8.
[4] J. Park, M.J. Tari, H.T. Hahn, Characterization of the laminated object manufacturing (LOM) process, Rapid Prototyp. J. 6 (2000) 36–49. https://doi.org/10.1108/13552540010309868.
[5] R.W. Gray IV, D.G. Baird, J.H. Bøhn, Effects of processing conditions on short TLCP fiber reinforced FDM parts, Rapid Prototyp. J. 4 (1998) 14–25. https://doi.org/10.1108/13552549810197514.
[6] J.J. Beaman, C.R. Deckard, Selective Laser Sinterng With Assisted Powder Handlng, US Patents. 5053090 (1990) 17. https://patents.google.com/patent/US4938816A.
[7] J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering, Assem. Autom. 23 (2003) 357–371. https://doi.org/10.1108/01445150310698652.
[8] A. Mazzoli, Selective laser sintering in biomedical engineering, Med. Biol. Eng. Comput. 51 (2013) 245–256. https://doi.org/10.1007/s11517-012-1001-x.
[9] K. V. Wong, A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng. 2012 (2012) 1–10. https://doi.org/10.5402/2012/208760.
[10] D.M. Nieto, D.M. Sánchez, Design for additive manufacturing: Tool review and a case study, Appl. Sci. 11 (2021) 1–13. https://doi.org/10.3390/app11041571.
[11] D. Gu, Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms, 2015. https://doi.org/10.1007/978-3-662-46089-4_2.
[12] A. Uriondo, M. Esperon-Miguez, S. Perinpanayagam, The present and future of additive manufacturing in the aerospace sector: A review of important aspects, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229 (2015) 2132–2147. https://doi.org/10.1177/0954410014568797.
[13] D. Wang, Y. Wang, Y. Yang, J. Lu, Z. Xu, S. Li, K. Lin, D. Zhang, Research on design optimization and manufacturing of coating pipes for automobile seal based on selective laser melting, J. Mater. Process. Technol. 273 (2019) 116227. https://doi.org/10.1016/j.jmatprotec.2019.05.008.
[14] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution, J. Alloys Compd. 583 (2014) 404–409. https://doi.org/10.1016/j.jallcom.2013.08.183.
[15] Q. Wei, S. Li, C. Han, W. Li, L. Cheng, L. Hao, Y. Shi, Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: Microstructure, element distribution, crack and mechanical properties, J. Mater. Process. Technol. 222 (2015) 444–453. https://doi.org/10.1016/j.jmatprotec.2015.02.010.
[16] D. King, T. Tansey, Rapid tooling: Selective laser sintering injection tooling, J. Mater. Process. Technol. 132 (2003) 42–48. https://doi.org/10.1016/S0924-0136(02)00257-1.
[17] M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Multiple material additive manufacturing - Part 1: A review: This review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials, Virtual Phys. Prototyp. 8 (2013) 19–50. https://doi.org/10.1080/17452759.2013.778175.
[18] S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214 (2014) 2627–2636. https://doi.org/10.1016/j.jmatprotec.2014.06.001.
[19] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Appl. Phys. Rev. 2 (2015) 041304. https://doi.org/10.1063/1.4937809.
[20] S.K. Nayak, S.K. Mishra, C.P. Paul, A.N. Jinoop, K.S. Bindra, Effect of energy density on laser powder bed fusion built single tracks and thin wall structures with 100 µm preplaced powder layer thickness, Opt. Laser Technol. 125 (2020) 106016. https://doi.org/10.1016/j.optlastec.2019.106016.
[21] L. Scime, J. Beuth, Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process, Addit. Manuf. 29 (2019) 100830. https://doi.org/10.1016/j.addma.2019.100830.
[22] N.R. Mathe, L.C. Tshabalala, The validation of the microstructural evolution of selective laser-melted AlSi10Mg on the in-house built machine: energy density studies, Prog. Addit. Manuf. 4 (2019) 431–442. https://doi.org/10.1007/s40964-019-00086-6.
[23] C.C. Tseng, C.J. Li, Numerical investigation of interfacial dynamics for the melt pool of Ti-6Al-4V powders under a selective laser, Int. J. Heat Mass Transf. 134 (2019) 906–919. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.030.
[24] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015) 041101. https://doi.org/10.1063/1.4935926.
[25] I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, 2010. https://doi.org/10.1007/978-1-4419-1120-9.
[26] Y. Zheng, Z. He, Y. Gao, J. Liu, Direct desktop printed-circuits-on-paper flexible electronics, Sci. Rep. 3 (2013) 1786. https://doi.org/10.1038/srep01786.
[27] Y. He, G.H. Xue, J.Z. Fu, Fabrication of low cost soft tissue prostheses with the desktop 3D printer, Sci. Rep. 4 (2014) 1–7. https://doi.org/10.1038/srep06973.
[28] I. Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process, Appl. Surf. Sci. 253 (2007) 8064–8069. https://doi.org/10.1016/j.apsusc.2007.02.088.
[29] D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J.O. Suh, A.A. Shapiro, Z.K. Liu, J.P. Borgonia, Developing gradient metal alloys through radial deposition additive manufacturing, Sci. Rep. 4 (2014) 5357. https://doi.org/10.1038/srep05357.
[30] D. Gu, Laser additive manufacturing of high-performance materials, 1st ed., Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-46089-4.
[31] B. Schoinochoritis, D. Chantzis, K. Salonitis, Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231 (2017) 96–117. https://doi.org/10.1177/0954405414567522.
[32] W.J. Sames, K.A. Unocic, R.R. Dehoff, T. Lolla, S.S. Babu, Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting, J. Mater. Res. 29 (2014) 1920–1930. https://doi.org/10.1557/jmr.2014.140.
[33] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder, J. Mater. Process. Technol. 149 (2004) 616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051.
[34] H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review, Int. J. Mach. Tools Manuf. 133 (2018) 85–102. https://doi.org/10.1016/j.ijmachtools.2018.06.003.
[35] H. Yang, J. Yang, W. Huang, Z. Wang, X. Zeng, The printability, microstructure, crystallographic features and microhardness of selective laser melted Inconel 718 thin wall, Mater. Des. 156 (2018) 407–418. https://doi.org/10.1016/j.matdes.2018.07.007.
[36] M. Sadowski, L. Ladani, W. Brindley, J. Romano, Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process, Addit. Manuf. 11 (2016) 60–70. https://doi.org/10.1016/j.addma.2016.03.006.
[37] M.G. Scaramuccia, A.G. Demir, L. Caprio, O. Tassa, B. Previtali, Development of processing strategies for multigraded selective laser melting of Ti6Al4V and IN718, Powder Technol. 367 (2020) 376–389. https://doi.org/10.1016/j.powtec.2020.04.010.
[38] M. Masoomi, X. Gao, S.M. Thompson, N. Shamsaei, L. Bian, A. Elwany, Modeling, Simulation And Experimental Validation Of Heat Transfer During Selective Laser Melting, in: Int. Mech. Eng. Congr. Expo., Houston, Texas, 2018: pp. 1–7.
[39] M. Chiumenti, E. Neiva, E. Salsi, M. Cervera, S. Badia, J. Moya, Z. Chen, C. Lee, C. Davies, Numerical modelling and experimental validation in Selective Laser Melting, Addit. Manuf. 18 (2017) 171–185. https://doi.org/10.1016/j.addma.2017.09.002.
[40] L. Zheng, Q. Zhang, H. Cao, W. Wu, H. Ma, X. Ding, J. Yang, X. Duan, S. Fan, Melt pool boundary extraction and its width prediction from infrared images in selective laser melting, Mater. Des. 183 (2019) 108110. https://doi.org/10.1016/j.matdes.2019.108110.
[41] J.L. Bartlett, F.M. Heim, Y. V. Murty, X. Li, In situ defect detection in selective laser melting via full-field infrared thermography, Addit. Manuf. 24 (2018) 595–605. https://doi.org/10.1016/j.addma.2018.10.045.
[42] M. Grasso, A.G. Demir, B. Previtali, B.M. Colosimo, In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume, Robot. Comput. Integr. Manuf. 49 (2018) 229–239. https://doi.org/10.1016/j.rcim.2017.07.001.
[43] C. Li, C.H. Fu, Y.B. Guo, F.Z. Fang, A multiscale modeling approach for fast prediction of part distortion in selective laser melting, J. Mater. Process. Technol. 229 (2015) 703–712. https://doi.org/10.1016/j.jmatprotec.2015.10.022.
[44] P. Prabhakar, W.J. Sames, R. Dehoff, S.S. Babu, Computational modeling of residual stress formation during the electron beam melting process for Inconel 718, Addit. Manuf. 7 (2015) 83–91. https://doi.org/10.1016/j.addma.2015.03.003.
[45] V. Manvatkar, A. De, T. DebRoy, Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process, Mater. Sci. Technol. 31 (2015) 924–930. https://doi.org/10.1179/1743284714Y.0000000701.
[46] A.K. Mishra, A. Aggarwal, A. Kumar, N. Sinha, Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach, Int. J. Adv. Manuf. Technol. 99 (2018) 2257–2270. https://doi.org/10.1007/s00170-018-2631-4.
[47] D. Zhang, P. Zhang, Z. Liu, Z. Feng, C. Wang, Y. Guo, Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy, Addit. Manuf. 21 (2018) 567–578. https://doi.org/10.1016/j.addma.2018.03.031.
[48] Y. Li, K. Zhou, S.B. Tor, C.K. Chua, K.F. Leong, Heat transfer and phase transition in the selective laser melting process, Int. J. Heat Mass Transf. 108 (2017) 2408–2416. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.093.
[49] A. V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov, Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting, J. Heat Transfer. 131 (2009) 1–10. https://doi.org/10.1115/1.3109245.
[50] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed, Mater. Des. 89 (2016) 255–263. https://doi.org/10.1016/j.matdes.2015.10.002.
[51] Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study, Addit. Manuf. 1 (2014) 99–109. https://doi.org/10.1016/j.addma.2014.09.001.
[52] P. Yuan, D. Gu, Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments, J. Phys. D. Appl. Phys. 48 (2015) 035303. https://doi.org/10.1088/0022-3727/48/3/035303.
[53] H.C. Tran, Y.L. Lo, Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration, J. Mater. Process. Technol. 255 (2018) 411–425. https://doi.org/10.1016/j.jmatprotec.2017.12.024.
[54] Z. Zhang, Y. Huang, A. Rani Kasinathan, S. Imani Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity, Opt. Laser Technol. 109 (2019) 297–312. https://doi.org/10.1016/j.optlastec.2018.08.012.
[55] Y.C. Wu, C.H. San, C.H. Chang, H.J. Lin, R. Marwan, S. Baba, W.S. Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, J. Mater. Process. Technol. 254 (2018) 72–78. https://doi.org/10.1016/j.jmatprotec.2017.11.032.
[56] W. Yan, Y. Qian, W. Ge, S. Lin, W.K. Liu, F. Lin, G.J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Mater. Des. 141 (2018) 210–219. https://doi.org/10.1016/j.matdes.2017.12.031.
[57] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36–45. https://doi.org/10.1016/j.actamat.2016.02.014.
[58] K.Q. Le, C. Tang, C.H. Wong, On the study of keyhole-mode melting in selective laser melting process, Int. J. Therm. Sci. 145 (2019) 105992. https://doi.org/10.1016/j.ijthermalsci.2019.105992.
[59] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J. Nelson Weker, M.F. Toney, T. van Buuren, M.J. Matthews, Dynamics of pore formation during laser powder bed fusion additive manufacturing, Nat. Commun. 10 (2019) 1–10. https://doi.org/10.1038/s41467-019-10009-2.
[60] B. Cheng, L. Loeber, H. Willeck, U. Hartel, C. Tuffile, Computational Investigation of Melt Pool Process Dynamics and Pore Formation in Laser Powder Bed Fusion, J. Mater. Eng. Perform. 28 (2019) 6565–6578. https://doi.org/10.1007/s11665-019-04435-y.
[61] H.W. Mindt, O. Desmaison, M. Megahed, A. Peralta, J. Neumann, Modeling of Powder Bed Manufacturing Defects, J. Mater. Eng. Perform. 27 (2018) 32–43. https://doi.org/10.1007/s11665-017-2874-5.
[62] H. Mindt, M. Megahed, A.D. Peralta, J. Neumann, DMLM Models – Numerical Assessment of Porosity, in: 22nd Int. Symp. Air Breath. Engines- ISABE (Phoenix USA), 2015.
[63] Z. Luo, Y. Zhao, A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing, Addit. Manuf. 21 (2018) 318–332. https://doi.org/10.1016/j.addma.2018.03.022.
[64] X. Zhao, A. Iyer, P. Promoppatum, S.C. Yao, Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products, Addit. Manuf. 14 (2017) 126–136. https://doi.org/10.1016/j.addma.2016.10.005.
[65] H. Gu, C. Wei, L. Li, Q. Han, R. Setchi, M. Ryan, Q. Li, Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting, Int. J. Heat Mass Transf. 151 (2020) 119458. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119458.
[66] H. Wang, Y. Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, Int. J. Heat Mass Transf. 142 (2019) 118473. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118473.
[67] S. Siddharth, S.L. Tsai, Y. Bin Chen, M.T. Lee, Opto-thermo-fluidic transport phenomena involving thermocapillary flow during laser microfabrication, Int. J. Heat Mass Transf. 162 (2020) 4–7. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120303.
[68] D. Moser, M. Cullinan, J. Murthy, Multi-scale computational modeling of residual stress in selective laser melting with uncertainty quantification, Addit. Manuf. 29 (2019) 100770. https://doi.org/10.1016/j.addma.2019.06.021.
[69] B.M. Marques, C.M. Andrade, D.M. Neto, M.C. Oliveira, J.L. Alves, L.F. Menezes, Numerical analysis of residual stresses in parts produced by selective laser melting process, Procedia Manuf. 47 (2020) 1170–1177. https://doi.org/10.1016/j.promfg.2020.04.167.
[70] C. Li, J.F. Liu, X.Y. Fang, Y.B. Guo, Efficient predictive model of part distortion and residual stress in selective laser melting, Addit. Manuf. 17 (2017) 157–168. https://doi.org/10.1016/j.addma.2017.08.014.
[71] N. Hodge, R.M. Ferencz, J.M. Solberg, Implementation of a Thermomechanical Model in Diablo for the Simulation of Selective Laser Melting, (2013).
[72] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting, Acta Mater. 134 (2017) 324–333. https://doi.org/10.1016/j.actamat.2017.05.061.
[73] N. Anand, K.C. Chang, P.C. Huang, A.C. Yeh, C.W. Tsai, C.C. Lee, M.T. Lee, Y. Bin Chen, An effective and efficient model for temperature and molding appearance analyses for selective laser melting process, J. Mater. Process. Technol. 294 (2021) 117109. https://doi.org/10.1016/j.jmatprotec.2021.117109.
[74] G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing, Addit. Manuf. 25 (2019) 511–521. https://doi.org/10.1016/j.addma.2018.12.001.
[75] Y.S. Lee, M. Nordin, S.S. Babu, D.F. Farson, Influence of fluid convection on weld pool formation in laser cladding, Weld. J. 93 (2014) 292–300.
[76] Y.S. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Addit. Manuf. 12 (2016) 178–188. https://doi.org/10.1016/j.addma.2016.05.003.
[77] T. Heeling, M. Cloots, K. Wegener, Melt pool simulation for the evaluation of process parameters in selective laser melting, Addit. Manuf. 14 (2017) 116–125. https://doi.org/10.1016/j.addma.2017.02.003.
[78] H. Hosaeus, A. Seifter, E. Kaschnitz, G. Pottlacher, Thermophysical properties of solid and liquid inconel 718 alloy, High Temp. - High Press. 33 (2001) 405–410. https://doi.org/10.1068/htwu340.
[79] S. Kamnis, S. Gu, N. Zeoli, Mathematical modelling of Inconel 718 particles in HVOF thermal spraying, Surf. Coatings Technol. 202 (2008) 2715–2724. https://doi.org/10.1016/j.surfcoat.2007.10.006.
[80] E. Kundakcioglu, I. Lazoglu, S. Rawal, Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures, Int. J. Adv. Manuf. Technol. 85 (2016) 493–501. https://doi.org/10.1007/s00170-015-7932-2.
[81] D. Zhang, P. Zhang, Z. Liu, Z. Feng, C. Wang, Y. Guo, Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy, Addit. Manuf. 21 (2018) 567–578. https://doi.org/10.1016/j.addma.2018.03.031.
[82] C. Sainte-Catherine, M. Jeandin, D. Kechemair, J.-P. Ricaud, L. Sabatier, Study of dynamic absorptivity at 10.6 μm (CO2) and 1.06 μm (Nd-YAG) wavelengths as a function of temperature, Le J. Phys. IV. 01 (1991) C7-151-C7-157. https://doi.org/10.1051/jp4:1991741.
[83] J. Romano, L. Ladani, M. Sadowski, Laser additive melting and solidification of Inconel 718: Finite element simulation and experiment, J. Miner. Met. Mater. Soc. 68 (2016) 967–977. https://doi.org/10.1007/s11837-015-1765-1.
[84] Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, M. Yan, Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis, Addit. Manuf. 25 (2019) 204–217. https://doi.org/10.1016/j.addma.2018.10.046.
[85] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Principles of heat and mass transfer, 2013. https://doi.org/10.1016/j.applthermaleng.2011.03.022.
[86] T. Heeling, M. Cloots, K. Wegener, Melt pool simulation for the evaluation of process parameters in selective laser melting, Addit. Manuf. 14 (2017) 116–125.
[87] D. Zhang, P. Zhang, Z. Liu, Z. Feng, C. Wang, Y. Guo, Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy, Addit. Manuf. 21 (2018) 567–578. https://doi.org/10.1016/j.addma.2018.03.031.
[88] S. Kamnis, S. Gu, N. Zeoli, Mathematical modelling of Inconel 718 particles in HVOF thermal spraying, Surf. Coatings Technol. (2008). https://doi.org/10.1016/j.surfcoat.2007.10.006.
[89] E. Kundakcıoğlu, I. Lazoglu, Ö. Poyraz, E. Yasa, N. Cizicioğlu, Thermal and molten pool model in selective laser melting process of Inconel 625, Int. J. Adv. Manuf. Technol. 95 (2018) 3977–3984. https://doi.org/10.1007/s00170-017-1489-1.
[90] C.P. Grigoropoulos, Transport in laser microfabrication: Fundamentals and applications, 2009. https://doi.org/10.1017/CBO9780511596674.
[91] A. De, T. DebRoy, A smart model to estimate effective thermal conductivity and viscosity in the weld pool, J. Appl. Phys. 95 (2004) 5230–5240. https://doi.org/10.1063/1.1695593.
[92] N. Anand, K.C. Chang, A.C. Yeh, Y. Bin Chen, M.T. Lee, An efficient transient three-dimensional thermomechanical modeling of dynamic thermal stress building and releasing in a selective laser melting process, J. Mater. Process. Technol. 309 (2022) 117741. https://doi.org/10.1016/j.jmatprotec.2022.117741.
[93] B.S. Yilbas, A.F.M. Arif, Material response to thermal loading due to short pulse laser heating, Int. J. Heat Mass Transf. 44 (2001) 3787–3798. https://doi.org/10.1016/S0017-9310(01)00026-6.
[94] E.R. Denlinger, Thermo-mechanical model development and experimental validation for metallic parts in additive manufacturing, Pennsylvania State Univ. (2015) 231.
[95] J. Gao, C. Wu, Y. Hao, X. Xu, L. Guo, Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding, Opt. Laser Technol. 129 (2020) 106287. https://doi.org/10.1016/j.optlastec.2020.106287.
[96] L.E. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, J. Andersson, Simulation of additive manufacturing using coupled constitutive and microstructure models, Addit. Manuf. 12 (2016) 144–158. https://doi.org/10.1016/j.addma.2016.05.005.
[97] I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, Int. J. Mach. Tools Manuf. 49 (2009) 916–923. https://doi.org/10.1016/j.ijmachtools.2009.07.004.
[98] M. Gouge, P. Michaleris, Thermo-mechanical modeling of additive manufacturing, First, Elsevier, 2017. https://doi.org/10.1016/c2016-0-00317-0.
[99] B.S. Yilbas, S.S. Akhtar, C. Karatas, Laser surface treatment of Inconel 718 alloy: Thermal stress analysis, Opt. Lasers Eng. 48 (2010) 740–749. https://doi.org/10.1016/j.optlaseng.2010.03.012.
[100] L. Li, X. Zhang, W. Cui, F. Liou, W. Deng, W. Li, Temperature and residual stress distribution of FGM parts by DED process: modeling and experimental validation, Int. J. Adv. Manuf. Technol. 109 (2020) 451–462. https://doi.org/10.1007/s00170-020-05673-4.
[101] K.C. Chang, M.Y. Lee, T.H. Hsu, Y.J. Chang, K.C. Lo, H.S. Kim, K.K. Jen, A.C. Yeh, An effective strengthening strategy of nano carbide precipitation and cellular microstructure refinement in a superalloy fabricated by selective laser melting process, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11111691.
[102] H. Qi, M. Azer, A. Ritter, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40 (2009) 2410–2422. https://doi.org/10.1007/s11661-009-9949-3.
[103] L.L. Parimi, M.M. Attallah, J.C. Gebelin, R.C. Reed, Direct Laser Fabrication of Inconel-718: Effects on Distortion and Microstructure, Superalloys 2012. (2012) 509–519. https://doi.org/10.1002/9781118516430.ch56.
[104] A. Strondl, R. Fischer, G. Frommeyer, A. Schneider, Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting, Mater. Sci. Eng. A. 480 (2008) 138–147. https://doi.org/10.1016/j.msea.2007.07.012.
[105] D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties, Mater. Des. 117 (2017) 121–130. https://doi.org/10.1016/j.matdes.2016.12.060.
[106] B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop, K. Chou, Infrared thermal imaging for melt pool analysis in SLM: a feasibility investigation, Virtual Phys. Prototyp. 13 (2018) 8–13. https://doi.org/10.1080/17452759.2017.1392685.
[107] J.L. Bartlett, X. Li, An overview of residual stresses in metal powder bed fusion, Addit. Manuf. 27 (2019) 131–149. https://doi.org/10.1016/j.addma.2019.02.020.
[108] P.J. Konijnenberg, S. Zaefferer, D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD, Acta Mater. 99 (2015) 402–414. https://doi.org/10.1016/j.actamat.2015.06.051.
[109] C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, Statistical analysis of dislocations and dislocation boundaries from EBSD data, Ultramicroscopy. 179 (2017) 63–72. https://doi.org/10.1016/j.ultramic.2017.04.005.
[110] J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953) 153–162. https://doi.org/10.1016/0001-6160(53)90054-6.
[111] O. Muránsky, L. Balogh, M. Tran, C.J. Hamelin, J.S. Park, M.R. Daymond, On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques, Acta Mater. 175 (2019) 297–313. https://doi.org/10.1016/j.actamat.2019.05.036.
[112] R.E. Abbaschian, R.; Abbaschian, L.; Reed-Hill, Physical Metallurgy Principles, Fourth, Boston, MA, 2010.
[113] M. Kamaya, Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient, Ultramicroscopy. 111 (2011) 1189–1199. https://doi.org/10.1016/j.ultramic.2011.02.004.
[114] D. Ye, J.Y. Hsi Fuh, Y. Zhang, G.S. Hong, K. Zhu, In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks, ISA Trans. 81 (2018) 96–104. https://doi.org/10.1016/j.isatra.2018.07.021.
[115] Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin, Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy, Opt. Laser Technol. 75 (2015) 197–206. https://doi.org/10.1016/j.optlastec.2015.07.009.
[116] M. Balbaa, S. Mekhiel, M. Elbestawi, J. McIsaac, On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses, Mater. Des. 193 (2020) 108818. https://doi.org/10.1016/j.matdes.2020.108818.
[117] B. Cheng, S. Shrestha, K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf. 12 (2016) 240–251. https://doi.org/10.1016/j.addma.2016.05.007.
[118] P. Pant, S. Sjöström, K. Simonsson, J. Moverare, S. Proper, S. Hosseini, V. Luzin, R. Peng, A simplified layer-by-layer model for prediction of residual stress distribution in additively manufactured parts, Metals (Basel). 11 (2021) 1–23. https://doi.org/10.3390/met11060861.
[119] C. Bayraktar, E. Demir, A thermomechanical finite element model and its comparison to inherent strain method for powder-bed fusion process, Addit. Manuf. 54 (2022) 102708. https://doi.org/10.1016/j.addma.2022.102708.
[120] E.R. Denlinger, M. Gouge, J. Irwin, P. Michaleris, Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process, Addit. Manuf. 16 (2017) 73–80. https://doi.org/10.1016/j.addma.2017.05.001.
[121] K.C. Chang, Investigate effects of carbide additions in order to further improve microstructures and properties of a superalloy processed by selective laser melting technique, National Tsing Hua University, 2022.
[122] D.B. Hann, J. Iammi, J. Folkes, A simple methodology for predicting laser-weld properties from material and laser parameters, J. Phys. D. Appl. Phys. 44 (2011) 445401. https://doi.org/10.1088/0022-3727/44/44/445401.
[123] T.N. Le, Y.L. Lo, Z.H. Lin, Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy, Addit. Manuf. 36 (2020) 101519. https://doi.org/10.1016/j.addma.2020.101519.
[124] P. Tang, H. Xie, S. Wang, X. Ding, Q. Zhang, H. Ma, J. Yang, S. Fan, M. Long, D. Chen, X. Duan, Numerical Analysis of Molten Pool Behavior and Spatter Formation with Evaporation During Selective Laser Melting of 316L Stainless Steel, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 50 (2019) 2273–2283. https://doi.org/10.1007/s11663-019-01641-w.
[125] H. El Cheikh, B. Courant, S. Branchu, J.Y. Hascoët, R. Guillén, Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Opt. Lasers Eng. 50 (2012) 413–422. https://doi.org/10.1016/j.optlaseng.2011.10.014.
[126] J.W. Harris, H. Stocker, Handbook of Mathematics and Computational Science, Springer-Verlag, New York, 1998. https://doi.org/10.1007/978-1-4612-5317-4.
[127] H. Wang, L. Wang, R. Cui, B. Wang, L. Luo, Y. Su, Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool, J. Mater. Res. Technol. 9 (2020) 10401–10410. https://doi.org/10.1016/j.jmrt.2020.07.029.
[128] Z. Hu, B. Nagarajan, X. Song, R. Huang, W. Zhai, J. Wei, Formation of SS316L Single Tracks in Micro Selective Laser Melting: Surface, Geometry, and Defects, Adv. Mater. Sci. Eng. 2019 (2019) 9451406. https://doi.org/10.1155/2019/9451406.
[129] E. Soylemez, High deposition rate approach of selective laser melting through defocused single bead experiments and thermal finite element analysis for Ti-6Al-4V, Addit. Manuf. 31 (2020) 100984. https://doi.org/10.1016/j.addma.2019.100984.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *