帳號:guest(18.116.15.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐國維
作者(外文):Hsu, Kuo-Wei
論文名稱(中文):用於泌尿道感染之抗微生物敏感性測試之自動化便攜式設備研發
論文名稱(外文):AUTOMATED PORTABLE SYSTEM FOR ANTIMICROBIAL SUSCEPTIBILITY TEST IN URINARY TRACT INFECTIONS
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):陳致真
李炫昇
口試委員(外文):Chen, Chih-Chen
Lee, Shiuann-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033615
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:87
中文關鍵詞:泌尿道感染最小抑制濃度(MIC)抗菌藥敏性試驗(AST)微流體即時檢測
外文關鍵詞:Urinary tract infectionminimum inhibitory concentrationantimicrobial susceptibility testmicrofluidicpoint-of-care
相關次數:
  • 推薦推薦:0
  • 點閱點閱:422
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
耐藥性細菌的迅速傳播極大的影響了臨床病原體的診斷與治療,且由於過度使用抗生素,細菌對抗菌劑的耐藥性已成為現今醫療保健的重要問題。其中,泌尿道感染是影響人類常見的細菌感染性疾病,尤其發生在女性的機率較高,且極大的影響腎臟功能。根據不同的感染部位,也會出現不同的症狀,此外,泌尿道感染具有很高的復發率。在臨床治療上,高劑量的廣效型抗生素常被用以抑制或殺死泌尿道感染的病原體,然而,殘留的存活細菌可能會產生耐藥性,這使得泌尿道感染在往後的治療更為棘手。為了減少廣效性抗生素的使用劑量,應在給藥前根據一種被稱為抗微生物敏感性試驗的常規方法確定抗生素的最小抑制濃度。然而,傳統的敏感性試驗在篩選抗生素劑量是相當耗時 (20小時 ~ 70小時) 且耗費人力的。為了縮短AST的周轉時間,將人為操作的步驟自動化是非常需要的。因此,本研究提出了一種自動化的微流體系統,它可以在人工干預最少的情況下執行AST程序。在這項研究中展示了一新型的便攜式檢測系統,該系統能夠依據序列肉湯稀釋法同步將兩種菌株進行兩種不同抗生素的敏感性試驗。透過此自動化平台,抗生素敏感性試驗流程的進行可以大量的減少人為干擾,並將檢測時間從20小時縮短為4個半小時至9小時。此外,透過比色測定法,可以經由圖像分析確定抗生素對細菌的最小抑制濃度。總結來說,此具前瞻性發展的檢測平台在未來可以實現基於抗微生物敏感性試驗之個人藥品的即時檢測。
The quick spread of antibiotic-resistant bacteria has greatly impacted clinical pathogen diagnosis and treatment. Due to the overuse of antibiotics, drug resistance has become a significant issue in modern health care. Among them, urinary tract infections (UTIs), which are common bacterial infections affecting humans, especially women, which greatly impact kidney functions. Symptoms vary based on different infection locations and bacterial loading. Furthermore, UTIs also have a high recurrence rate. In clinical treatment, UTIs are treated with high dosages of broad-spectrum antibiotics to inhibit or kill the pathogens. However, residual surviving bacteria may evolve drug resistance, which makes UTIs extremely tricky to be cured. To reduce the dosage of broad-spectrum antibiotics, the minimum inhibitory concentration (MIC) of antibiotics should be determined before administration based on a common practice referred to as antimicrobial susceptibility testing (AST). However, the conventional AST approach is relatively time-consuming (20hrs ~ 72hrs) and labor-intensive to screen antibiotic dosage. In order to shorten the turnaround time of AST, automating the manual process is of great need. This study therefore presents an automated microfluidic system which could perform AST with minimum human intervention. In this study, a new, portable system capable of conducting two different AST measurements on two different strains of bacteria with serial broth dilutions in parallel was demonstrated. Using this automated platform, the whole procedure of AST could be carried out with greatly reduced human interruption and therefore shorten the detection time from twenty hours to 4.5 ~ 9 hrs. Moreover, based on a colorimetric assay, the MIC values could be determined via image analysis. In summary, this device may be promising to realize point-of-care personalized medicine for AST in the near future.
Abstract............................1
中文摘要.............................3
Acknowledgements....................4
Table of Contents...................6
List of Figures.....................9
List of Table.......................15
Nomenclature and Abbreviations......16
Chapter 1 Introduction..............19
1-1 Bio-MEMS and microfluidic system...................19
1-2 Urinary tract infection ...........................21
1-3 Antimicrobial susceptibility test (AST)............23
1-4 Integrate microfluidic systems for antimicrobial susceptibility tests..................................................24
1-5 Point-of-care (POC) diagnostics....................25
1-6 Motivation and novelty.............................26
Chapter 2 Materials and Methods........................29
2-1 Entire experimental procedure......................29
2-2 The procedure of bacteria capturing by using nano-magnetic beads..................................................32
2-3 Bacteria quantification............................34
2-4 Pneumatically driven microfluidic devices..........36
2-5 Portable modules for automatically performing the on-chip AST .......................................................41
2-5-1 Pneumatic control module and electromagnetic valve control module.................................................41
2-5-2 Peltier device for temperature control...........46
2-5-3 Charge-coupled-device for imaging process........50
2-5-4 A portable system for AST........................52
Chapter 3 Results and Discussion.......................58
3-1 Capture rate of the Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa , Enterococcus faecalis by using nano-magnetic beads.........................................58
3-2 Bacteria quantification and MIC determination by using resazurin as an indicator..............................60
3-3 Characterization of the microfluidic devices.......62
3-3-1 Results of the measurements of the pumping volume of micropumps and checking the function of two-fold serial dilutions by pneumatic control module...........................62
3-3-2 Temperature profile..............................65
3-3-3 Colorimetric analysis of AST on chip.............67
Chapter 4 Conclusions and future perspectives..........79
4-1 Conclusions........................................79
4-2 Future perspectives................................80
References.............................................82


[1] Yiyan Li, Xing Yang, and Weian Zhao, “Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing,” SLAS Technology, 22, 2017, 585-608.
[2] Yongmo Yang, Sangpyeong Kim, and Junseok Chae, “Seperating and Detecting Escherichia Coli in a Microfluidic Channel for Urinary Tract Infection Applications,” Journal of Microelectromechanical Systems, 20, 2011, 819-827.
[3] Ann-Charlotte Lundstedt, Irene Leijonhufvud, Bryndis Ragnarsdottir, Diana Karpman, Bjo ̈rn Andersson, and Catharina Svanborg, “Inherited Susceptibility to Acute Pyelonephritis: A Family Study of Urinary Tract Infection,” Journal of Infectious Diseases, 195, 2007, 1227-1234.
[4] Michael Daveport, Kathleen E. Mach, Linda M. Dairki Shortliffe, Niaz Banaei, Tza-Huei Wang, and Joseph C. Liao, “New and developing diagnostic technologies for urinary tract infections,” Nature Reviews Urology, 14, 2017, 296-310.
[5] Holger Becker, Nadine Hlawatsch, Tommy Haraldsson, Wouter van der Wijngaart, Anders Lind, Surbi Malhotra-Kumar, Agata Turlej-Rogacka, Herman Goossens, “Microfluidic system for the identification of bacterial pathogens causing urinary tract infections, ” Proceedings of SPIE, 9320, 2015, 93200S-1-5.
[6] B. S. Mahmoud, S. A. ElMasry, N. A. E. M. M. Fahim, M. A. Abd ElSattar, O. A. Shaker, “Detection of antibiotics susceptibility by colorimetric minimum inhibitory concentration in staphylococcal isolates,” Journal of Applied Microbiology, 127, 2019, 693-700.
[7] Sammer-ul Hassan, Xunli Zhang, “Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review,” Current Analytical Chemistry, 16, 2020, 41-51.
[8] Derek F. J. Brown, and Lynda Brown, “Evaluation of the E test, a novel method of quantifying antimicrobial activity,” Journal of Antimicrobial Chemotherapy, 27, 1991, 185-190.
[9] Wen-Bin Lee, Kao-Mai Shen, Huey-Ling You, Mel S. Lee, and Gwo-Bin Lee, “Automatic and rapid antimicrobial susceptibility test on an integrated microfluidic device,” IEEE MEMS 2018, 26, 2018, 1209-1212.
[10] Wen-Bin Lee, Chien-Yu Fu, Wen-Hsin Chang, Huey-Ling You, Chih-Hung Wang, Mel S. Lee, and Gwo-Bin Lee, “A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method,” Biosensors and Bioelectronics, 87, 2017, 669-678.
[11] Peggy C. Kohner. Joe E. Rosenblatt, and Frank R. Cockerill III, “Comparison of Agar Dilution, Broth Dilution, and Disk Diffusion Testing of Ampicillin against Haemophilus Species by Using In-House and Commercially Prepared Media,” Journal of Clinical Microbiology, 32, 1994, 1594-1596.
[12] James H. Jorgensen, and Marry Jane Ferraro, “Antimicrobial Susceptibility Testing:
A Review of General Principles and Contemporary Practices,” Clinical Infectious Diseases, 49, 2009, 1749-1755.
[13] Intetsu Kobayashi, Hiroe Muraoka, Takako Iyoda, Minoru Nishida, Miyuki Hasegawa, and Keizou Yamaguchi, “Antimicrobial susceptibility testing of vancomycin-resistant Enterococcus by the VITEK 2 system, and comparison with two NCCLS reference methods,” Journal of Medical Microbiology, 53, 2004, 1229-1232.
[14] Seunggyu Kim, Seokhun Lee, Ju-Kang Kim, Hyun Jung Chung, and Jessie S. Jeon, “Microfluidic-based observation of local bacteria density under antimicrobial concentration gradient for rapid antibiotic susceptibility testing,” Biomicrofluidics, 13, 2019, 014108.
[15] W. Michael Dunne Jr, Magali Jaillard, Oliver Rochas, and Alex Van Belkum, “Microbial genomics and antimicrobial susceptibility testing,” Expert Review of Molecular Diagnostics, 17, 2017, 257-269
[16] Zhongwei Wang, Taeheon Han, Tae-Joon Jeon, Sungjin Park, Sun Min Kim, “Rapid detection and quantification of bacteria using an integrated micro/nanofluidic device,” Sensors and Actuators B: Chemical, 178, 2013, 683-688.
[17] Banglao Xu, Yan Du, Jinqiong Lin, Mingyue Qi, Bowen Shu, Xiaoxia Wen, Guangtie Liang, Bin Chen, and Dayu Liu, “Simultaneous Identification and Antimicrobial Susceptibility Testing of Multiple Uropathogens on a Microfluidic Chip with Paper-Supported Cell Culture Arrays,” Analytical Chemistry, 88, 2016, 11593-11600.
[18] Aniruddha M. Kaushik, Kuangwen Hsieh, Liben Chen, Dong Jin Shin, Joseph C. Liao, Tza-Huei Wang, “Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform,” Biosensors and Bioelectronics, 97, 2017, 260-266.
[19] Chieko Sakamoto, Nobuyasu Yamaguchi, and Masao Nasu, “Rapid and Simple Quantification of Bacteria Cells by Using a Microfluidic Device,” Applied and Environmental Microbiology, 71, 2005, 1117-1121.
[20] Qiaolian Yi, Dongyang Cai, Meng Xiao, Mengyue Nie, Qinna Cui, Jingwei Cheng, Caiming Li, Jie Feng, Gerald Urban, Ying-Chun Xu, Ying Lan, Wenbin Du, “Direct antimicrobial susceptibility testing of bloodstream infection on SlipChip,” Biosensors and Bioelectronics, 135, 2019, 200-207.
[21] Wooseok Jung, Jungyoup Han, Jin-Woo Choi, Chong H. Ahn, “Point-of-care testing (POCT) diagnostic system using microfluidic lab-on-a-chip technologies, ” Microelectronic Engineering, 132, 2015, 46-57.
[22] Pooja Sabhachandani, Saheli Sarkar, Paola C. Zucchi, Betsy A. Whitfield, James E. Kirby, Elizabeth B. Hirsch, Tania Konry, “Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging,” Microchim Acta, 184, 2017, 4619-4628.
[23] O ̈zden Baltekin, Alexis Boucharin, Eva Tano, Dan I. Andersson, and Johan Elf, “Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging,” PNAS, 114, 2017, 9170-9175.
[24] Wen-Hsin Chang, Chih-Hung Wang, Chih-Lin Lin, Jiunn-Jong Wu, Mel S. Lee, and Gwo-Bin Lee, “Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system,” Biosensors and Bioelectronics, 66, 2015, 148-154.
[25] Ting-Hang Liu, Shu-Shen Cheng, Huey-Ling You, Mel S. Lee, and Gwo-Bin Lee, “Bacterial detection and identification from human synovial fluids on an integrated microfluidic system,” Analyst, 144, 2019, 1210-1222.
[26] Florence Baron, Marie-Francoise Cochet, Wilfried Ablain, Noe ̈l Grosset, Marie-Noe ̈l Madec, Fabienne Gonnet, Sophie Jan, and Michel Gautier, “Rapid and cost-effective method for micro-organism enumeration based on miniaturization of the conventional plate-counting technique,” Lait, 86, 2006, 251-257.
[27] Kuangwen Hsieh, Helena C. Zec, Liben Chen, Aniruddha M. Kaushik, Kathleen E. Mach, Joseph C. Liao, and Tza-Huei Wang, “Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection,” Analytical Chemistry, 90, 2018, 9449-9456.
[28] Alberto Mariscal, Rosa M. Lopez-Gigosos, Manuel Carnero-Varo, Joaquin Fernandez-Crehuet, “Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm,” Applied Microbiology and Biotechnology, 82, 2009, 773-783.
[29] Eva Travnickova, Premysl Mikula, Jakub Oprsal, Marie Bohacova, Lubomir Kubac, Dusan Kimmer, Jana Soukupova, and Michal Bittner, “Resazurin assay for assessment of antimicrobial properties of electrospun nanofiber filtration membranes,” AMB Express, 9, 2019, 1-11.
[30] Priyanka Mishra, Divya Singh, K.P. Mishra, Gurpreet Kaur, Nidhi Dhull, Monika Tomar, Vinay Gupta, Bhuvnesh Kumar, Lilly Ganju, “Rapid antibiotic susceptibility testing by resazurin using thin film platinum as a bio-electrode,” Journal of Microbiological and Methods, 162, 2019, 69-76.
[31] Gopi Prakash, Mani Boopathy, Ramasamy Selvam, Samuel Johnsanthosh,Kumar, and Kathavarayan Subramanian, “The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of Gram-positive and Gram-negative bacterial and fungal infection,” Royal Society of Chemistry, 42, 2018, 1037-1045.
[32] Michael U. Shiloh, Jia Ruan, and Carl Nathan, “Evaluation of Bacterial Survival and Phagocyte Function with a Fluorescence-Based Microplate Assay,” American Society for Microbiology, 65, 1997, 3193-3198.
[33] Ahmet Y. Coban, Bu ̈lent Bozdogan, Cigdem Cekic Cihan, Ebru Cetinkaya, Kemal Bilgin, Ozge Darka, Alper Akgunes, Belma Durupinar, Peter C. Appelbaum, “Two New Colorimetric Methods for Early Detection of Vancomycin and Oxacillin Resistance in Staphylococcus aureus,” Journal of Clinical Microbiology, 44, 2006, 580-582.
[34] Kiran M. Raj, Suman Chakraborty, “PDMS microfluidics: A mini review,” Journal of Applied Polymer Science, 137, 2020, 48958.
[35] Shu-Ling Chen, Wen-Hsin Chang, Chih-Hung Wang, Huey-Ling You, Jiunn-Jong Wu, Ting-Hang Liu, Mel S. Lee, Gwo-Bin Lee, “An integrated microfluidic system for live bacteria detection from human joint fluid samples by using ethidium monoazide and loop-mediated isothermal amplification,” Microfluidics and Nanofluidics, 21, 2017, 5-12.
[36] Chih-Hung Wang, Chia-Jung Chang, Jiunn-Jong Wu, and Gwo-Bin Lee, “An integrated microfluidic device utilizing vancomycin conjugated magnetic beads and nanogold-labeled specific nucleotide probes for rapid pathogen diagnosis,” Nanomedicine: Nanotechnology, Biology, and Medicine, 10, 2014, 809-818.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *