帳號:guest(3.142.174.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾驛捷
作者(外文):Tseng, Yi-Chieh
論文名稱(中文):不同數據於循環神經網路模型對晶圓級封裝可靠度預估影響研究
論文名稱(外文):Research on the influence of Different Data applied to Recurrent Neural Network Regression Model for Wafer-Level Package Reliability Assessment
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo-Ning
口試委員(中文):蔡明義
趙儒民
林士傑
口試委員(外文):Tsai, Ming-Yi
Chao, Ru-Min
Lin, Shih-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033564
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:124
中文關鍵詞:晶圓級封裝有限單元分析熱循環負載可靠度預估機器學習人工神經網路循環神經網路
外文關鍵詞:Wafer Level PackageFinite Element AnalysisThermal Cycling TestReliability AssessmentMachine LearningArtificial Neural NetworkRecurrent Neural Network
相關次數:
  • 推薦推薦:0
  • 點閱點閱:216
  • 評分評分:*****
  • 下載下載:28
  • 收藏收藏:0
在電子封裝領域裡,主要的趨勢皆是傾向於更輕,更小與更多功能。若來看封裝技術的演進,由DIP(Dual In-line Packaging)、SOP/TSOP(Small Outline Packaging / Thin Small Outline Packaging)、QFP/TQFP(Quad Flat Packaging / Thin Quad Flat Packaging)、BGA(Ball Grid Array) 發展到更小體積更高密度的的覆晶封裝(Flip Chip, FC)以及晶圓級封裝(Wafer Level Packaging, WLP)等。
封裝結構中其中一項重要的議題為可靠度,有非常多的因素會影響其可靠度,例如:封裝結構尺寸、材料性質、製程技術等皆是影響因素,在設計產品的流程中,通常使用實驗的方法如熱循環負載試驗(Thermal Cycling Test)來測試所設計的產品是否能通過訂定的疲勞壽命標準,透過這樣的方式來確保所設計之產品發行後能在使用期限中正常不失效。但在實務上,若以電子封裝可靠度實驗來測試每一個設計其花費的成本與時間會相當的高,導致產品上市時間延宕,開發成本上升,導致企業競爭力的大幅降低。
為了改善上述缺點,有限單元分析(Finite Element Analysis, FEA)已被廣泛的應用在可靠度測試上,只需要少量的實驗驗證數據便可以大幅降低評估產品可靠度之時間,節省開發產品之成本。在本研究當中利用ANSYS軟體來模擬晶圓級封裝在熱循環負載下所產生的等效塑性應變增量,再使用Coffin-Manson 模型來預測錫球之疲勞壽命,再模擬中利用體積權重概念來固定錫球應力集中處網格大小,此外再利用實驗的數據對比模擬的結果,來驗證模擬分析之結果與其可信度。
雖然有限單元分析(Finite Element Analysis, FEA)對比實驗試誤方式(Design on Experiment, DOE)已減少了大量的時間與成本,但由不同的研究員所得到的模擬結果也不盡相同。本研究目的就是將機器學習(Machine Learning, ML)應用在評估封裝結構可靠度上。既可以更加地減少預測不同結構可靠度預估之時間,也可以降低由不同研究人員所模擬結果之誤差。在本研究中結合了有限單元分析與機器學習,由經過認證的模擬結果建構資料庫,透過此資料庫訓練獲得預估模型,使得壽命預估流程更加有效率。
在機器學習模型的選擇上,本研究選擇使用的為循環神經網路(Recurrent Neural Network, RNN),再與基本的人工神經網路(Artificial Neural Network, ANN)做比較。在機器學習當中,最關鍵的部分就在於資料,好的資料品質可以使模型得到更好的結果,因此在本研究也探討根據不同的訓練數據大小、分布對於訓練後預估模型表現的影響。
In the field of electronic packaging, the main trend is toward lighter, smaller and more functional. In the evolution of packaging technology, from DIP (Dual in-line Packaging), SOP/TSOP (Small Outline Packaging / Thin Small Packaging), QFP/TQFP (Quad Flat Packaging / Thin Quad Flat Packaging), BGA (Ball Grid Array) to smaller, higher density package like Flip Chip (FC) and Wafer Level Packaging (WLP).
One of the important issues in the package structure is reliability. There are many factors that affect its reliability. For example, package structure size, material properties, process technology, etc. are all influencing factors. In the process of designing products, the experimental method is usually used, such as the Thermal Cycling Test, to test whether the designed product can pass the fatigue life standard, and in this way ensures that the designed product will not fail during the service period. However, in practice, if the reliability test is executed by experiment method, the cost and time spent will be quite high, resulting in delayed product launch time and rising development costs, even further caused a significant reduction in the competitiveness of enterprises.
In order to improve the above shortcomings, Finite Element Analysis (FEA) has been widely used in reliability assessment. Only a small amount of experimental data is needed to verified the simulation then we can greatly reduce the time spent and cost for evaluating product reliability. In this study, ANSYS software was used to simulate the equivalent plastic strain increment in Wafer-Level Package under thermal cycling load. The Coffin-Manson strain based model and fixed mesh size were used to predict the fatigue life of the solder ball. Finally, the simulation results are compared with the simulation results to verify the the simulation analysis and its credibility.
Although using the Finite Element Analysis (FEA) has reduced a lot of time spent and cost compared to Design on Experiment (DOE). The simulation results obtained by different researchers are not totally same. The purpose of this study is to apply Machine Learning (ML) to assess the reliability of electronic package structure. It can not only reduce the time spent for predicting the reliability prediction of different structures, but also eliminate the variance of the results simulated by different researchers. In this study, combined with finite element analysis and machine learning, a database built by verified simulation results, and the estimation model was trained through this database, making the reliability life prediction process more efficient.
In the choice of machine learning model, this study chose to use the Recurrent Neural Network (RNN) and compare it with the basic Artificial Neural Network (ANN). The effects of different training data sizes and distributions on the performance of the regression model are also discussed.
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目標 9
第二章 基礎理論 10
2.1 有限單元法基礎理論[23] 10
2.1.1 線彈性有限單元理論 10
2.1.2 材料非線性理論 14
2.1.3 數值方法及收斂準則 15
2.2 材料硬化法則 17
2.2.1 等向硬化法則 17
2.2.2 動態硬化法則 18
2.3 Chaboche模型 19
2.4 錫球外型預測 21
2.5 封裝結構可靠度之預測方法 23
2.5.1 Coffin-Manson應變法 23
2.5.2 Darveaux 能量密度法 24
2.5.3 修正型能量密度法 24
2.7 機器學習 25
2.7.1 機器學習演算法 27
2.7.2 資料前處理 29
2.7.3 人工神經網路(Artificial Neural Network) 31
2.7.4 啟動函數(Activation Function) 32
2.7.5 損失函數(Loss function) 34
2.7.6 回歸模型最佳化演算法 35
2.7.7 誤差反向傳播法(Backpropagation) 40
2.7.8 增量學習(Incremental Learning) 42
2.8 循環神經網路(Recurrent Neural Network) 43
2.8.1 雙向循環神經網路(Bidirectional RNN) 45
2.8.2 長短期記憶(Long Short-Term Memory, LSTM) 46
2.8.3 循環門控單元(Gate Recurrent Unit, GRU) 49
第三章 WLCSP有限單元模型之建立 51
3.1 有限單元模型基本假設 53
3.2 材料參數之設定 53
3.3 網格劃分 55
3.4 邊界條件設定 56
3.5 溫度負載設定 57
3.6 WLCSP模型 57
3.6.1 TV1模擬設定 58
3.6.2 TV2模擬設定 59
3.6.3 TV3模擬設定 60
3.6.4 TV4模擬設定 61
3.6.5 TV5模擬設定 63
3.7 WLCSP有限單元模型驗證 64
第四章 結果與討論 65
4.1 機器學習訓練及測試資料 65
4.2 定義ANN以及RNN模型輸入 79
4.3 超參數選定之過程 81
4.3.1 前處理方法比較 82
4.3.2 損失函數結果之比較 85
4.4 人工神經網路訓練結果 92
4.4.1 不同數據分布對於結果之影響 92
4.5 循環神經網路訓練結果. 95
4.5.1 不同數據分布對於結果之影響 95
4.5.2 多對一Vanilla RNN/LSTM/GRU模型 97
4.5.3 多對多RNN模型 99
4.5.4 多對多雙向RNN模型 102
4.6 結果比較與討論 105
4.7 增量學習(Incremental Learning)初步結果 115
4.7.1 10次迭代結果 116
4.7.2 100次迭代結果 117
第五章 結論與建議未來工作 120
參考資料 121

[1] C. M. Liu, C. C. Lee, and K. N. Chiang, "Enhancing the reliability of wafer level packaging by using solder joints layout design," IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 4, pp. 877-885, 2006.
[2] K. N. Chiang and W. L. Chen, "Electronic packaging reflow shape prediction for the solder mask defined ball grid array," 1998.
[3] C. Y. Tsou, T. N. Chang, K. C. Wu, P. L. Wu, and K. N. Chiang, "Reliability assessment using modified energy based model for WLCSP solder joints," in 2017 International Conference on Electronics Packaging (ICEP), 19-22 April 2017, pp. 7-15.
[4] L. F. Coffin Jr, "A study of the effects of cyclic thermal stresses on a ductile metal," Transactions of the American Society of Mechanical Engineers, New York, vol. 76, pp. 931-950, 1954.
[5] S. S. Manson, "Behavior of materials under conditions of thermal stress," National Advisory Committee for Aeronautics, vol. 2933, pp. 317-350, 1953.
[6] R. Darveaux, K. Banerji, A. Mawer, G. Dody, and J. Lau, Reliability of plastic ball grid array assembly. New York: McGraw-Hill, 1995.
[7] R. Darveaux, "Effect of simulation methodology on solder joint crack growth correlation," in 2000 Proceedings. 50th Electronic components and technology conference (Cat. No. 00CH37070), 2000: IEEE, pp. 1048-1058.
[8] W. R. Jong, H. C. Tsai, H. T. Chang, and S. H. Peng, "The effects of temperature cyclic loading on lead-free solder joints of wafer level chip scale package by Taguchi method," Journal of electronic packaging, vol. 130, no. 1, 2008.
[9] R. J. Solomonoff, "An inductive inference machine," in IRE Convention Record, Section on Information Theory, 1957, vol. 2, pp. 56-62.
[10] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.
[11] 李育承, "以循環神經網路迴歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[12] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
[13] P. J. Phillips, "Support vector machines applied to face recognition," in Advances in Neural Information Processing Systems, 1999, pp. 803-809.
[14] 沈奕廷, "以支援向量迴歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[15] J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, no. 1, pp. 81-106, 1986.
[16] T. K. Ho, "Random decision forests," in Proceedings of 3rd international conference on document analysis and recognition, 1995, vol. 1: IEEE, pp. 278-282.
[17] 蕭翔云, "以隨機森林回歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[18] N. S. Altman, "An introduction to kernel and nearest-neighbor nonparametric regression," The American Statistician, vol. 46, no. 3, pp. 175-185, 1992.
[19] M. Sarkar and T. Y. Leong, "Application of K-nearest neighbors algorithm on breast cancer diagnosis problem," in Proceedings of the AMIA Symposium, 2000: American Medical Informatics Association, p. 759.
[20] R. Law and I. Azid, "Application of artificial neural network in thermal and solder joint reliability analysis for stacked dies LBGA," in 2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT), 2008: IEEE, pp. 1-7.
[21] P. C. Lai, T. C. Chiu, and G. Shen, "Design optimization for wafer level package reliability by using artificial neural network," in 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013: IEEE, pp. 172-175.
[22] G. Petneházi, "Recurrent neural networks for time series forecasting," arXiv preprint arXiv:1901.00069, 2019.
[23] R. Cook, D. Malkus, M. Plesha, and R. Witt, "Concepts and Applications of Finite Element Analysis, Wiley," 2002.
[24] W. N. Findley, J. Lai, and K. Onaran, "Creep and relaxation of nonlinear viscoelastic materials (with an Introduction to Linear Viscoelasticity). ," Amesterdam: North-Holland publishing Company, 1976.
[25] G. E. Dieter and D. J. Bacon, Mechanical metallurgy. McGraw-hill New York, 1986.
[26] N. E. Dowling, Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, 2012.
[27] J. L. Chaboche, "Constitutive equations for cyclic plasticity and cyclic viscoplasticity," International journal of plasticity, vol. 5, no. 3, pp. 247-302, 1989.
[28] J. L. Chaboche, "On some modifications of kinematic hardening to improve the description of ratchetting effects," International journal of plasticity, vol. 7, no. 7, pp. 661-678, 1991.
[29] W. F. Chen and D. J. Han, Plasticity for structural engineers. J. Ross Publishing, 2007.
[30] L. S. Goldmann, "Geometric optimization of controlled collapse interconnections," IBM Journal of Research and Development, vol. 13, no. 3, pp. 251-265, 1969.
[31] S. M. Heinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, "Prediction of Solder Joint Geometries in Array-Type Interconnects," Journal of Electronic Packaging, vol. 118, no. 3, pp. 114-121, 1996.
[32] K. A. Brakke, "Surface evolver manual," Mathematics Department, Susquehanna Univerisity, Selinsgrove, PA, vol. 17870, no. 2.24, p. 20, 1994.
[33] L. F. Coffin Jr, "A study of the effects of cyclic thermal stresses on a ductile metal," Transactions of the American Society of Mechanical Engineers, New York, vol. 76, pp. 931-950, 1954.
[34] S. S. Manson and T. Dolan, "Thermal stress and low cycle fatigue," ed: American Society of Mechanical Engineers Digital Collection, 1966.
[35] X. Yanjun, W. Liquan, W. Fengshun, X. Weisheng, and L. Hui, "Effect of interface structure on fatigue life under thermal cycle with SAC305 solder joints," in 2013 14th International Conference on Electronic Packaging Technology, 2013: IEEE, pp. 959-964.
[36] 吳凱強, "先進封裝錫球接點於不同溫度循環負載速率下之可靠度評估," 碩士論文, 國立清華大學動力機械工程學系, 2016.
[37] A. Kaplan and M. Haenlein, "Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence," Business Horizons, vol. 62, no. 1, pp. 15-25, 2019.
[38] S. Raschka, Python machine learning. Packt publishing ltd, 2015.
[39] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psychological review, vol. 65, no. 6, p. 386, 1958.
[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," nature, vol. 323, no. 6088, pp. 533-536, 1986.
[41] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.
[42] J. Sherman and W. J. Morrison, "Adjustment of an inverse matrix corresponding to a change in one element of a given matrix," The Annals of Mathematical Statistics, vol. 21, no. 1, pp. 124-127, 1950.
[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007.
[44] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," Journal of machine learning research, vol. 12, no. 7, pp. 2,121-2,159, 2011.
[45] T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop, coursera: Neural networks for machine learning," University of Toronto, Technical Report, 2012.
[46] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 2014 International Conference on Learning Representations, 2014.
[47] M. Motalab, M. Mustafa, J. C. Suhling, J. Zhang, J. Evans, M. J. Bozack, and P. Lall, "Thermal cycling reliability predictions for PBGA assemblies that include aging effects," in International Electronic Packaging Technical Conference and Exhibition, 2013, vol. 55751: American Society of Mechanical Engineers, p. V001T05A008.
[48] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, "An empirical investigation of catastrophic forgetting in gradient-based neural networks," arXiv preprint arXiv:1312.6211, 2013.
[49] Z. Li and D. Hoiem, "Learning without forgetting," IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935-2947, 2017.
[50] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.
[51] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[52] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM," 1999.
[53] F. A. Gers and E. Schmidhuber, "LSTM recurrent networks learn simple context-free and context-sensitive languages," IEEE Transactions on Neural Networks, vol. 12, no. 6, pp. 1333-1340, 2001.
[54] K. Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
[55] C. Olah, “Understanding LSTM Networks,” August, 2015. [Online].Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[56] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
[57] B. Rogers and C. Scanlan, "Improving WLCSP reliability through solder joint geometry optimization," in International Symposium on Microelectronics, 2013, vol. 2013, no. 1: International Microelectronics Assembly and Packaging Society, pp. 546-550.
[58] M. C. Hsieh and S. L. Tzeng, "Solder joint fatigue life prediction in large size and low cost wafer-level chip scale packages," in 2014 15th International Conference on Electronic Packaging Technology, 2014: IEEE, pp. 496-501.
[59] M. C. Hsieh, "Modeling correlation for solder joint fatigue life estimation in wafer-level chip scale packages," in 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015: IEEE, pp. 65-68.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *