帳號:guest(18.118.19.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林奕翔
作者(外文):Lin, Yi-Hsiang
論文名稱(中文):工具機精度提升設計藉由 液靜壓線性滑軌之油膜厚度控制
論文名稱(外文):Precision Improving Design of Machine Tools via Oil-film Thickness Control of Hydrostatic Bearing Linear Guide
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):林士傑
盧向成
口試委員(外文):Lin, Shih-Chieh
Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033619
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:107
中文關鍵詞:液靜壓軸承液靜壓線性滑軌定膜厚控制PID控制
外文關鍵詞:Hydrostatic bearingHydrostatic linear guidewayOil film thickness controlPID Control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:414
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
相對於傳統接觸式軸承,液靜壓軸承透過軸體與軸承面的高壓油膜來提供承載所需要的剛性,也作為軸承潤滑的來源。而液靜壓軸承有著高剛性、高承載力、低磨耗、壽命長等優勢,在精密加工產業的應用上具有很高的潛力。但因為液靜壓軸承可能因為外部負載改變、不平均,甚至是潤滑油在不同溫度下所產生的黏度改變,導致油膜厚度的變化,進而影響剛性或是加工的精準度。雖然液靜壓軸承可藉由安裝節流器,達到壓力調節的效果,但因為並不是主動式的機制,所能調節的範圍仍然有限。
本研究與上銀科技合作開發主動式液靜壓滑軌,將液靜壓滑軌的構型與控制系統的概念結合,透過渦電流感測器偵測油膜厚度的變動,並以主動式的油壓比例閥,調節腔壓,提供額外的壓力平衡外部負載的改變,使油膜厚度能維持在定值,以達到穩定的軸承性能以及加工精準度。首先將液靜壓滑軌進行建模,並以此為基礎,設計控制器,透過軟體分析,先行預測此系統的控制性能。再來則進行實驗的架設,透過實際測試,確定此系統能滿足原先所設定目標,在不同的軸承負載下,油膜厚度皆能維持在設計值,並持續優化性能,未來則能將此系統持續擴展到液靜壓滑軌平台。
Compared with traditional ball bearings, hydrostatic bearings rely on a thin film of high pressurized oil to provide stiffness, supporting force and lubrication. Based on this feature, hydrostatic bearings have the advantages of high stiffness, high load capacity, low friction and long service life, which lead to high potential for adoption in ultra-precision machining. However, there are still limitations in the performance of hydrostatic bearings. The oil film thickness might vary under some unstable operating conditions such as changes in bearing load and oil viscosity, which would affect the manufacturing accuracy. Although lots of researches have been worked showing that hydrostatic bearings could be used alongside restrictors to regulate the recess pressure under varying bearing load, the regulating range is still limited due to the fact lacking active devices.
This study proposes a new active hydrostatic bearing linear guideway, combining the original linear guideway design with the concept of closed-loop control. By using the eddy current signal as the feedback signal and the pressure valve as the actuator, the oil film thickness can be detected and then compensated through the extra supporting force provided by the valve to maintain the constant oil film thickness. The performance of this control system was verified through both analytical and experimental processes in this research work.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 X
第一章 序論 1
第二章 文獻回顧 8
2.1液靜壓軸承工作原理 8
2.2薄膜式節流器 11
2.3 壓電材料於比例閥系統之應用 12
2.4 油膜厚度控制之控制演算法比較 15
2.5 結語 17
第三章 研究方法與步驟 18
3.1 液靜壓軸承基本理論公式 18
3.2 薄膜式節流器流阻與膜片變形之關係 21
3.3 控制系統架構 23
3.4 PID控制器與驅動電路原理 28
第四章 控制器設計流程與性能模擬 36
4.1油壓比例閥作動原理及調整範圍分析 36
4.2受控場系統辨識 43
4.3控制器參數設計 47
4.4油膜厚度補償模擬 54
4.5受控場條件變動對於控制性能影響探討 58
4.6驅動電路性能分析 71
第五章 液靜壓線性滑軌油膜厚度控制實驗 75
5.1實驗架設 75
5.2驅動電路性能實測 77
5.3壓電致動器測試 80
5.4油膜厚度控制實驗之性能實測 85
第六章 結論 96
6.1研究成果 96
6.2未來展望 98
參考文獻 100

[1] W. B. Rowe, Hydrostatic, Aerostatic and Hybrid Bearing Design, MA: Butterworth-Heinemann, 2012.
[2] Yuan Kang, Sie-Sing Jhang, Sheng-Xiang Peng, Wen-Chou Chen and Sheng-Yen Hu, Flow Rate Control for Constant Film Thickness of Hydrostatic Bearing System, Journal of Physics Conference Series 1074 012008, 2018.
[3] 李威志,新型主動式補償液靜壓軸承之靜動態特性分析,國立清華大學動力機械研究所,2012。
[4] Hesselbach, J. and Abel-Keilhack, C., Active Hydrostatic Bearing with Magnetorheological Fluid. Journal of Applied Physics, Vol. 93, No. 10 (2003), pp.8441-8443.
[5] Waheed Ur Rehman, Guiyun Jiang, Yuanxin Luo, Yongqin Wang, Wakeel Khan, Shafiq Ur Rehman and Nadeem Iqbal, Control of Active Lubrication for Hydrostatic Journal Bearing by Monitoring Bearing Clearance, Advances in Mechanical Engineering 2018, Vol. 10(4) 1-17.
[6] Waheed Ur Rehman, Guiyun Jiang, Yuanxin Luo, Yongqin Wang, Yun Xu, Nadeem Iqbal, Ali Zaheer, Irfan Azhar, Hassan Elahi and Xiaogao Yang, Control of an Oil Film Thickness in a Hydrostatic Journal Bearing Under Different Dynamic Conditions, 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, 2017, pp. 5072-5076.
[7] Waheed Ur Rehman, Guiyun Jiang, Yuanxin Luo, Yongqin Wang, Shafiq Ur Rehman, Shamsa Bibi, Nadeem Iqbal, Ali Zaheer, Irfan Azhar and Xiaogao Yang, Control of Oil Film Thickness for Hydrostatic Journal Bearing Using PID Disturbance Rejection Controller, 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, 2017, pp. 543-547.
[8] Ming-Chang SHIH and Jen-Sheng SHIE, Recess Design and Dynamic Control of an Active Compensating Hydrostatic Bearing. Journal of Advanced Mechanical Design, Systems, and Manufacturing 2013, Vol. 7, pp.706-721.
[9] M. S. A. Kotilainen, Design and Manufacturing of Modular Self-Compensating Hydrostatic, Massachusetts Institute of Technology, 2000.
[10] R. Bassani and B. Piccigallo, Hydrostatic Lubrication, Amsterdam, AE: Elsevier, 1992.
[11] Choonsup Lee, Eui-Hyeok Yang, Member, IEEE, S. Mahdi Saeidi, Student Member, ASME, and Jay M. Khodadadi, Member, ASME, Fabrication, Characterization and Computational Modeling of a Piezoelectrically Actuated Microvalve for Liquid Flow Control, Journal of Microelectromechanical Systems, Vol. 15, no. 3, pp. 686-696, June 2006.
[12] Dr.-Ing. C. Munzinger, Dipl.-Ing. M. Weis, Dipl.-Ing. S. Herder wbk Institute of Production Science, University of Karlsrube (TH), Germany, Smart Adaptronic Hydrostatic Guiding System for Machine Tool Slides, Proc. SPIE 7288, Active and Passive Smart Structures and Integrated Systems 2009, 72881P.
[13] Junpeng Shao, Guihua Han, Yanqin Zhang, Yuhong Dong and Hongmei Li, Hardware-in-the-loop Simulation on Controllable Hydrostatic Thrust Bearing, 2008 IEEE International Conference on Automation and Logistics, Qingdao, 2008, pp. 1095-1099.
[14] Jingyang Peng, Xiongbiao Chen, A Survey of Modeling and Control of Piezoelectric Actuators, Modern Mechanical Engineering 2013, Vol. 03, pp. 1-20.
[15] Yuan Kang, De-Xing Peng, Yu-Hong Hung, Sheng-Yan Hu and Chorng-Shyan Lin (2014), Design for Static Stiffness of Hydrostatic Bearings: Double-action Variable Compensation of Membrane-type Restrictors and Self-compensation, Industrial Lubrication and Tribology, Vol. 66 No. 2, pp. 322-334.
[16] Sheng-Yen Hu, Yeon-Pun Chang, De-Xing Peng, Hung-Tu Chang, Yuan Kang, Dynamic Characteristics of Self-Compensated Hydrostatic Bearings, Journal of Advanced Engineering 2016, Vol. 11, No. 1, pp. 43-49.
[17] Guan Changbin and Jiao Zongxia, A Piezoelectric Direct-drive Servo Valve with a Novel Multi-Body Contacting Spool-driving Mechanism: Design, Modeling and Experiment, Proceedings of the Institution of Mechanical Engineers, Journal of Mechanical Engineering Science 2014, Vol. 228(1), pp. 169–185.
[18] T. Rogge, Z. Rummler, W.K. Schomburg, Polymer Micro Valve with a Hydraulic Piezo-drive Fabricated by the AMANDA Process, Sensors and Actuators A: Physical, Vol. 110, pp. 206-212, 2004.
[19] T. H. Lai, Parameters design of a membrane restrictor for single-pad and opposed-pad hydrostatic bearing to achieve high static stiffness, 2017.
[20] T. H. Lai, T. Y. Chang, Y. L. Yang and S. C. Lin, "Parameters design of a membrane-type restrictor with single-pad hydrostatic bearing to achieve high static stiffness," Tribology International, Vol. 107, pp. 206-212, 2017.
[21] Ya-Lu Yang, Numerical Simulation Analysis and Design of Membrane-type Restrictor, 2017.
[22] Jen-Chen Chuang, Chi-Yin Chen, Jia-Ying Tu, Active control of multi-input hydraulic journal bearing system, Journal of Physics Conference Series 744 012062, 2016.
[23] Jen-Sheng Shie, A Study of Oil Film Thickness Control on a Hydrostatic Rotary Table for Machine Tools, 2014.
[24] 歐炳志,液靜壓軸承最佳化設計與主動式油膜厚度控制之研究,國立成功大學機械工程研究所,2012。
[25] Huaizhong Chen, Research of the Electro-Hydraulic Servo System Based on RBF Fuzzy Neural Network Controller, Journal of Software, Vol. 7, No. 9, pp. 1960-1967, 2012.
[26] Ji Xinjie and Li Shengjin, Design of the Fuzzy-PID Controller for New Vehicle Active Suspension with Electro-Hydrostatic Actuator, 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, 2009, pp. 3724-3727.
[27] Junpeng Shao, Lihua Chen, Yajuan Ji, Zhibin Sun, The Application of Fuzzy Control Strategy in Electro-Hydraulic Servo System, IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005., Beijing, 2005, pp. 165-170.
[28] Zhou Miao-lei, Tian Yan-tao, Gao Wei, Yang Zhi-gang, High precise control method for a new type of piezoelectric electro-hydraulic servo valve, J. Cent. South Univ. Technol. 14, 832–837 (2007).
[29] Y. P. Chang, C. H. Chen, J. L. Lee, H. C. Chou, Y. Kang, Dynamic Characteristics of Worktable Mounted by Closed-type Hydrostatic Flat Bearing with Constant Compensations, Journal of Advanced Engineering Vol. 5, No. 4, pp. 391-397, 2010.
[30] Sheng-Yen Hu, Po-Hua Chou, Yuan Kang, Vibrational Damping Characteristics of Circular Worktable Mounting on the Hydrostatic Thrust Bearings by Flow Compensations, Journal of Advanced Engineering Vol. 12, No. 3, pp. 151-160, 2017.
[31] Yuan Kang, Sheng-Xiang Peng, Sheng-Yen Hu, Yu-Zhi Xiu, An investigation in Constant Film Thickness of Hydrostatic Bearing by Using Pressure Control Valves, Journal of Advanced Engineering, Vol. 13, No. 3, pp. 157-165, 2018.
[32] M. Mohsin, "The use of controlled restrictors for compensating hydrostatic bearing," in Advances in Machine Tool Design and Research, 1962.
[33] W. B. Rowe, J. P. O'Donoghue, "Diaphragm valves for controlling opposed pad bearings," in Proceedings of the Institution of Mechanical Engineers, 1969-70.
[34] C. Cusano, "Characteristics of externally pressurized journal bearings with membrance-type variable-flow restrictors as compensating elements," in Proceedings of the Institution of Mechanical Engineers, 1974.
[35] T. Y. Chang, "Analysis on parameters and design of membrane-type restrictors," 2015.
[36] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 2000.
[37] 林柏嘉,模組化液靜壓線性滑軌搭配薄膜式節流器之性能模擬、製作與測試—65mm軌道面寬,國立清華大學動力機械研究所,2018。
[38] 曾栢暐,無油溝多腔型軸頸式液靜壓線性滑軌搭配薄膜節流器之性能分析,國立清華大學動力機械研究所,2018。
[39] 李承翰,軸頸式液靜壓線性滑軌在工具機上的應用,2016。
(此全文20250823後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *