帳號:guest(18.117.231.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范丞緯
作者(外文):Fan, Chen-Wei
論文名稱(中文):利用抗體修飾凝膠分選胞外體
論文名稱(外文):Sorting Extracellular Vesicles Using Antibody-Functionalized Agarose Gels
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-Chen
口試委員(中文):賴品光
北森武彥
口試委員(外文):Lai, Pin-Kuang
Kitamori, Takehiko
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033617
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:61
中文關鍵詞:胞外體電泳洋菜膠免疫親合法抗體
外文關鍵詞:Extracellular vesiclesElectrophoresisAgarose gelImmunoaffinityAntibody
相關次數:
  • 推薦推薦:0
  • 點閱點閱:259
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
近年來胞外體(EVs)受到到廣泛研究,因為胞外體在細胞間的溝通扮演了很重要的角色,如調節免疫反應、腫瘤生長等,另外在臨床醫學中也有很多應用,可用於檢測臨床狀態、疾病進展等等。然而目前主流分選胞外體的方式多是透過大小及密度進行分離,這些方法的缺點為處理時間長,胞外體變形破裂等問題。 因此我們開發了一種基於免疫親和法的分離技術,藉由NHS活化微珠將抗體修飾在凝膠內部,並進行凝膠電泳,使得CD63+胞外體在電泳時會被抗體抓取,再使用水平強電場釋放被抓取CD63+的胞外體,最終達到分選CD63+胞外體的目的。
目前共製作並測試三種裝置雛型,分別為(1)濾紙凝膠、(2)sulfo凝膠、(3)NHS微珠凝膠,使用三種裝置對胞外體進行分選,並使用冷光、螢光、ELISA及qNano分析,證明三種裝置都能成功抓取胞外體,其中NHS微珠凝膠性能最為優異,其抗體連接效率可達95%,抓取效率可達76%。相信此裝置在未來對胞外體分離上,能夠提供一項創新的選擇,並促進胞外體研究的發展。
In recent years, extracellular vesicles (EVs) have been widely studied, because EVs play an important role in cell-to-cell communication, such as regulating immune responses and tumor growth. In addition, they have many clinical applications, which can be used to detect clinical status, disease progression and more. However, the current mainstream methods for sorting EVs have disadvantages include long processing time, deformation and rupture of EVs. Therefore, we have demonstrated an easy-to-approach immunoaffinity-based isolation technique, using NHS activated beads to immobilize antibodies within the agarose gel. By gel electrophoresis, CD63+ EVs will be captured by the antibody during electrophoresis, and a strong electric field will be applied to release the captured CD63+ EVs, thereby achieving the purpose of sorting EVs with different affinity.
At present, three types of gel prototypes have been tested, namely (1) filter paper gel, (2) Sulfo gel, and (3) NHS bead gel. By chemiluminescence, fluorescent, ELISA, and qNano analysis proved that all three devices can successfully capture extracellular vesicles, especially the performance of NHS gel is the best among three gels. The antibody conjugation efficiency can reach up to 95%, and the capture rate is 76%. We believed that this device can provide a novel option for EV isolation and facilitating EVs research.
Table of Contents
摘要 2
Abstract 3
List of Figures 8
List of Tables 11
1.1 Background 12
1.2 Introduction of extracellular vesicles (EVs) 12
1.3 EV isolation methods 13
1.4 Gel electrophoresis 16
1.5 Continuous microfluidic assortment of interactive ligands, CMAIL 17
1.6 Detection of EVs by ZnO-nanowires-coated three-dimensional scaffold chip device__________________________________________________ 18
1.7 Tunable resistive pulse sensing, tRPS 20
1.8 Enzyme-linked immunosorbent assay, ELISA 23
1.9 Research motivation and aim 24
Chapter .2 Experimental Design and Methods 26
2.1 Experimental flow chart 26
2.2 Device working principle 27
2.3 Instrument setup 28
2.4 Antibody-functionalized gel preparation 29
2.4.1 Agarose gel mold design 29
2.4.2 Paper gel preparation 32
2.4.3 Sulfo-SANPAH gel preparation 33
2.4.4 NHS beads gel 34
2.5 Cell culture and EV collection 35
2.5.1 Human embryonic kidney cell (HEK 293T) culture 35
2.5.2 HEK 293T EV collection 35
2.6 Experimental analysis tools and methods 37
2.6.1 Inverted optical microscope (DMIL LED, Leica, Major, Germany) 37
2.6.2 Inverted electronically controlled microscope system (DMI6000 B, Leica, Major, Germany)________________________________________________________37
2.6.3 Tunable resistive pulse sensing, qNano (Q5013, IZON Science, New Zealand) 37
2.6.4 Luminescence Imaging System (Amersham™ Imager 600, AI600) 38
2.6.5 Multilabel Plate Reader (POLARstar Omega, BMG LABTECH) 38
2.6.6 Image J biological-image analysis software 39
Chapter .3 Results and Discussions 40
3.1 tRPS analysis of HEK-293T extracellular vesicles 40
3.2 Sample injection and collection 41
3.3 Analysis of paper gel samples 42
3.3.1 Paper gel feasibility test 42
3.3.2 ELISA CD63 protein expression analysis of paper gel samples 42
3.3.3 qNano analysis of filter paper gel samples 43
3.4 Optimization of Sulfo-SANPAH crosslink efficiency 45
3.5 Sulfo-SANPAH gel sample analysis 46
3.5.1 Fluorescence analysis of antibody crosslinking efficiency 46
3.5.2 qNano analysis of Sulfo-SANPAH gel sample 47
3.6 NHS beads gel optimization 49
3.7 NHS beads gel characterization 50
3.7.1 Fluorescence analysis of antibody conjugate efficiency 50
3.7.2 NHS beads gel feasibility test 51
3.7.3 qNano analysis of NHS beads gel samples 52
3.7.4 NHS beads gel two-dimensional electrophoresis 54
3.7.5 Two-dimensional electrophoresis NHS beads gel samples characterization 55
3.7.6 Zeta potential analysis of collected samples 56
Chapter .4 Conclusions 58
References 59

References
1. Hannafon, B.N. and W.-Q. Ding, Intercellular communication by exosome-derived microRNAs in cancer. International journal of molecular sciences, 2013. 14(7): p. 14240-14269.
2. Tkach, M. and C. Thery, Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 2016. 164(6): p. 1226-1232.
3. Kaur, A., et al., Role of Exosomes in Pathology–A Review. Journal of Pathology and Toxicology, 2014. 1: p. 07-11.
4. Lin, J., et al., Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal, 2015. 2015: p. 657086.
5. Logozzi, M., et al., High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One, 2009. 4(4): p. e5219.
6. Mathivanan, S., et al., ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res, 2012. 40(Database issue): p. D1241-4.
7. Raposo, G. and W. Stoorvogel, Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 2013. 200(4): p. 373-383.
8. Colombo, M., G. Raposo, and C. Thery, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014. 30: p. 255-89.
9. Thery, C., L. Zitvogel, and S. Amigorena, Exosomes: composition, biogenesis and function. Nat Rev Immunol, 2002. 2(8): p. 569-79.
10. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences : CMLS, 2011. 68(16): p. 2667-2688.
11. Conde-Vancells, J., et al., Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. Journal of proteome research, 2008. 7(12): p. 5157-5166.
12. Yoshioka, Y., et al., Comparative marker analysis of extracellular vesicles in different human cancer types. Journal of Extracellular Vesicles, 2013. 2(1): p. 20424.
13. Zarovni, N., et al., Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods, 2015. 87: p. 46-58.
14. Liga, A., et al., Exosome isolation: a microfluidic road-map. Lab Chip, 2015. 15(11): p. 2388-94.
15. Patel, G.K., et al., Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 2019. 9(1): p. 5335.
16. Nakai, W., et al., A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep, 2016. 6: p. 33935.
17. Kang, Y.T., et al., Isolation and Profiling of Circulating Tumor-Associated Exosomes Using Extracellular Vesicular Lipid-Protein Binding Affinity Based Microfluidic Device. Small, 2019. 15(47): p. e1903600.
18. Chen, C., et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip, 2010. 10(4): p. 505-11.
19. Lo, T.W., et al., Microfluidic device for high-throughput affinity-based isolation of extracellular vesicles. Lab Chip, 2020. 20(10): p. 1762-1770.
20. Kanwar, S.S., et al., Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip, 2014. 14(11): p. 1891-900.
21. Li, P., et al., Progress in Exosome Isolation Techniques. Theranostics, 2017. 7(3): p. 789-804.
22. 莊榮輝. 電泳檢定法. 2008; Available from: http://juang.bst.ntu.edu.tw/ECX/Ana3.htm#3.1.
23. Goy, C.B., R.E. Chaile, and R.E. Madrid, Microfluidics and hydrogel: A powerful combination. Reactive and Functional Polymers, 2019. 145.
24. Hatch, A., G. Hansmann, and S.K. Murthy, Engineered alginate hydrogels for effective microfluidic capture and release of endothelial progenitor cells from whole blood. Langmuir, 2011. 27(7): p. 4257-64.
25. Lin, R.Z., et al., Microfluidic capture of endothelial colony-forming cells from human adult peripheral blood: phenotypic and functional validation in vivo. Tissue Eng Part C Methods, 2015. 21(3): p. 274-83.
26. Gallik, S. the on-line laboratory manual for cell biology. 2011; Available from: http://stevegallik.org/cellbiologyolm_gelelectrophoresis.html.
27. Hsiao, Y.-H., et al., Continuous microfluidic assortment of interactive ligands (CMAIL). Scientific Reports, 2016. 6(1): p. 32454.
28. Chen, Z., et al., Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron, 2018. 122: p. 211-216.
29. How TRPS Works. Available from: https://izon.com/how-trps-works/.
30. Weatherall, E. and G.R. Willmott, Applications of tunable resistive pulse sensing. Analyst, 2015. 140(10): p. 3318-34.
31. Hartjes, T.A., et al., Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering (Basel), 2019. 6(1).
32. Au - Maas, S.L.N., J. Au - De Vrij, and M.L.D. Au - Broekman, Quantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing. JoVE, 2014(92): p. e51623.
33. Akers, J.C., et al., Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF). PLOS ONE, 2016. 11(2): p. e0149866.
34. Mørk, M., et al., Preanalytical, analytical, and biological variation of blood plasma submicron particle levels measured with nanoparticle tracking analysis and tunable resistive pulse sensing. Scandinavian Journal of Clinical and Laboratory Investigation, 2016. 76(5): p. 349-360.
35. Maas, S.L.N., J. De Vrij, and M.L.D. Broekman, Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. Journal of visualized experiments : JoVE, 2014(92): p. e51623-e51623.
36. Maas, S.L., et al., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 2015. 200: p. 87-96.
37. Inc., T.F.S. Overview of ELISA. 2017; Available from: https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa.html.
38. Kim, D.-k., et al., Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proceedings of the National Academy of Sciences, 2016. 113(1): p. 170-175.
39. Blossom Biotechnologies, I. TSA Systems for Immunohistochemistry and In Situ Hybridization. Available from: http://www.blossombio.com/products/TSASystemsforImmunohistochemistryandInSituHybridization.html.
40. Lai, C.P., et al., Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature communications, 2015. 6: p. 7029.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *