帳號:guest(18.116.23.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宗樺
作者(外文):Tsai, Tsung-Hua
論文名稱(中文):數據分布於隨機森林模型對晶圓級封裝之可靠度預估影響研究
論文名稱(外文):The Research of WLCSP Reliability Prediction with Data Distribution in Random Forest Regression Model
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo-Ning
口試委員(中文):劉德騏
鄭仙志
陳志明
口試委員(外文):Liu, De-Shin
Cheng, Hsien-Chie
Chen, Chih-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033555
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:110
中文關鍵詞:晶圓級晶片尺寸封裝有限單元法可靠度分析機器學習隨機森林
外文關鍵詞:Wafer Level Chip Scale PackageFinite Element MethodReliability AnalysisMachine LearningRandom Forest
相關次數:
  • 推薦推薦:0
  • 點閱點閱:544
  • 評分評分:*****
  • 下載下載:55
  • 收藏收藏:0
近年來,隨著消費市場擴大,電子產品日新月異,產品內的電子封裝可靠度越來越被受重視。本篇論文的研究目的為電子封裝的可靠性評估,而熱循環負載測試(Thermal cyclic test,TCT)是確保封裝可靠性的重要測試之一,由於使用熱循環負載測試所需時間可能長達數個月或數年,為了有效降低測試時間,我們時常使用有限單元法(Finite Element Method,FEM)代替TCT。
雖然FEM所需要的時間比TCT來的少,然而使用FEM方法還是需要花一定的時間,依照不同參數建立模型,並調整封裝的邊界條件,施加熱循環負載後,才能得到電子封裝的壽命預估數值。且不同的研究者依照相同的設計參數設計模型,可能得到的結果不盡相同。若我們可以依循著過去大量的經驗資料,建立一組有效數據庫使機器學習,讓機器快速的依照資料推估封裝壽命,不僅可以省下建立模型與驗證的時間,並且也可以避免不同研究員之間的模擬誤差。
本研究利用隨機森林(RF)機器學習演算法,對晶圓級尺寸封裝(Wafer Level Chip Scale Packaging,WLCSP)進行可靠度評估。利用FEM生成訓練數據庫,並將其與TCT實驗結果進行比較以驗證FEM模型。得到驗證後的FEM模型後,在相同的建模流程下,設計參數,生成多組不同數據量以及不同數據分布的數據庫,探討數據量以及數據分布對隨機森林(Random Forest , RF)模型的影響為何。
In recent years, due to the consumer market become larger and larger, the electronic equipment improves every day, we pay more and more attention to the reliability of electronic packaging. Our research aims to evaluate the reliability of electronic packaging, and Thermal Cycling Testing (TCT) is one of the important tests to ensure packaging reliability. The time required to perform a TCT can be as long as several months or years. In order to effectively reduce the test time, we often use the Finite Element Method (FEM) instead of TCT.
Although FEM takes less time than TCT, it still takes some time to use the FEM to get the simulation result. We build the model according to different parameters and fixed boundary conditions, and then apply the thermal cycle load on the model to obtain the prediction life value of the electronic package. Different researchers may lead to different results, even if they use the same model parameter.
If we use a large amount of validated FEM data to build a database for machine learning, then we can immediately evaluate the electronic package prediction life through machine learning methods. It not only save the time to build the model and validation, but also avoid the simulation error.
This research uses a random forest (RF) machine learning algorithm to evaluate the reliability of Wafer Level Chip Scale Packaging (WLCSP). The training database was generated by FEM and compared with the TCT experimental results to verify the FEM model. After obtaining the verified FEM model, in the same modeling process, we design feature levels to generate multiple data sets with different data volumes and different data distributions. Discuss the impact of data volume and data distribution on the Random Forest (RF) model.
摘要-----------------------------I
ABSTRACT --------------------------II
圖目錄----------------------------VI
表目錄----------------------------X
第1章 緒論-------------------------1
1.1 研究動機-----------------------1
1.2 文獻回顧-----------------------2
1.3 研究目標-----------------------4
第2章 基礎理論-----------------------6
2.1 錫球外型預測---------------------6
2.2 有限單元法基礎理論------------------8
2.2.1 線彈性有限單元理論----------------8
2.2.2 材料非線性理論------------------11
2.2.3 數值方法及收斂準則----------------13
2.3 硬化法則-----------------------14
2.3.1 等向硬化法則-------------------15
2.3.2 動態硬化法則-------------------15
2.4 CHABOCHE 模型--------------------16
2.5 封裝結構可靠度預測方法----------------18
2.5.1 Coffin-Manson 應變法---------------18
2.5.2 Darveaux 能量密度法---------------19
2.5.3 修正型能量密度法-----------------19
2.6 機器學習-----------------------20
2.6.1 資料分析---------------------21
2.6.2 過度適配(Overfitting) ---------------25
2.6.3 基礎演算法--------------------28
2.6.4 集成學習 (Ensemble Learning) -----------36
第3章 有限元素模型建立-------------------42
3.1 有限單元模型基本假設-----------------43
3.2 材料參數設定---------------------47
3.3 邊界條件設定---------------------49
3.4 溫度負載設定---------------------49
3.5 ANSYS® 模擬之驗證------------------50
第4章 結果與討論----------------------53
4.1 訓練及測試資料--------------------53
4.1.1 訓練資料時的注意事項---------------53
4.1.2 資料數據庫生成------------------54
4.1.3 測試資料---------------------67
4.2 隨機森林回歸模型-------------------68
4.2.1 隨機森林的資料預處理---------------68
4.2.2 隨機森林回歸模型參數最佳化------------72
4.2.3 資料品質---------------------79
4.2.4 不同訓練資料庫對隨機森林表現之影響--------84
4.3 隨機森林與人工類神經網路比較-------------88
4.4 集成學習演算法--------------------92
第5章 結論與未來工作--------------------104
參考文獻---------------------------106
[1] C. M. Liu, C. C. Lee, and K. N. Chiang, "Enhancing the reliability of wafer level packaging by using solder joints layout design," IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 4, pp. 877-885, 2006.
[2] L. F. Coffin Jr, "A study of the effects of cyclic thermal stresses on a ductile metal," Transactions of the American Society of Mechanical Engineers, New York, vol. 76, pp. 931-950, 1954.
[3] S. S. Manson, "Behavior of materials under conditions of thermal stress," National Advisory Committee for Aeronautics, vol. 2933, pp. 317-350, 1953.
[4] 吳凱強, "先進封裝錫球接點於不同溫度循環負載速率下之可靠度評估," 碩士論文, 國立清華大學動力機械工程學系, 2016.
[5] C. Y. Tsou, T. N. Chang, K. C. Wu, P. L. Wu, and K. N. Chiang, "Reliability assessment using modified energy based model for WLCSP solder joints," in 2017 International Conference on Electronics Packaging (ICEP), 19-22 April 2017 2017, pp. 7-15, doi: 10.23919/ICEP.2017.7939312.
[6] K. N. Chiang, H. C. Cheng, and W. H. Chen, "Large-Scaled 3-D area array electronic packaging analysis," Computer Modeling and Simulation in Engineering, vol. 4, No.1, pp. 4-11, 1999.
[7] R. J. Solomonoff, "An inductive inference machine," in IRE Convention Record, Section on Information Theory, 1957, vol. 2, pp. 56-62.
[8] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.
[9] 周佩勲, "以人工神經網路回歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[10] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[11] 李育承, "以循環神經網路迴歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[12] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
[13] P. J. Phillips, "Support vector machines applied to face recognition," in Advances in Neural Information Processing Systems, 1999, pp. 803-809.
[14] 沈奕廷, "以支援向量迴歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[15] N. S. Altman, "An introduction to kernel and nearest-neighbor nonparametric regression," The American Statistician, vol. 46, no. 3, pp. 175-185, 1992.
[16] M. Sarkar and T. Y. Leong, "Application of K-nearest neighbors algorithm on breast cancer diagnosis problem," in Proceedings of the AMIA Symposium, 2000: American Medical Informatics Association, p. 759.
[17] J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, no. 1, pp. 81-106, 1986.
[18] T. K. Ho, "Random decision forests," in Proceedings of 3rd international conference on document analysis and recognition, 1995, vol. 1: IEEE, pp. 278-282.
[19] P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, "Random forest classification of multisource remote sensing and geographic data," in IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, vol. 2: IEEE, pp. 1049-1052.
[20] 蕭翔云, "以隨機森林回歸模型評估晶圓級封裝之可靠度," 碩士論文, 國立清華大學動力機械工程學系, 2019.
[21] L. Breiman, "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
[22] Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting," in European conference on computational learning theory, 1995: Springer, pp. 23-37.
[23] J. H. Friedman, "Greedy function approximation: a gradient boosting machine," Annals of statistics, pp. 1189-1232, 2001.
[24] L. S. Goldmann, "Geometric optimization of controlled collapse interconnections," IBM Journal of Research and Development, vol. 13, no. 3, pp. 251-265, 1969.
[25] S. M. Heinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, "Prediction of solder joint geometries in array-type interconnects," American Society of Mechanical Engineers Journal of Electronic Packaging, vol. 118, pp. 114-121, 1996.
[26] K. A. Brakke, "Surface evolver manual," Mathematics Department, Susquehanna Univerisity, Selinsgrove, PA, vol. 17870, no. 2.24, p. 20, 1994.
[27] S. P. Timoshenko and J. Goodier, Theory of elasticity. Mcgraw-Hill College, 2011.
[28] K. J. Bathe, Finite element procedures in engineering analysis. Prentice-Hall, 1982.
[29] W. N. Findley, J. Lai, and K. Onaran, "Creep and relaxation of nonlinear viscoelastic materials (with an Introduction to Linear Viscoelasticity). ," Amesterdam: North-Holland publishing Company, 1976.
[30] R. Cook, D. Malkus, M. Plesha, and R. Witt, "Concepts and Applications of Finite Element Analysis, Wiley," 2002.
[31] J. Chakrabarty, Theory of plasticity. Elsevier, 2012.
[32] N. E. Dowling, Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, 2012.
[33] J. L. Chaboche, "Constitutive equations for cyclic plasticity and cyclic viscoplasticity," International journal of plasticity, vol. 5, no. 3, pp. 247-302, 1989.
[34] J. L. Chaboche, "On some modifications of kinematic hardening to improve the description of ratchetting effects," International journal of plasticity, vol. 7, no. 7, pp. 661-678, 1991.
[35] W. F. Chen and D. J. Han, Plasticity for structural engineers. J. Ross Publishing, 2007.
[36] R. Darveaux, K. Banerji, A. Mawer, G. Dody, and J. Lau, Reliability of plastic ball grid array assembly. New York: McGraw-Hill, 1995.
[37] R. Darveaux, "Effect of simulation methodology on solder joint crack growth correlation," in 2000 Proceedings. 50th Electronic components and technology conference (Cat. No. 00CH37070), 2000: IEEE, pp. 1048-1058.
[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
[39] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," Journal of machine learning research, vol. 12, no. 7, pp. 2,121-2,159, 2011.
[40] T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop, coursera: Neural networks for machine learning," University of Toronto, Technical Report, 2012.
[41] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 2014 International Conference on Learning Representations, 2014.
[42] P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Machine learning, vol. 63, no. 1, pp. 3-42, 2006.
[43] B. Rogers and C. Scanlan, "Improving WLCSP reliability through solder joint geometry optimization," in International Symposium on Microelectronics, 2013, vol. 2013, no. 1: International Microelectronics Assembly and Packaging Society, pp. 546-550.
[44] M. Motalab et al., "Thermal cycling reliability predictions for PBGA assemblies that include aging effects," in International Electronic Packaging Technical Conference and Exhibition, 2013, vol. 55751: American Society of Mechanical Engineers
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *