帳號:guest(3.15.137.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張詠瑄
作者(外文):Chang, Yung-Hsuan
論文名稱(中文):具多重中性軸之軟性電子其力學模型建立與數值分析
論文名稱(外文):Mechanical Model Establishment and Numerical Analysis of Soft Electronics with Multiple Neutral Axes
指導教授(中文):李昌駿
指導教授(外文):Lee, Chang-Chun
口試委員(中文):葉孟考
徐烱勛
張書通
口試委員(外文):Yeh, Meng-Kao
Hsu, Jiong-Shiun
Chang, Shu-Tong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033620
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:91
中文關鍵詞:軟性電子多層薄膜中性軸
外文關鍵詞:Soft ElectronicsMulti-Layer Thin FilmNeutral Axis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:170
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為保護軟性電子元件內部之脆性薄膜材料,設計堆疊薄膜元件時,將上述脆性材料層配置在中性軸位置附近,可藉此降低該薄膜層所承受之應力而免於破壞,提高軟性電子之長時可靠度壽命。基於此力學概念,若在軟性電子結構內部增加中性軸數量,則可使關鍵且易脆裂之薄膜層的配置有更多選擇,且該結構內之最大應力亦可顯著降低,進而提升軟性電子結構設計之多樣性。有鑑於此,本研究首先針對一不具軟性層之多層薄膜結構,推導其與厚度相依之水平方向應變值與中性軸位置。而後,分析一具軟性層之三層薄膜,藉由變分法求得其應變函數與中性軸位置。最後,針對含一軟性層之多層薄膜結構,將與軟性層相鄰之多層薄膜各自等效為單層,即可簡化多層薄膜系統之分析,用以獲得該系統之中性軸位置與數量。本研究由三層薄膜之理論模型延伸,推廣至多層薄膜之分析,完成多重中性軸之理論推導,探討多重中性軸發生的位置與所需之條件,並透過有限元素模擬分析進行驗證。本研究之理論推導能夠快速地預測多層薄膜結構之中性軸數量與位置。藉由本研究所呈現之力學模型與結果,可適當地配置中性軸之數量與位置,期作為下一世代改善軟性電子結構之重要設計參考準則。
In order to protect the brittle thin film material inside the flexible electronic devices, when designing the stacked film devices, the above-mentioned brittle material layer is arranged near the position of neutral axis, which can reduce the induced stress on the concerned film and avoid damage. Accordingly, the long-term reliability lifetime of soft electronics is boosted. Based on this concept of mechanics, more choices with regard to the arrangement of critical and brittle thin film can be provided when an increase in the number of neutral axes is taken into account. In this meanwhile, the maximum stress in the present configuration can be significantly reduced, thereby the diversity of design for the structures of soft electronics are promoted. For this reason, this research first derives the neutral axis position and the distribution of horizontal strain along the thickness direction of multi-layered thin film architecture without a soft layer. Afterwards, the variational method is utilized to acquire the strain function and the positions of neutral axes for a sandwich framework that a soft layer is embedded. Finally, for a stacked thin film structure containing a soft layer, the multi-layer films adjacent to the soft layer are needed to be an equivalent layer, respectively. Through this procedure, the analysis of multi-layered system can be simplified to obtain the position and quantity of the neutral axes within the concerned system.
This research extends and analyzes the theoretical model from three-layered to multi-layered system. The theoretical derivation regarding the locations of multiple neutral axes and the discussions for the necessary conditions of requirements are overall completed. All the estimated results from the present derivations are validated through finite element analysis. The theoretical derivation proposed by this research can quickly predict the number and positions of neutral axes for the designed multi-layered structure. With the mechanical model and analytic results presented in this research, the number and positions of the neutral axes can be appropriately configured, which is expected to be an important design reference for the next generation soft electronic architectures.
摘要-------------------I
Abstract---------------III
誌謝-------------------IV
目錄-------------------V
圖目錄-----------------VII
表目錄-----------------X
第一章 緒論--------------------------------------1
1.1 軟性電子之介紹與發展趨勢-------------------1
1.2 中性軸在軟性電子元件應用之重要性------------9
1.3 研究動機---------------------------------11
1.4 文獻回顧---------------------------------11
1.5 研究架構---------------------------------16
第二章 多重中性軸推導方法回顧與分析----------------17
2.1 具熱殘餘應力與彎矩作用之多層薄膜應力解析解---17
2.2 具軟性夾層之三層薄膜系統解析解-------------24
2.3 剪應變影響之三層薄膜系統解析解-------------29
第三章 理論推導----------------------------------38
3.1 單一中性軸理論推導------------------------38
3.2 具軟性夾層之三層薄膜理論推導---------------42
3.3 多層薄膜系統之中性軸位置計算---------------59
第四章 結果與討論--------------------------------65
4.1 具軟性夾層之三層薄膜模型推導驗證------------65
4.2 OLED柔性顯示器結構之解析解與模擬比較--------70
4.3 具三個軟性夾層之七層薄膜結構分析------------78
第五章 結論與未來工作-----------------------------81
參考文獻------------------------------------------84
[1] M. Dyson and K. Ghaffarzadeh, “Flexible Hybrid Electronics 2020-2030: Applications, Challenges, Innovations and Forecasts,” IDTechEx Ltd., Apr. 2020.
[2] J. W. Mok, Z. Hu, C. Sun, I. Barth, R. Muñoz, J. Jackson, T. Terlier, K. G. Yager, and R. Verduzco, “Network-Stabilized Bulk Heterojunction Organic Photovoltaics,” Chemistry of Materials, Vol. 30, No. 22, 8314–8321, 2018.
[3] S. H. K. Park, J. Oh, C. S. Hwang, J. I. Lee, Y. S. Yang, and H. Y. Chu, “Ultrathin Film Encapsulation of an OLED by ALD,” Electrochemical and Solid-State Letters, Vol. 8, No. 2, H21–H23, 2005.
[4] A. R. Cho, E. H. Kim, S. Y. Park, and L. S. Park, “Flexible OLED Encapsulated with Gas Barrier Film and Adhesive Gasket,” Synthetic Metals, Vol. 193, 77–80, 2014.
[5] S. Zhang, W. Xue, and Z. Yu, “Moisture Barrier Evaluation of SiOx/SiNx Stacks on Polyimide Substrates Using Electrical Calcium Test,” Thin Solid Films, Vol. 580, 101–105, 2015.
[6] J. Zhang, W. Li, G. Cheng, X. Chen, H. Wu, and M. H. H. Shen, “Life Prediction of OLED for Constant-Stress Accelerated Degradation Tests Using Luminance Decaying Model,” Journal of Luminescence, Vol. 154, 491–495, 2014.
[7] J. Sheng, J. Park, D. W. Choi, J. Lim, and J. S. Park, “A Study on the Electrical Properties of Atomic Layer Deposition Grown InOx on Flexible Substrates with Respect to N2O Plasma Treatment and the Associated Thin-Film Transistor Behavior under Repetitive Mechanical Stress,” ACS Applied Materials & Interfaces, Vol. 8, No. 45, 31136–31143, 2016.
[8] H. J. Jeong, K. L. Han, K. C. Ok, H. M. Lee, S. Oh, and J. S. Park, “Effect of Mechanical Stress on the Stability of Flexible InGaZnO Thin-Film Transistors,” Journal of Information Display, Vol. 18, No. 2, 87–91, 2017.
[9] B. U. Hwang, D. I. Kim, S. W. Cho, M. G. Yun, H. J. Kim, Y. J. Kim, H. K. Cho, and N. E. Lee, “Role of Ultrathin Al2O3 Layer in Organic/Inorganic Hybrid Gate Dielectrics for Flexibility Improvement of InGaZnO Thin Film Transistors,” Organic Electronics, Vol. 15, No. 7, 1458–1464, 2014.
[10] Y. Geng, W. Yang, H. L. Lu, Y. Zhang, Q. Q. Sun, P. Zhou, P. F. Wang, S. J. Ding, and D. W. Zhang, “Mobility Enhancement and Off Current Suppression in Atomic-Layer-Deposited ZnO Thin-Film Transistors by Post Annealing in O2,” IEEE Electron Device Letters, Vol. 35, No. 12, 1266–1268, 2014.
[11] A. K. Tripathi, K. Myny, B. Hou, K. Wezenberg, and G. H. Gelinck, “Electrical Characterization of Flexible InGaZnO Transistors and 8-b Transponder Chip Down to a Bending Radius of 2 mm,” IEEE Transactions on Electron Devices, Vol. 62, No. 12, 4063–4068, 2015.
[12] D. U. Jin, T. W. Kim, H. W. Koo, D. Stryakhilev, H. S. Kim, S. J. Seo, M. J. Kim, H. K. Min, H. K. Chung, and S. S. Kim, “Invited Paper: Highly Robust Flexible AMOLED Display on Plastic Substrate with New Structure,” SID Symposium Digest of Technical Papers, Vol. 41, No. 1, 703–705, Oxford, UK: Blackwell Publishing Ltd., 2010.
[13] Y. H. Kim, E. Lee, J. G. Um, M. Mativenga, and J. Jang, “Highly Robust Neutral Plane Oxide TFTs Withstanding 0.25 mm Bending Radius for Stretchable Electronics,” Scientific Reports, Vol. 6, No. 1, 1–8, 2016.
[14] J. H. Bong, C. Kim, W. S. Hwang, T. S. Kim, and B. J. Cho, “A Quantitative Strain Analysis of a Flexible Single-Crystalline Silicon Membrane,” Applied Physics Letters, Vol. 110, No. 3, 033105, 2017.
[15] L. Li, P. Zhang, W. M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, O. Ogbuu, Q. Du, X. Jia, J. Li, and J. Hu, “Foldable and Cytocompatible Sol-Gel TiO2 Photonics,” Scientific Reports, Vol. 5, No. 1, 1–10, 2015.
[16] S. Li, X. Liu, R. Li, and Y. Su, “Shear Deformation Dominates in the Soft Adhesive Layers of the Laminated Structure of Flexible Electronics,” International Journal of Solids and Structures, Vol. 110, 305–314, 2017.
[17] S. Li, Y. Su, and R. Li, “Splitting of the Neutral Mechanical Plane Depends on the Length of the Multi-Layer Structure of Flexible Electronics,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 472, No. 2190, 20160087, 2016.
[18] Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple Neutral Axes in Bending of a Multiple-Layer Beam with Extremely Different Elastic Properties,” Journal of Applied Mechanics, Vol. 81, No. 11, 114501, 2014.
[19] J. A. Rogers, T. Someya, and Y. G. Huang, “Materials and Mechanics for Stretchable Electronics,” Science, Vol. 327, No. 5973, 1603–1607, 2010.
[20] D. H. Kim, N. S. Lu, Y. G. Huang, and J. A. Rogers, “Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices,” MRS Bull, Vol. 37, No. 3, 226–235, 2012.
[21] D. H. Kim, J. Xiao, J. Song, Y. G. Huang, and J. A. Rogers, “Stretchable, Curvilinear Electronics Based on Inorganic Materials,” Advanced Materials, Vol. 22, No. 19, 2108–2124, 2010.
[22] M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, “Ultrathin and Lightweight Organic Solar Cells with High Flexibility,” Nature Communications, Vol. 3, No. 1, 1–7, 2012.
[23] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes,” Nature, Vol. 457, No. 7230, 706–710, 2009.
[24] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, “An Ultra-Lightweight Design for Imperceptible Plastic Electronics,” Nature, Vol. 499, No. 7459, 458–463, 2013.
[25] A. S. Za’aba, S. N. Ibrahim, N. F. A. Malek, and A. M. Ramly, “Development of Wearable Patch Antenna for Medical Application,” 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 260–263, 2017.
[26] Y. Yang, X. Yang, Y. Tan, and Q. Yuan, “Recent Progress in Fexible and Wearable Bio-Electronics Based on Nanomaterials,” Nano Research, Vol. 10, No. 5, 1560–1583, 2017.
[27] J. Zhou and T. Dong, “Design of a Wearable Device for Real-Time Screening of Urinary Tract Infection and Kidney Disease Based on Smartphone,” Analyst, Vol. 143, No. 12, 2812–2818, 2018.
[28] S. Albishi, B. Soh, A. Ullah, and F. Algarni, “Challenges and Solutions for Applications and Technologies in the Internet of Things,” Procedia Computer Science, Vol. 124, 608–614, 2017.
[29] N. M. C. Hurtado, M. H. Zarifi, M. Daneshmand, and J. A. Llobet, “Flexible Microdisplacement Sensor for Wearable/Implantable Biomedical Applications,” IEEE Sensors Journal, Vol. 17, No. 12, 3873–3883, 2017.
[30] K. Myny, “The Development of Flexible Integrated Circuits Based on Thin-Film Transistors,” Nature Electronics, Vol. 1, No. 1, 30–39, 2018.
[31] H. K. Lin, S. M. Chiu, T. P. Cho, and J. C. Huang, “Improved Bending Fatigue Behavior of Flexible PET/ITO Film with Thin Metallic Glass Interlayer,” Materials Letters, Vol. 113, 182–185, 2013.
[32] S. Lee, J. Y. Kwon, D. Yoon, H. Cho, J. You, Y. T. Kang, D. Choi, and W. Hwang, “Bendability Optimization of Flexible Optical Nanoelectronics via Neutral Axis Engineering,” Nanoscale Research Letters, Vol. 7, No. 1, 256, 2012.
[33] Y. G. Wang, W. H. Lin, Z. J. Feng, and X. M. Li, “Characterization of Extensional Multi-Layer Microbeams in Pull-in Phenomenon and Vibrations,” International Journal of Mechanical Sciences, Vol. 54, No. 1, 225–233, 2012.
[34] Y. C. Han, E. G. Jeong, H. Kim S., Kwon, H. G. Im, B. S. Bae, and K. C. Choi, “Reliable Thin-Film Encapsulation of Flexible OLEDs and Enhancing Their Bending Characteristics Through Mechanical Analysis,” RSC Advances, Vol. 6, No. 47, 40835–40843, 2016.
[35] W. Kim, I. Lee, D. Y. Kim, Y. Y. Yu, H. Y. Jung, S. Kwon, W. S. Park, and T. S. Kim, “Controlled Multiple Neutral Planes by Low Elastic Modulus Adhesive for Flexible Organic Photovoltaics,” Nanotechnology, Vol. 28, No. 19, 194002, 2017
[36] S. Li, Y. Su, and R. Li, “Splitting of the Neutral Mechanical Plane Depends on the Length of the Multi-Layer Structure of Flexible Electronics,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 472, No. 2190, 20160087, 2016.
[37] S. I. Park, Y. X., R. H. Kim, P. Elvikis, M. Meitl, D. H. Kim, J. Wu, J. Yoon, C. J. Yu, Z. Liu, Y. Huang, K. C. Hwang, P. Ferreira, X. Li, K. Choquette, and J. A. Rogers, “Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays,” Science, Vol. 325, No. 5943, 977–981, 2009.
[38] S. I. Park, A. P. Le, J. Wu, Y. Huang, X. Li, and J. A. Rogers, “Light Emission Characteristics and Mechanics of Foldable Inorganic Light-Emitting Diodes,” Advanced Materials, Vol. 22, No. 28, 3062–3066, 2010.
[39] B. J. Kim, H. A. S. Shin, J. H. Lee, and Y. C. Joo, “Effect of Cyclic Outer and Inner Bending on the Fatigue Behavior of a Multi-Layer Metal Film on a Polymer Substrate,” Japanese Journal of Applied Physics, Vol. 55, No. 6S3, 06JF01,2016.
[40] C. C. Lee, Y. S. Shih, C. S. Wu, C. H. Tsai, S. T. Yeh, Y. H. Peng, and K. J. Chen, “Development of Robust Flexible OLED Encapsulations Using Simulated Estimations and Experimental Validations,” Journal of Physics D: Applied Physics, Vol. 45, No. 27, 275102, 2012.
[41] T. C. Li and J. F. Lin, “Fatigue Life Study of ITO/PET Specimens in Cyclic Bending Tests,” Journal of Materials Science: Materials in Electronics, Vol. 26, No. 1, 250–261, 2015.
[42] C. C. Lee, P. C. Huang, and K. S. Wang, “Flexural Capability of Patterned Transparent Conductive Substrate by Performing Electrical Measurements and Stress Simulations,” Materials, Vol. 9, No. 10, 850, 2016.
[43] H. S. Jung, K. Eun, Y. T. Kim, E. K. Lee, and S.-H. Choa, “Experimental and Numerical Investigation of Flexibility of ITO Electrode for Application in Flexible Electronic Devices,” Microsystem Technologies, Vol. 23, No. 6, 1961–1970, 2017.
[44] C. C. Lee and Y. Y. Liou, “Dependent Analyses of Multilayered Material/Geometrical Characteristics on the Mechanical Reliability of Flexible Display Devices,” IEEE Transactions on Device and Materials Reliability, Vol. 18, No. 4, 639–642, 2018.
[45] Y. Su, S. Li, R. Li, and C. Dagdeviren, “Splitting of Neutral Mechanical Plane of Conformal, Multilayer Piezoelectric Mechanical Energy Harvester,” Applied Physics Letters, Vol. 107, No. 4, 041905, 2015.
[46] M. Koo, K. I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, and K. J. Lee, “Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems,” Nano Letters, Vol. 12, No. 9, 4810–4816, 2012.
[47] S. Lee, J. S. Yeo, Y. Ji, C. Cho, D. Y. Kim, S. I. Na, B. H. Lee, and T. Lee, “Flexible Organic Solar Cells Composed of P3HT:PCBM Using Chemically Doped Graphene Electrodes,” Nanotechnology, Vol. 23, No. 34, 344013, 2012.
[48] S. W. Seo, E. Jung, H. Chae, S. J. Seo, H. K. Chung, and S. M. Cho, “Bending Properties of Organic–Inorganic Multilayer Moisture Barriers,” Thin Solid Films, Vol. 550, 742–746, 2014.
[49] J. Lewis, “Material Challenge for Flexible Organic Devices,” Materials Today, Vol. 9, No. 4, 38–45, 2006.
[50] H. C. Cheng, W. H. Xu, W. H. Chen, P. H. Wang, K. F. Chen, and C. C. Chang, “Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design,” Advances in Materials Science and Engineering, Vol. 2015, 2015.
[51] M. Gioti, D. Kokkinos, C. I. Chaidou, A. Laskarakis, A. K. Andreopoulou, J. K. Kallitsis, and S. Logothetidis, “A Comprehensive Study of the Optical Properties of Emitting Polymers for Efficient Flexible OLED Devices,” Physica Status Solidi A – Applications and Materials Science, Vol. 213, No. 11, 2947–2953, 2016.
[52] Y. C. Han, E. G. Jeong, H. Kim S., Kwon, H. G. Im, B. S. Bae, and K. C. Choi, “Reliable Thin-Film Encapsulation of Flexible OLEDs and Enhancing Their Bending Characteristics Through Mechanical Analysis,” RSC Advances, Vol. 6, No. 47, 40835–40843, 2016.
[53] W. Kim, I. Lee, D. Y. Kim, Y. Y. Yu, H. Y. Jung, S. Kwon, W. S. Park, and T. S. Kim, “Controlled Multiple Neutral Planes by Low Elastic Modulus Adhesive for Flexible Organic Photovoltaics,” Nanotechnology, Vol. 28, No.19, 194002, 2017.
[54] C. H. Hsueh, S. Lee, and T. J. Chuang, “An Alternative Method of Solving Multilayer Bending Problems,” Transactions-American Society of Mechanical Engineers Journal of Applied Mechanics, Vol. 70, No.1, 151–153, 2003.
[55] V. I. Andreev, R. A. Turusov, and N. Y. Tsybin, “Application of the Contact Layer in the Solution of the Problem of Bending the Multilayer Beam,” Procedia Engineering, Vol. 153, 59–65, 2016.
[56] V. I. Andreev, R. A. Turusov, and N. Y. Tsybin, “The Contact Layer Method in the Problem of Bending of a Multilayer Beam. Fourier Series Solution,” Advances in Engineering Research, Vol.102, 220–226 2017.
[57] L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. S. Lu, and J. Hu, “3D Integrated Flexible Glass Photonics,” arXiv:1307.5937, 2013.
[58] A. C. Ugural and S. K. Fenster, “Energy Method for Deflections,” in Advanced Mechanics of Materials and Applied Elasticity, 5th ed. Pearson Education, Inc., 2015, ch. 5, sec. 12, pp. 264–266.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *