帳號:guest(18.224.69.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡天文
作者(外文):Tsai, Tian-Wen
論文名稱(中文):具壓阻式力量感測器之CMOS-MEMS靜電式轉移頭
論文名稱(外文):The CMOS-MEMS Electrostatic Transfer Head Integrated With Piezoresistive Force Sensor
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):李昇憲
王惠潔
口試委員(外文):Li, Sheng-Shian
Wang, Hui-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033562
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:107
中文關鍵詞:CMOS-MEMSMicro LED巨量轉移靜電式轉移頭
外文關鍵詞:CMOS-MEMSMicro LEDMass transferElectrostatic transfer head
相關次數:
  • 推薦推薦:0
  • 點閱點閱:321
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
因應各種可攜式電子產品的出現,人們對顯示器之顯示品質的要求越來越高,隨著顯示器被應用在智慧手錶、智慧型手機等等螢幕較小的產品上,顯示器的功耗問題也漸漸被人們重視,因此,各大廠商開始爭相投入微型發光二極體Micro LED(Micro Light-Emitting Diode)的研發,相較於傳統的薄膜電晶體液晶顯示器TFT-LCD(Thin Film Transistor Liquid Crystal Display)與現今廣泛使用的有機發光二極體OLED(Organic Light-Emitting Diode),Micro LED所消耗的功耗更低,且壽命更長,反應時間也更快,且繼承了OLED自體發光的特性,不需要設置額外背光源即可發光。
但在製造上,需要考慮到巨量轉移(Mass Transfer)時的成本以及良率問題,使得現今Micro LED無法成功商品化,並且現今較廣泛使用在巨量轉移的靜電式吸取頭會因為轉移面積的微縮導致靜電力下降,本研究提出利用CMOS-MEMS製程平台小線寬以及多膜層堆疊的優勢,設計具選擇性吸取功能之靜電式轉移頭,並整合壓阻式力量感測器,感測轉移時施加在Micro LED晶粒上的力,以此避免晶粒受損,使轉移的良率提高,並且透過批量轉移降低製作Micro LED顯示基板之成本。
Along with the development of the portable electronic device, in addition to minimize the size of monitors, the problem of power consumption also need to be regarded. Therefore, people start to develop the technology of Micro Light-Emitting Diode(Micro LED). Compared to Thin Film Transistor Liquid Crystal Display(TFT-LCD) and Organic Light-Emitting Diode(OLED), Micro LED has the advantages of low power consumption and long life time. Also, it has better response time. With the advantage of self-emitting, it does not need back light source on the monitors.
But when we fabricate monitors which use Micro LED technology, we have to consider the problems of cost and yield rate which caused by mass transfer. Because of these problems, Micro LED cannot be commercialized successfully. Therefore, developing the proper transfer technology becomes the most important goal.
This research demonstrates the electrostatic transfer head using TSMC 0.18μm 1P6M CMOS process. With the advantage of small line width, the electrostatic transfer head which use CMOS technology can generate higher electrostatic force. Also, we can design the chip which integrates electrostatic transfer head with force sensor by using CMOS technology. Therefore, the function of chip will become more perfect.
摘要 I
Abstract II
致謝 III
目錄 VI
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 4
1-2-1轉移過程 4
1-2-2 轉移機制 5
1-2-3 靜電吸盤與轉移頭 10
1-2-4 力量感測機制 12
1-2-5 感測器之整合 14
1-3 研究動機 15
第二章 元件設計與規劃 30
2-1 轉移流程 30
2-2 設計概念 32
2-3 靜電力原理 34
2-4 壓阻式力量量測 35
2-5 電場與靜電力之模擬 39
2-6 CMOS元件設計 41
第三章 製程規劃與結果 57
3-1 製程規劃 57
3-2 製程結果 59
第四章 量測結果與討論 79
4-1 晶粒取放之量測架設 79
4-2 單一晶粒取放量測 80
4-3 不同尺寸之矽晶粒取放量測 81
4-4 小電極圖形之量測 83
4-5 整合壓阻式力量感測器之轉移頭元件量測 84
第五章 結論與未來工作 97
5-1 純電極元件之量測 97
5-2 整合元件之量測 98
5-3 未來工作 98
參考文獻 104
[1] AU Optronics corp., http://auo.com/zh-TW/home/index
[2] C. –C. Chen, C. –Y. Wu, and T. –F. Wu, “LED back-light driving system for LCD panels,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, Dallas, TX, March, 2006, pp 5-10.
[3] A. Bibl, J. A. Higginson, H. –f. S. Law, and H. –H. Hu, “Light emitting diode structure,” U.S. Patent NO. 20130126827 A1, 2013.
[4] S. –X. Jin, J. Li, J. –Z. Li, J. –Y. Lin, and H. –X. Jiang, “GaN microdisk light emitting diodes,” Applied Physics Letters, vol. 76, pp 631-633, 2000.
[5] H. –X. Jiang, S. –X. Jin, J. Lin, J. Sayaka, and J. –Y. Lin, “III-nitride blue microdisplay,” Applied Physics Letters, vol. 78, pp 1303-1305, 2001.
[6] S. –I. Park, Y. Xiong, R. –H. Kim, P. Elvikis, M. Melti, D. H. Kom, J. Wu, J. Yoon, C. –J. Yu, Z. Liu, Y. Huang, K. –C. Hwang, P. Ferreira, X. Li, K. Cjoquette, and J. A. Rogers, “Printed assemblies of inorganic light-emitting diode for deformable and semitransparent displays,” Science, vol. 35, pp 977-981, 2009
[7] http://yole.fr/MicroLEDDisplays_Market.aspx#.XeK51ugzZPZ
[8] H. –H. Huang, and J. Wey, “Research on the high-speed pick and place device for die bonders,” IEEE International Conference on Control and Automation, Xiamen, June, 2010, pp 1683-1687.
[9] T. Kawanago, W. Du, R. Ikoma, T. Oba, H. Takagi, and S. Oda, “Transfer printing of nanostructured membrane with elastomeric stamp and its application to TMDC-based field-effect transistors,” International Workshop on Junction Technology, Uji, June, 2017, pp 40-43.
[10] D. Gomez, K. Ghosal, T. Moore, M. A. Meitl, S. Bonafede, C. Prevatte, E. Radauscher, A. J. Trindade, and C. A. Bower, “Scalability and Yield in Stamp Micro-transfer-printing,” IEEE Electronic Components and Technology Conference, Orlando, FL, June, 2017, pp 1779-1785.
[11] D. Gomez, K. Ghosal, M. A. Meitl, S. Bonafede, C. Prevatte, T. Moore, B. Raymond, D. Kneeburg, A. Fecioru, A. J. Trindade, and C. A. Bower, “Process Capability and Elastomer Stamp Lifetime in Micro Transfer Printing,” IEEE Electronic Components and Technology Conference, Las Vegas, NV, June, 2016, pp 680-687.
[12] Y. –C. Wu, “Development of Micro Pick-up Array for Micro LED Assembly,” NTHU, MS, Thesis, 2016
[13] M. –H. Wu, Y. –H. Fang, and C. –H. Chao, “Electric-programmable magnetic module and picking-up and placement process for electronic devices,” U.S. Patent NO. 9607907 B2, 2014.
[14] M. –H. Wu, Y. –H. Fang, and C. –H. Chao, “Electric-programmable magnetic module,” U.S. Patent NO. 0148650 A1, 2017.
[15] A. Bibl, J. A. Higginson, and H. –H. Hu, “Compliant micro device transfer head,” U.S. Patent NO. 9105492 B2, 2015.
[16] A. Bibl, and D. Golda, “Compliant micro device transfer head with integrated electrode leads,” U.S. Patent NO. 8791530 B2, 2014
[17] C. Landesberger, R. Wieland, A. Klumpp, P. Ramm, U. Schaber, D. Bonfert, and K. Bock, “Electrostatic wafer handling for thin wafer processing,” European Microelectronics and Packaging Conference, Rimini, June, 2009, pp 1-5.
[18] K. Asano, F. Hatakeyama, and K. Yatsuzuka, “Fundamental study of an electrostatic chuck for silicon wafer handling,” IEEE Transactions on Industry Applications, vol. 38, pp 840-845, 2002.
[19] J. –H. Yoo, J. –S. Choi, S. –J. Hong, T. –H. Kim, and S. –J. Lee, “Finite element analysis of the attractice force on a Coulomb type electrostatic chuck,” International Conference on Electrical Machines and Systems, Seoul, October, 2007, pp 1371-1375.
[20] D. Ruffatto, J. Shah, and M. Spenko, “Optimization of electrostatic adhesives for robotic climbing and manipulation,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, August, 2012.
[21] Y. –C. Liu, C. –M. Sun, L. –Y. Lin, M. –H. Tsai, and W. Fang, "Development of a CMOS-Based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in", Journal of Microelectromechanical Systems, vol. 20, pp. 119-127, 2011.
[22] W. –C. Lai, and W. Fang, "Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement", IEEE TRANSDUCERS, Anchorage, AK, June, 2015, pp. 1175-1178.
[23] D. Alveringh, R. A. Brookhuis, R. J. Wiegerink, and G. J. M. Krijnen, "A large range multi-axis capacitive force/torque sensor realized in a single SOI wafer", IEEE MEMS, San Fancisco, CA, Jan, 2014, pp. 680- 683.
[24] G. Vásárhelyi, M. Ádám, É. Vázsonyi, Z. Vízváry, A. Kis, I. Bársony, and C. Dücsõ, "Characterization of an integrable single-crystalline 3-D tactile sensor", IEEE Sensors Journal, vol. 6, pp. 928-934, 2006.
[25] K. Kim, K. –R. Lee, Y. –K. Kim, D. –S. Lee, N. –K. Cho, W. –H. Kim, K. –B. Park, H. –D. Park, Y. –K. Park, J. –H. Kim, and J. –J. Park, "3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology", IEEE MEMS, Turkey, Jan, 2006, pp. 678-681.
[26] T. –V. Nguyen, B. –K. Nguyen, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers", Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
[27] C. –M. Sun, C. Wang, M. –H. Tsai, H. –S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process”, Journal of Micromechanics and Microengineering, vol. 19, p. 015-023, 2009.
[28] S. –C. Chen, V. P. J. Chung, D. –J. Yao, and W. Fang, “Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application”, Transducers, Kaohsiung, June, 2017, pp. 1453-1456.
[29] J. Detry, D. Koneval, and S. Blackstone, "A comparison of piezoresistance in polysilicon laser recrystallization polysilicon and single crystal silicon", Transducers, Philadelphia, PA, 1985, pp. 278-280.
[30] G. K. Fedder, "CMOS-based sensors", IEEE Sensors, Irvine, CA, Nov, 2005, pp.125-128.
[31] Z. –D. Lin, “Design and implementation of Micro LED transfer heads array with selectivity pick-up function,” NTHU, MS, Thesis, 2019.
(此全文20250819後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *