帳號:guest(3.15.208.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊培弘
作者(外文):Yang, Pei-Hung
論文名稱(中文):考量關節撓性於具變化連桿長度3-UPU型並聯式機構之動態響應
論文名稱(外文):Kineto-dynamic Response of a 3-UPU type Parallel Kinematic Mechanism with Variable-Length Links Considering Joint Compliance
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):蕭德瑛
鄭志鈞
邱昱仁
口試委員(外文):Shaw, Dein
Cheng, Chih-Chun
Chiu, Yu-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033570
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:120
中文關鍵詞:並聯式機構UPU動態響應關節撓性
外文關鍵詞:PKMUPUkineto-dynamicjoint compliance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:363
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
相較於現今大部分工具機的串聯式結構,並聯式機構在結構特性上具備多個封閉迴路,使其相對優勢包含了高負載能力、較低的累積誤差與較好的加速性能,並且能將驅動器安裝於機架上藉此降低移動慣量,甚至基於多個相同機構迴路,簡化零組件種類與規格。然而,僅少數商品化的應用例子出現在工業界,市面常見的Delta robot皆應用於輕負載,學者與工程師們判斷關節撓性與末端效應器上非預期的動態響應為關鍵因子。因此,故本研究將針對3-UPU型具變化連桿長度之並聯式機構,在考量關節撓性下進行動態響應的探討。
本研究的兩個重點分別為:(1)關節撓性模型的建立以及(2)變化連桿長度造成之不同姿態下對於定位精度的影響。首先,將定義並聯式機構的重要運動學參數,並推導順逆向運動學之解析解。接著,轉換關節撓性為等效之質量彈簧阻尼系統,再將關節模型代入原機構系統,並利用拉格朗日方法求解整體機構的動態反應。最後,考量加速、減速後急煞與靜止時週期外力造成末端效應器之動態響應,並初步探討關節剛性變化對於軌跡偏差所帶來之影響。
A parallel kinematic machine (PKM) is expected to possess excellent performance of high load-carrying capacity, high speed and low accumulated position errors because of its superior rigidity caused by inherent multi-closed loop kinematic chains. Additionally, the actuators of PKM can be installed on the fixed frame to attenuate the dynamic effects and reduce the inertia of the moving components. Particularly, the components of PKM, including joints and linkages, are suitable for standardization and modularization for reducing manufacturing cost. However, most developed PKMs are not commercialized and only a few types of PKMs are practically used for various applications, especially for moving light-weight objects, for example the delta robot. Researchers attribute this consequence to insufficient stiffness of passive joints and undesirable dynamic response of the end-effector, which greatly reduce the precision performance of PKMs. Thus, the aim of this paper is to investigate the kineto-dynamic response of a 3-UPU PKM, which features three length-varying links connecting the moving end-effector by universal joints.
Attentions are mainly paid to two factors that affect the dynamic response of the PKM: (1) modeling of the universal joint that features unavoidable compliance and (2) link lengths varying during operation. This paper first investigates the kinematic characteristics of the PKM, and then explicit equations of forward and inverse kinematics are developed. The U-joint would be modeled as a mass-spring-damper system, combined with the original system. Using the method of Lagrangian mechanics, the equation of motion governing the kineto-dynamic response of the PKM is derived by considering its motion characteristics, namely, varying link lengths and joint compliance. Finally, these equations are used to evaluate the dynamic response of the end-effector under two specific motion scenarios and validated by simulation. One is the vibration of the end-effector stopped after fast acceleration and deceleration. The other is the kineto-dynamic response of the end-effector under periodic external forces.
摘要 I
ABSTRACT II
誌謝詞 IV
目錄 VI
符號表 VIII
圖表目錄 XIV
第一章 導論 1
1-1. 研究背景 1
1-2. 文獻回顧 4
1-2-1. 簡述並聯式機構之發展 4
1-2-2. 並聯式機構之靜態剛性分析 6
1-2-3. 並聯式機構之動態分析 7
1-2-4. 並聯式結構之關節撓性影響 10
1-3. 研究目的與研究方法 12
第二章 機構參數定義與運動學模型 14
2-1. 構型介紹與自由度計算 14
2-1-1. 構型簡介 14
2-1-2. 自由度計算 15
2-2. 座標與參數定義 16
2-3. 逆向運動學 18
2-4. 順向運動學 20
2-5. 運動靜力學 21
2-5-1. 連桿組之力與力矩平衡 21
2-5-2. 末端效應器之力與力矩平衡 23
第三章 動力學模型 28
3-1. 剛體動力學模型 28
3-2. 具關節撓性之動力學模型 36
3-2-1. 動力學模型架構 36
3-2-2. 關節模型之等效剛性與阻尼計算 41
3-3. 以曲柄滑塊機構案例說明 47
3-3-1. 座標與參數定義 47
3-3-2. 順向與逆向運動學 48
3-3-3. 剛體動力學推導 50
3-3-4. 關節撓性模型應用 57
第四章 結果與討論 65
4-1. 模擬設定與分析架構 65
4-2. 剛體模型–關節受力分析 68
4-3. 具關節撓性模型–頻域分析 79
4-4. 具關節撓性模型–靜止姿態受力分析 87
4-5. 具關節撓性模型–路徑誤差分析 92
第五章 結論與未來工作 100
參考文獻 102
附錄 110
A. 解析力學推導觀念簡述 110
B. 曲柄滑塊機構案例–剛體模型運動方程式彙整 113
C. 曲柄滑塊機構案例–關節撓性模型運動方程式彙整 115
[1] 工具機發展基金會,2016年1~12月台灣機械工業產銷現況,7-10,取自http://www.tami.org.tw/news.php#taiwan_mt
[2] 工具機發展基金會,2017年1~12月台灣機械工業產銷現況,6-9,取自http://www.tami.org.tw/news.php#taiwan_mt
[3] 工具機發展基金會,2018年1~12月台灣機械工業產銷現況,6-9,取自http://www.tami.org.tw/news.php#taiwan_mt
[4] Stewart D., “A Platform with Six Degrees of Freedom”, Proceedings of the Institution of Mechanical Engineers, Vol. 180, Iss. 1, 1965
[5] Gough V. E., Whitehall S. G., “Universal Tyre Test Machine”, Proceedings of 9th International Congress FISITA, May 1962, pp. 117-137
[6] Tsai L., “Systematic Enumeration of Parallel Manipulators”, Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements, 1999, pp. 33-49
[7] Exechon, Retrieved from http://www.exechon.com/xmini/
[8] Hunt K. H., “Structural Kinematics of In Parallel-Actuated Robot Arms”, ASME. Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, December 1983, pp. 705-712
[9] Clavel R., “DELTA, a fast robot with parallel geometry”, Proc of the 18th International Symposium on Industrial Robots, Lausanne, April 1988, pp. 91-100
[10] myekee, G&L Variax Hexapod Mill, Retrieved from https://www.youtube.com/watch?v=7TowJZQi-qY, 2009
[11] Yang X., Liu H., Xiao J., Zhu W., Liu Q., Gong G., Huang T., “Continuous Friction Feedforward Sliding Mode Controller for a TriMule Hybrid Robot”, IEEE/ASME Transactions on Mechatronics, Vol. 23, Iss. 4, August 2018, pp. 1673-1683
[12] Kerr D. R., “Analysis, Properties, and Design of a Stewart-Platform Transducer”, ASME. Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, March 1989, pp 25-28
[13] Gosselin C., “Stiffness Mapping for Parallel Manipulators”, IEEE Transactions on Robotics and Automation, Vol. 6, Iss. 3, June 1990, pp. 377-382
[14] Bashar S. El-Khasawneh, Placid M. Ferreira, “Computation of stiffness and stiffness bounds for parallel link manipulators”, International Journal of Machine Tools and Manufacture, Vol. 39, Iss. 2, February 1999, Pages 321-342
[15] Zhang D., Lang S., “Stiffness modeling for a class of recon?gurable PKMs with three to ?ve degrees of freedom”, Journal of Manufacturing Systems, Vol. 23, No. 4, December 2004, pp. 316-327
[16] Xu Q., Li Y., “An investigation on mobility and stiffness of a 3-DOF translational parallel manipulator via screw theory”, Robotics and Computer-Integrated Manufacturing, Vol. 24, Iss. 3, June 2008, pp. 402-414
[17] Li Y., Xu Q., “Sti?ness analysis for a 3-PUU parallel kinematic machine”, Mechanism and Machine Theory, Vol. 43, Iss. 2, February 2008, pp. 186-200
[18] Wang Y., Liu H., Huang T., Chetwynd D. G., “Stiffness modeling of the tricept robot using the overall jacobian matrix”, ASME. Journal of Mechanisms and Robotics, Vol. 1, Iss. 2, May 2009
[19] Lian B., Sun T., Song Y., Jin Y., Price M., “Stiffness analysis and experiment of a novel 5-DoF parallel kinematic machine considering gravitational effects”, International Journal of Machine Tools and Manufacture, Vol. 95, 2015, pp. 82-96
[20] Zhang J., Zhao Y., Jin Y., “Kinetostatic-model-based stiffness analysis of Exechon PKM”, Robotics and Computer-Integrated Manufacturing, Vol. 37, February 2016, pp. 208-220
[21] Do W. Q. D., Yang D. C. H., “Inverse Dynamic Analysis and Simulation of a Platform Type of Robot”, Journal of Robotic Systems, Vol. 5, Iss. 3, June 1988, pp. 209-227
[22] Tsai L., “Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work”, Journal of Mechanical Design, Vol. 122, March 2000, pp. 3-9
[23] Xiangzhou Z., Yougao L., Hongzan B., “Inverse dynamics of 3-UPU parallel mechanism with pure rotation based on D'Alembert principle”, IEEE. International Conference on Mechatronics and Automation, August 2007, pp. 2842-2847
[24] Staicu S., “Dynamics analysis of the Star parallel manipulator”, Robotics and Autonomous Systems, Vol. 57, Iss. 11, November 2009, pp. 1057-1064
[25] Tsai M., Yuan W., “Inverse dynamics analysis for a 3-PRS parallel mechanism based on a special decomposition of the reaction forces”, Mechanism and Machine Theory, Vol. 45, Iss. 11, November 2010, pp. 1491-1508
[26] Diaz-Rodriguez M., Mata V., Valera A., Page A., “A methodology for dynamic parameters identi?cation of 3-DOF parallel robots in terms of relevant parameters”, Mechanism and Machine Theory, Vol. 45, 2010, pp. 1337-1356
[27] Lou Y. J., Li Z. B., Zhong Y. Y., Li J. G., Li Z. X., “Dynamics and contouring control of a 3-DoF parallel kinematics machine”, Mechatronics, Vol. 21, Iss. 1, February 2011, pp. 215-226
[28] Afzali-Far B., Lidstrom P., Nilsson K., “Parametric damped vibrations of Gough–Stewart platforms for symmetric con?gurations”, Mechanism and Machine Theory, Vol. 80, October 2014, pp. 52-69
[29] Staicu S., Popa C., “Dynamics of the translational 3-UPU parallel manipulator”, U.P.B. Sci. Bull., Series D, Vol. 76, Iss. 4, October 2014, pp. 3-12
[30] Bi Z. M., Kang B., “An Inverse Dynamic Model of Over-Constrained Parallel Kinematic Machine Based on Newton–Euler Formulation”, ASME. Journal of Dynamic Systems Measurement and Control, Vol. 136, Iss. 4, July 2014
[31] Zhang J., Zhao Y., Jin Y., “Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine”, ASME. Journal of Manufacturing Science and Engineering, Vol. 138, Iss. 3, March 2016
[32] 鄭運傑,「具撓性連桿之串並聯式工具機動態分析」,國立中正大學機械工程所,碩士論文,中華民國九十四年
[33] Shiau T., Tsai Y., Tsai M., “Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects”, Mechanism and Machine Theory, Vol. 43, Iss. 4, April 2008, pp. 491-505
[34] Zhang D., Gosselin C. M., “Kinetostatic Modeling of N-DOF Parallel Mechanisms With a Passive Constraining Leg and Prismatic Actuators”, ASME. Journal of Mechanical Design, Vol. 23, Iss. 3, September 2001, pp. 375-381
[35] Bonnemains T., Chanal H., Bouzgarrou B.C., Ray P., “Dynamic model of an overconstrained PKM with compliances: The Tripteor X7”, Robotics and Computer-Integrated Manufacturing, Vol. 29, Iss. 1, February 2013, pp. 180-191
[36] Liu H., Huang T., Chetwynd D. G., Kecskemethy A., “Stiffness Modeling of Parallel Mechanisms at Limb and Joint/Link Levels”, IEEE. Transactions on Robotics, Vol. 33, Iss. 3, June 2017, pp. 734-741
[37] Wu L., Wang G., Liu H., Huang T., “An approach for elastodynamic modeling of hybrid robots based on substructure synthesis technique”, Mechanism and Machine Theory, Vol. 123, May 2018, pp. 124-136
[38] Dong C., Liu H., Yue W., Huang T., “Stiffness modeling and analysis of a novel 5-DOF hybrid robot”, Mechanism and Machine Theory, Vol. 125, July 2018, pp. 80-93
[39] Tsai L., Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley, 1999
[40] 曾勇智,「3-PUU型並聯式機構應用於五軸加工機之參數優化與剛性分析」,國立清華大學動力機械工程所,碩士論文,中華民國一百零八年
[41] El Hraiech S., Houidi A., Affi Z., Romdhane L, “Reduced Inverse Dynamic Model of Parallel Manipulators Based on the Lagrangian Formalism”, Design and Modeling of Mechanical Systems-II. Lecture Notes in Mechanical Engineering, Springer, 2015, pp. 479-488
[42] Tsai L., “Kinematics of A Three-Dof Platform with Three Extensible Limbs”, Recent Advances in Robot Kinematics, Springer, 1996, pp. 401-410
[43] Zheng X., Bin H., Luo Y., “Kinematic analysis of a hybrid serial-parallel manipulator”, The International Journal of Advanced Manufacturing Technology, Vol. 23, April 2004, pp. 925-930
[44] Haug E. J., Computer-Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1, Allyn & Bacon, 1989
[45] 馮榮豐,黃適遷,「力學能量法: 動態系統建模」,滄海書局,中華民國八十九年
[46] 陳世昌,「混合微分代數方程式數值積分法之研究」,國立中興大學機械工程所,碩士論文,中華民國九十二年
[47] 陳峰華,「ADAMS 2018虛擬樣機技術從入門到精通」,清華大學出版社,中華民國一百零八年
[48] Goudas I., Stavrakis I., Natsiavas S., “Dynamics of Slider-Crank Mechanisms with Flexible Supports and Non-Ideal Forcing”, Nonlinear Dynamics, Vol. 35, 2004, pp. 205–227
[49] Guay P., Frikha A., “Ball Bearing Stiffness. A New Approach Offering Analytical Expressions”, 16th European Space Mechanisms and Tribology Symposium, September 2015
[50] Wang W. R., Chang C. N., “Dynamic Analysis and Design of a Machine Tool Spindle-Bearing System”, ASME. Journal of Vibration and Acoustics, Vol. 116, Iss. 3, July 1994; pp. 280–285
[51] Wang L., Hu X., Dong X., “An Approach to Investigate Dynamic Parameters of Bearings Joint Surfaces Based on the SDOF System”, Applied Mechanics and Materials, Vol. 470, 2014, pp. 504–509
[52] NSK, General catalogs: Rolling Bearings, No. E1102m, 2013, pp. 234-243, Retrieved from: https://www.nsk.com/tw/index.html
[53] SIEMENS, Community Article: Dynamic Stiffness, Compliance, Mobility, and more..., August, 2019, Retrieved from: https://community.sw.siemens.com/s/article/dynamic-stiffness-compliance-mobility-and-more
[54] Deng C., Yin G., Fang H., Meng Z., ”Dynamic characteristics optimization for a whole vertical machining center based on the configuration of joint stiffness”, The International Journal of Advanced Manufacturing Technology, Vol. 76, 2015, pp. 1225-1242
[55] Bayram A., “Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method”, Chinese Journal of Mechanical Engineering, Vol. 30, Iss. 2, 2017, pp. 449-458
(此全文20260127後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *