帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):文卡塔斯
作者(外文):Chitikena Venkatesh
論文名稱(中文):對向墊液靜壓軸承搭配薄膜節流器於上油墊及毛細管節流器於下油墊
論文名稱(外文):Opposed Pad Hydrostatic Bearing Design with Membrane Restrictor in the Upper Pad and Capillary Restrictors in the Lower Pad
指導教授(中文):林士傑
指導教授(外文):Lin, Shih-Chieh
口試委員(中文):宋震國
賴泰華
口試委員(外文):Sung, Cheng-kuo
Lai, Ta-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033710
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:72
中文關鍵詞:液靜壓軸承薄膜節流器毛細管節流器
外文關鍵詞:Hydrostatic BearingMembrane RestrictorCapillary Restrictor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,液靜壓軸承在高精密加工機台的應用有了很大的成長,因為液靜壓軸承沒有表面接觸,所以可以減少摩擦的影響;而毛細管節流器、孔口節流器、薄膜式節流器和流量控制閥等補償裝置有助於控制液靜壓軸承油腔壓力。
此研究中,使用薄膜節流器補償液靜壓軸承的上油墊,而使用毛細管節流器補償液靜壓軸承的下油墊,建立性能特性的理論方程,並對其表現進行理論計算,液靜壓軸承的承載力與剛性的理論公式是由上下油墊的油腔壓力比(P ̅_up,P ̅_lp) 、有效面積(A_e^up,A_e^lp)以及偏心率(ε)所建立。同時會藉由理論公式推導出上油墊所使用的薄膜節流器之無因次剛性(K_r^*)、設計流阻比(λ)以及下油墊的參考壓力比(β_lp)之間的關係。
藉由調整下油墊的油腔壓力能夠使軸承在不同負載條件下達到理想的軸承性能表現,本研究將能夠在K_r^*與λ已知的情況下,根據不同的負載需求,藉由調整下油墊的參考壓力比來達到軸承的最佳性能表現。
In recent years, the applications of hydrostatic bearing in high precision machine tools have increased considerably. This is because hydrostatic bearings reduce the effect of friction as there will not be any contact between the working surfaces. Compensating devices like capillary restrictor, orifice restrictor, membrane restrictor, and constant flow valves help hydrostatic bearings to manipulate the recess pressures.
In this research work, a membrane restrictor is used as the compensating device in the upper pad, and capillary restrictors are used in the lower pad of the hydrostatic bearing. All the theoretical equations for performance characteristics were formulated and these equations are employed to perform the theoretical calculations. The load capacity and stiffness equations were formulated using the pressure ratios (P ̅_up,P ̅_lp) and effective areas (A_e^up,A_e^lp) of both the pads and eccentricity ("ε" ). A relation between the dimensionless stiffness (K_r^*), design restriction ratio (λ) of the upper pad and reference pressure ratio of the lower pad (β_lp) is derived theoretically.
The desired bearing performance can be achieved at different load conditions with the help of lower pad. This research work would help to select a suitable reference pressure ratio (β_lp) of the lower pad according to the load requirements to obtain the best performance for a known value of K_r^* and λ.
Table of Contents
ABSTRACT--------I
1. INTRODUCTION --------1
2. LITERATURE REVIEW --------4
2.1 Hydrostatic bearing --------4
2.2 Membrane restrictor --------5
2.3 Summary --------9
3. OBJECTIVES AND FUNDAMENTAL THEORY --------10
3.1 Design of components --------12
3.2 Opposed pad hydrostatic bearing structure --------19
3.3 Theoretical Calculations for load capacity and stiffness of the
bearing --------20
3.4 Bearing pad design --------22
3.5 Miscellaneous equations --------24
4. THEORETICAL ANALYSIS --------25
4.1 Objective --------25
4.2 Procedure of analysis --------25
4.3 Simulation Results --------26
4.4 Conclusion from simulation results --------37
5. EXPERIMENTAL DESIGN AND RESULTS --------38
5.1 Three-dimensional model of the designed hydrostatic bearing
system --------38
5.2 Dimensional design --------42
5.3 Experimental equipment --------47
5.4 Estimation of flow resistance of capillary restrictors --------51
5.5 Estimation of flow resistance, Kr* and λ of membrane restrictor --------58
5.6 Performance of the bearing with both the pads in working
condition --------63
6. Conclusion --------67
6.1 Conclusion --------67
6.2 Future work --------68
REFERENCES --------69

1. DE Gast JGC, A new type of controlled restrictor (M.D.R.) for double film hydrostatic bearings and its application to high-precision machine tools. In: Proceedings of the 7th international MDTR conference on advances in machine tool design and research; Birmingham; 1966. p. 273–298.
2. S.A. Morsi, Tapered spool controller for pressurized oil film bearings, Proc Inst Mech Engrs (1969) 387–396.
3. B. C. MAJUMDAR, The numerical solution of hydrostatic oil journal bearing with several supply ports, Wear, I4 (1969), 389-396.
4. W. B. Rowe, J. P. O’Donoghue, Diaphragm valves for controlling opposed pad hydrostatic bearings, Proc Instn Mech Engrs (1969-70), Vol 184.
5. W. B. Rowe, J. P. O’Donoghue and A. Cameron, Optimization of externally pressurized bearings for minimum power and low temperature rise, Tribology (1970), 3, 153–157.
6. S. A. Morsi, Passively and Actively Controlled Externally Pressurized Oil-Film Bearings, Journal of Lubrication Technology, ASME (1972), 56-63.
7. B. Ghosh, Load and flow characteristics of a capillary compensated hydrostatic journal bearing, Wear (1973), 23, 377-386.
8. C. Cusano, Characteristics of externally pressurized journal bearings with membrane- type variable-flow restrictors as compensating elements, Proc Inst Mech Engrs (1974) 527–536.
9. C. Wang and C. Cusano, Dynamic characteristics of externally pressurized, double pad, circular thrust bearings with membrane restrictors, Transactions of the ASME, Journal of Tribology (1991), Vol. 133 No. 1, pp. 158-65.
10. R. Bassani, B. Piccigallo, Hydrostatic lubrication (Tribology Series, Vol.22) [ISBN 044488498X], Elsevier, Amsterdam, 1992.
11. Narendra Singh, Satish C. Sharma*, S.C. Jain, S. Sanjeeva Reddy, Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes, Tribology International 37 (2004), 11–24.
12. Yuan Kang, Ping-Chen Shen, Yeon-Pun Chang, Hsing-Han Lee and Chih-Pin Chiang, Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression, Tribology International 40 (2007) 1369–1380.
13. Yuan Kang, Ping-Chen Shen, Cheng-Hsign Chen, Yeon-Pun Chang and Hsing-Han Lee, Modified determination of fluid resistance for membrane-type restrictors, Industrial Lubrication and Tribology (2007), 59/3, 123-131. [DOI 10.1108/00368790710746084]
14. Christian Brecher, Christoph Baum, Markus Winterschladen, Christian Wenzel, Simulation of dynamic effects on hydrostatic bearings and membrane restrictors, Prod. Eng. Res. Devel. (2007) 1:415–420. [DOI 10.1007/s11740-007-0051-7]
15. V.M. Phalle, S.C. Sharma, S.C. Jain, Influence of wear on the performance of a 2-lobe multirecess hybrid journal bearing system compensated with membrane restrictor, Tribology International 44 (2011), 380–395.
16. Lu Lihua, Su Hao, Liang Yingchun, Zhang Qiang, Research on Static Stiffness of Hydrostatic Bearing using Fluid-Structure Interaction Analysis, Procedia Engineering 29 (2012), 1304-1308.
17. Yuang Kang, Cheng-Hsien Chen, Yi-Chich Chen, Chi Chang and Shun-Te Hsiao, Parameter identification for single-action membrane-type restrictors of hydrostatic bearings, Industrial Lubrication and Tribology (2012), 64/1, 39-53. [DOI: 10.1108/00368791211196880].
18. W. Brian Rowe Dsc, Hydrostatic, Aerostatic and Hybrid Bearing Design, Elsevier (2012). [DOI 10.1016/B978-0-12-396994-1.00005-X]
19. Makoto Gohara, Kei Somaya, Masaaki Miyatake, Shigeka Yoshimoto*, Static characteristics of a water-lubricated hydrostatic thrust bearing using a membrane restrictor, Tribology International 75 (2014), 111–116.
20. Zichao Liu, Wei pan, Changhuo Lu, Yongtao Zhang, Numerical analysis on the static performance of a new piezoelectric membrane restrictor, Industrial Lubrication and Tribology, 68/5 (2016) 521–529.
21. Ta-Hua Lai, Ting-Yu Chang, Ya-Lu Yang, Shih-Chieh Lin, Parameters design of a membrane-type restrictor with single-pad hydrostatic bearing to achieve high static stiffness, Tribology International 107 (2017) 206–212.
22. Waheed Ur Rehman, Luo Yuanxin, Jiang Guiyun, Wang Yongqin, Xu yun, Muhammad Nadeem Iqbal, Mansoor Ali Zaheer, Irfan Azhar, Hassan Elahi, Yang Xioagao, Control of an Oil Film Thickness in a Hydrostatic Journal Bearing Under Different Dynamic Conditions, 29th Chinese Control and Decision Conference, IEEE (2017), 5072-76.
23. Wei Pan, Yongtao Zhang and Changhou Lu, An accurate method for determination of the performance characteristics of membrane-type restrictors, Journal of Engineering Tribology, 0(0) 1–10, IMechE 2018.
24. Ta-Hua Lai, Shih-Chieh Lin, A simulation study for the design of membrane restrictor in an Opposed-Pad Hydorstatic Bearing to Achieve High Static Stiffness, Lubricants (2018), 6,71; [DOI:10.3390/lubricants6030071].
25. Adesh K Tomar and Satish C Sharma, Finite element analysis of multirecess hybrid spherical journal bearing system, J Engineering Tribology (2019), 0(0) 1-24. [DOI: 10.117/1350650119884829].
26. W. B. Rowe, Restrictors and Compensation of Hydrostatic Bearings, Encyclopedia of Tribology (2013), 2760-2761. [DOI: 10.1007/978-0-387-92897-5_53].
27. N M Crawford*, G Cunningham and S W T Spence, An experimental investigation into the pressure drop for turbulent flow in 90◦ elbow bends, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (2007), [DOI: 10.1243/0954408JPME84].
28. TY Chang, YL Yang and SC Lin, Analysis on Parameters and Design of Membrane-type Restrictor, Proceedings of the International Conference on Engineering and Natural Science-Summer Session, Kyoto, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *