帳號:guest(3.149.230.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張凱量
作者(外文):Chang, kai-Liang
論文名稱(中文):改變支撐柱排列增加觸覺感測器之靈敏度
論文名稱(外文):Sensitivity Enhancement on Capacitive Tactile Sensors with Various Spacer Arrangement
指導教授(中文):陳榮順
林建宏
指導教授(外文):Chen, Rong-Shun
Lin, Chien-Hung
口試委員(中文):方維倫
羅丞曜
口試委員(外文):Fang, Wei-Leun
Lo, Cheng-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033593
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:128
中文關鍵詞:電容式觸覺感測器靈敏度支撐柱排列
外文關鍵詞:Capacitive tactile sensorSensitivitySpacer arrangement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:407
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之主要目的為藉由改變支撐柱之排列提升偏位式電容觸覺感測器正向力與剪應力之靈敏度,改變排列方式有二,改變排列數目以及改變排列距離。
提升觸覺感測器之靈敏度是研究感測器者的重要工作之一,雖然有時候,提升其靈敏度會犧牲部份工作範圍,卻可以使量測更加準確。本研究利用COMSOL進行模擬得到電容感測器支撐柱數目、排列距離改變後之電容變化趨勢,證明具有研究之價值,再藉由實際製作元件,量測電容靈敏度,以驗證模擬之正確性。在實際量測上,5個支撐柱排列為十的形狀且每單元8 mm之觸覺感測器,相較於9個支撐柱每單元8 mm之觸覺感測器,其靈敏度有135 %至190 %之提升;9個支撐柱每單元9.5 mm之觸覺感測器相較於9個支撐柱每單元8 mm之觸覺感測器有128 %至179 %之提升。從模擬與實驗結果可知,改變支撐柱之排列可有效提升電容式觸覺感測器之靈敏度。
The main purpose of this study is to improve the sensitivity of the offset capacitive sensor by changing the arrangement of the spacer. There are two ways to change the arrangement, change the number of arrangements and change the arrangement distance.
Increasing the sensitivity of the tactile sensor sacrifices part of the working range, but it can make the measurement more accurate. In this study, COMSOL was used to simulate the trend of capacitance change, which proved that the theory was correct, and then the actual production of components was measured to verify the accuracy of the simulation. In measurement, the tactile sensor which is five spacer which are arranged in a + shape and of 8 mm per unit is 135% to 190% higher than that of the 9 spacer of 8 mm per unit. The tactile sensor which is 9 spacer with 9.5 mm per unit has an improvement of 128% to 179% compared to the tactile sensor with 8 mm per unit of 9 spacer. From the results, it can be seen that changing the arrangement of the spacer can improve the sensitivity of the capacitive tactile sensor.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 4
1.3.1 電容式觸覺感測器之設計 4
1.3.2 提升靈敏度之方法 6
1.4 論文架構 13
第二章 觸覺感測器之設計與模擬分析 14
2.1 平行板電容之推導 14
2.1.1 單一介電材質之電容值推導 14
2.1.2 多介電材質之電容值推導 15
2.2 觸覺感測器設計 17
2.2.1 偏位式電極之設計 17
2.2.2 感測靈敏度 19
2.3 角度演算法 20
2.4 支撐柱排列對靈敏度之影響 23
2.4.1 支撐柱排列數量對靈敏度之影響 24
2.4.2 支撐柱排列距離對靈敏度之影響 27
2.5 模擬分析 29
2.5.1 支撐柱排列數量之模擬 32
2.5.2 支撐柱排列距離之模擬 41
第三章 元件製作與量測 52
3.1 元件製程說明 52
3.2 元件製程步驟 53
3.2.1 電極製作 55
3.2.2 PDMS支撐層製作 58
3.2.3 製程遇到之困難 62
3.3 實驗平台介紹 65
第四章 結果與討論 67
4.1 正向力量測結果 67
4.1.1 減少支撐柱之正向力量測結果 67
4.1.2 增加支撐柱距離之正向力量測結果 69
4.2 剪應力量測結果 70
4.2.1 減少支撐柱之剪應力量測結果 70
4.2.2 增加支撐柱距離之剪應力量測結果 77
第五章 結論與未來展望 82
5.1 結論 82
5.2 未來展望 83
參考文獻 84
附錄 87
[1] S.Vaidya, P. Ambad, and S. Bhosle, "Industry 4.0-a glimpse," Procedia Manufacturing, vol.20, pp.233-238, 2018.
[2] M. A. Khan, and K Salah, "IoT security: Review, blockchain solutions, and open challenges, " Future Generation Computer Systems, vol. 82, pp.395-411, 2018.
[3] G. Barrett, and R. Omote, "Projected-capacitive touch technology, " frontline technology, vol.26 , no. 3, pp. 16-21, 2010.
[4] M. Ekşioğlu, "User experience design of a prototype Kiosk: a case for the Idtanbul public transportation system, " International Journal of Human–Computer Interaction, vol. 32, no. 10, pp. 802-813, 2016.
[5] D. G. Kang and J. O. Lee, "Automated teller machine, " ed: Google Patents, 2009.
[6] 曾銘崧, "熱感式指紋成像及其自動辨識法之研究, " 中原大學電子工程研究所碩士論文, 2001.
[7] W. He, Z. Li, Y. Dong, and T. Zhao, "Design and adaptive control for am upper limb robotic exoskeleton in presence of input saturation, " IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 1, pp. 97-108, 2018.
[8] M. Runciman, A. Darzi, and G. Mylonas, "Soft robotics in minimally invasive surgery, " Soft Robotics, vol. 6, no. 4, pp. 423-443, 2019.
[9] R. K. Kramer, "Soft electronics for soft robotics, " Micro-and nanotechnology Sensors, Systems, and Apllications VII, vol. 9467. pp. 946707, 2015.

[10] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material, " Sensors and Actuators A: Physical, vol.127, no. 2, pp. 295-301, 2006.
[11] H.-K. Lee, S.-I. Chang, and E. Yoon, "A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment," Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1681-1686, 2006.
[12] J. Dargahi, "A piezoelectric tactile sensor with three sensing elements for robotics, endoscopic and prosthetic applications," Sensors and Actuators A: Physical, vol. 80, no. 1, pp. 23-30, 2000.
[13] 柯詩彧, "一種改善空間解析度/靈敏度之電容式觸覺感測器研究, " 國立清華大學動力機械工程研究所碩士論文, 2017.
[14] J. G. Rocha, C. Santos, J. M. Cabral, S. Lanceros-Mende, "3 Axis Capacitive Tactile Sensor and Readout Electronics, "Industrial Electronics (ISIE), IEEE International Symposium on, pp.2767-2772, 2006.
[15] Y.-C. Chung, S.-T. Chuang, T.-Y. Chen, C.-Y. Lo, and R. Chen, "Capacitive tactile sensor for angle detection and its accuracy study," IEEE Sensors Journal, vol. 16, no. 18, pp. 6857-6865, 2016.
[16] Y.-H. Gao, Y.-H. Jen, R. Chen, K. Aw, D. Yamaned, C.-Y. Lo, "Five-fold sensitivity enhancement in a capacitive tactile sensor by reducing material and structural rigidity," Sensors and Actuators A: Physical, vol. 293, pp. 167-177, 2019.

[17] D.-J. Won, S. Baek, H. Kim, J. Kim, "Arrayed-type touch sensor using micro liquid metal droplets withlarge dynamic range and high sensitivity, " Sensors and Actuators A: Physical, vol. 235, pp.151-157, 2015,
[18] K-W. Liao, M. T. Hou, and J. A. Yeh, "Multi-axis dielectric liquid-based tactile sensor with tunable sensing range and sensitivity," 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 1-4, 2016.

[19] G. Liang, Y. Wang, D. Mei, K. Xi, and Z. Chen, "Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement," vol. 24, no. 5, pp. 1510-1519, 2015.
[20] B. C. K. Tee, A Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, "Tunable flexible pressure sensors using micro structured elastomer geometries for intuitive electronics, " Advanced Functional Materials, vol. 24, no. 34, pp. 5427-5434, 2014.
[21] 鍾易宸, "利用偏移電容式觸覺感測器陣列量測具角度之側向力," 國立清華大學動力機械工程研究所碩士論文, 新竹市, 2013.
[22] 簡于涵, "於曲面下操作之軟性觸覺感測器特性分析," 國立清華大學動力機械工程研究所碩士論文, 新竹市, 2012.

(此全文20251019後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *