|
[1] G. E. Moore, ‘‘Cramming More Components onto Integrated Circuits,” Electronics, Vol. 38, pp. 114-117, 1965. [2] G. E. Moore, ‘‘Progress in Digital Integrated Electronics,” Electron Devices Meeting, Vol. 21, pp. 11-13, 1975. [3] B. D. Hatton, K. Landskron, W. J. Hunks, M.R. Bennett, D. Shukaris, D. D. Perovic, and G. A. Ozin, ‘‘Materials Chemistry for Low-K Materials,” Materials Today, Vol. 9, No. 3, pp. 22-31, 2006. [4] D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, ‘‘Low-k Dielectric Materials,” Materials Today, Vol. 7, No. 1, pp. 34–39, 2004. [5] J. Im, P. H. Townsend, J. Curphy, C. Karas, and E. O. Shaffer II, ‘‘Mechanical Properties of Cured SiLK Low-K Dielectric Films,” Metallization of Polymers, Vol. 2, pp. 53-60, 2002. [6] H. S. Lee, A. S. Lee, K. Y. Baek, and S. S. Hwang, ‘‘Low Dielectric Materials for Microelectronics,” Dielectric Material, IntechOpen, pp. 59-76, 2012. [7] K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma, and Z. S. Yanovitskaya, ‘‘Low Dielectric Constant Materials for Microelectronics,” Journal of Applied Physics, Vol. 93, No. 11, pp. 8793-8841, 2003. [8] D. Scansen, R. Haythornthwaite, and S. Brown, “Impact of Low-k Dielectrics on Microelectronics Reliability,” Canadian Conference on Electrical and Computer Engineering, IEEE, 2005. [9] T. L. Alford, J. Li, J. W. Mayer, and S. Wang, ‘‘Copper-Based Metallization and Interconnects for Ultra-Large-Scale Integration Applications,” Thin Solid Films, Vol. 262, No. 1-2, pp. 7-8, 1995. [10] M. Moussavi, ‘‘Recent Progress on Advanced Interconnects,” 30th European Solid-State Device Research Conference, IEEE, 2000. [11] M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho, and P. Ho, ‘‘Low Dielectric Constant Materials for ULSI Interconnects,” Annual Review of Materials Science, Vol. 30, No. 1, pp. 645-680, 2000. [12] T. Schiml, S. Biesemans, G. Brase, L. Burrell, A. Cowley, K. C. Chen, A. v. Ehrenwall, B. v. Ehrenwall, P. Felsner, J. Gill, F. Grellner, F. Guarin, L. K. Han, M. Hoinkis, E. Hsiung, E. Kaltalioglu, P. Kim, G. Knoblinger, S. Kulkami, A. Leslie, T. Mono, T. Schafbauer, U. Schroeder, K. Schruefer, T. Spooner, D. Warner, C. Wang, R. Wong, E. Demm, P. Leung, M. Stetter, C. Wann, J. K. Chen, and E. Crabbt, “A 0.13/spl mu/m CMOS platform with Cu/low-k interconnects for system on chip applications, “A 0.13 μm CMOS Platform with Cu/low-k Interconnects for System on Chip Applications,” 2001 Symposium on VLSI Technology. Digest of Technical Papers, IEEE, 2001. [13] W. Volksen, R. D. Miller, and G. Dubois, “Low Dielectric Constant Materials,” Chemical Reviews, Vol. 110, No. 1, pp. 56-110, 2010. [14] E. Sacher, “Metallization of Polymers 2,” Kluwer /Plenum Publishers, New York, 2002. [15] C. E. Mohler, B. G. Landes, G. F. Meyers, B. J. Kern, K. B. Ouellette, and S. Magonov, “Porosity Characterization of Porous SiLK™ Dielectric Films,” Proceedings of the AIP Conference, Vol. 683, No. 1, pp. 562-566, 2003. [16] J. Lin, and X. Wang, “New Type of Low-Dielectric Composites Based on o-cresol Novolac Epoxy Resin and Mesoporous Silicas: Fabrication and Performances,” Journal of Materials Science, Vol. 43, No. 13, pp. 4455-4465, 2008. [17] W. Volksen, K. Lionti, T. Magbitang, and G. Dubois, “Hybrid Low Dielectric Constant Thin Films for Microelectronics,” Scripta Materialia, Vol. 74, pp. 19-24, 2014. [18] R. J. O. M. Hoofman, G. J. A. M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M. R. Baklanov, Zs. TĘkei, and G. P. Beyer, “Challenges in the Implementation of Low-k Dielectrics in the Back-end of Line,” Microelectronic Engineering, Vol. 80, pp. 337-344, 2005. [19] K. Vanstreels, C. Wu, and M. R. Baklanov, “Mechanical Stability of Porous Low-k Dielectrics,” ECS Journal of Solid State Science and Technology, Vol. 4, No. 1, pp. N3058-N3064, 2015. [20] T. M. Moore, C. D. Hartfield, J. M. Anthony, B. T. Ahlburn, P. S. Ho, and M. R. Miller, “Mechanical Characterization of Low-k Dielectric Materials,” Proceedings of the AIP Conference, Vol. 550, No. 1, pp. 431-439, American Institute of Physics, 2001. [21] T. Kim, and R. H. Dauskardt, “Integration Challenges of Nanoporous Low Dielectric Constant Materials,” IEEE Transactions on Device and Materials Reliability, Vol. 9, No. 4, pp. 509-515, 2009. [22] M. Damayanti, Z. H. Gan, T. Sritharan, S. G. Mhaisalkar, A. Naman, J. Widodo, and H. S. Tan, “Effect of Porosity and Adhesion Promoter Layer on Adhesion Energy of Nanoporous Inorganic Low-k,” Thin Solid Films, Vol. 504, No. 1-2, pp.213-217, 2006. [23] A. V. Kearney, C. S. Litteken, C. E. Mohler, M. E. Mills, and R. H. Dauskardt, “Pore Size Scaling for Enhanced Fracture Resistance of Nanoporous Polymer Thin Films,” Acta Materialia, Vol. 56, No. 20, pp. 5946-5953, 2008. [24] K. Vanstreels, M. Pantouvaki, A. Ferchichi, P. Verdonck, T. Conard, Y. Ono, M. Matsutani, K. Nakatani, and M. R. Baklanov, “Effect of Bake/Cure Temperature of an Advanced Organic Ultra Low-k Material on the Interface Adhesion Strength to Metal Barriers,” Journal of Applied Physics, Vol. 109, No. 7, pp. 074301-1-074301-5, 2011. [25] X. Xiao, H. Qi, X. Sui, and T. Kikkawa, “Evaluation and Criterion Determination of the Low-k Thin Film Adhesion by the Surface Acoustic Waves with Cohesive Zone Model,” Applied Surface Science, Vol. 399, pp. 599-607, 2017. [26] A. A. Griffith, ‘‘VI. The Phenomena of Rupture and Flow in Solids,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 221, pp. 163-198, 1921. [27] G. R. Irwin, ‘‘Analysis of Stresses and Strains Near the End of a Crack Transversing a Plate,” Journal of Applied Mechanics, Transactions ASME, Vol. 24, pp. 361-364, 1957. [28] M. L. Williams, “The Stresses Around a Fault or Crack in Dissimilar Media,” Bulletin of the Seismological Society of America, Vol. 49, No. 2, pp. 199-204, 1959. [29] F. Erdogan, “Stress Distribution in a Nonhomogeneous Elastic Plane with Cracks,” Journal of Applied Mechanics, Vol. 30, pp. 232-236, 1963. [30] D. L. Clements, “A Crack Between Dissimilar Anisotropic Media,” International Journal of Engineering Science, Vol. 9, No. 2, pp.257-265, 1971. [31] J. R. Willis, “Fracture Mechanics of Interfacial Cracks,” Journal of the Mechanics and Physics of Solids, Vol. 19, No. 6, pp. 353-368, 1971. [32] T. C. T. Ting, “Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites,” International Journal of Solids and Structures, Vol. 22, No. 9, pp. 965-983, 1986. [33] Z. Suo, and J. W. Hutchinson, “Interface Crack Between Two Elastic Layers,” International Journal of Fracture, Vol. 43, No. 1, pp. 1-18, 1990. [34] Z. Suo, “Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 427, pp. 331-358, 1990. [35] J. W. Hutchinson, and Z. Suo, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, Vol. 29, pp. 63-191, 1991. [36] J. R. Rice, ‘‘A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” Journal of Applied Mechanics, Vol. 35, pp. 379-386, 1968. [37] S. Weichen, and Z. B. Kuang, “J-integral of Dissimilar Anisotropic Media,” International Journal of Fracture, Vol. 96, pp. 37-42, 1999. [38] S. G. Lekhnitskiĭ, “Theory of Elasticity of an Anisotropic Elastic Body,” Holden-Day Series in Mathematical Physics, 1963. [39] W. Y. Tian, and Y. H. Chen, “A Semi-Infinite Interface Crack Interacting with Subinterface Matrix Cracks in Dissimilar Anisotropic Materials. I. Fundamental Formulations and the J-Integral Analysis,” International Journal of Solids and Structures, Vol. 37, No. 52, pp. 7717-7730, 2000. [40] W. Y. Tian, and Y. H. Chen, “A Semi-Infinite Interface Crack Interacting with Subinterface Matrix Cracks in Dissimilar Anisotropic Materials. II. Numerical Results and Discussion,” International Journal of Solids and Structures, Vol. 37, No. 52, pp. 7731-7742, 2000. [41] W. Y. Tian, K. T. Chau, and Y. H. Chen, “J-integral Analysis of the Interaction Between an Interface Crack and Parallel Subinterface Cracks in Dissimilar Anisotropic Materials,” International Journal of Fracture, Vol. 111, No. 4, pp. 305-325, 2001. [42] J. H. Chang, and Y. J. Huang, “Surface Energy for Formation of Inclined and Interface Cracks Terminating at a Bimaterial Interface,” Journal of Engineering Mechanics, Vol. 143, No. 9, pp. 04017091, 2017. [43] H. Yamane, S. Arikawa, S. Yoneyama, Y. Watanabe, T. Asai, K. Shiokawa, and M. Yamashita, “J-integral Evaluation for an Interface Crack Using Digital Image Correlation,” Journal of the Japanese Society for Experimental Mechanics, Vol. 14, pp. s122-s127, 2014. [44] C. C. Lee, J. Huang, S. T. Chang, and W. C. Wang, “Adhesion Investigation of Low-k Films System Using 4-Point Bending Test,” Thin Solid Films, Vol. 517, No. 17, pp. 4875-4878, 2009. [45] C. C. Lee, C. C Lee, and Y. W. Yang, “Fracture Prediction of Dissimilar Thin Film Materials in Cu/low-k Packaging,” Journal of Materials Science: Materials in Electronics, Vol. 21, No. 8, pp. 787-795,2010. [46] G. Vukelić, and J. Brnić, “J-integral as Possible Criterion in Material Fracture Toughness Assessment,” Engineering Review, Vol. 31, No. 2, pp. 91-96, 2011. [47] P. Judt, and A. Ricoeur, “Crack Growth in Elastic Materials with Internal Boundaries and Interfaces,” Proceedings in Applied Mathematics and Mechacics, Vol. 12, No. 1, pp. 59-160, 2012. [48] S. A. K. Yossif, “Finite Element Computations of Complex Stress Intensity Factor Magnitude of Interfacial Crack in Bi-Material Composites,” 16th International Conference on Aerospace Sciences and Aviation Technology, Vol. 16. pp. 1-21, 2015. [49] C. C. Lee, Y. L. Shen, and Y. Kang, “Prediction of Interfacial Adhesion Strength of Nanoscale Al/Tin Films Passed Through Patterned BEOL Interconnects,” Materials Science in Semiconductor Processing, Vol. 39, pp. 1-5, 2015. [50] M. Logesh, S. Palani, S. Shanmugan, M. Selvam, and K. A. Harish, “Finite Element Modelling of Bi-Material Interface for Crack Growth Evaluation,” International Journal of Vehicle Structures & Systems, Vol. 9, No. 5, pp. 273-275, 2017. [51] B. Xu, X. Cai, W. Huang, and Z. Cheng, “Research of Underfill Delamination in Flip Chip by the J-integral Method,” Journal of Electronic Packaging, Vol. 126, No. 1, pp. 94-99, 2004. [52] C. C. Lee, C. C. Chiu, K. N. Chiang, T. C. Huang, C. H. Yao, C. C. Hsia, and M. S. Liang, “Stability of J-integral Calculation in the Crack Growth of Copper/Low-k Stacked Structures,” 10th Intersociety Conference on Thermal and Thermomechanical phenomena in Electronic Systems (ITHERM 2006), pp. 885-891, San Diego, CA, USA, May 30-Jun. 2, 2006. [53] Y. B. Wang, and K. T. Chau, ‘‘A New Boundary Element for Plane Elastic Problems Involving Cracks and Holes,” International Journal of Fracture, Vol. 87, No. 1, pp. 1-20, 1997. [54] S. G. Mogilevskaya, S. L. Crouch, R. Ballarini, and H. K. Stolarski, “Interaction Between a Crack and a Circular Inhomogeneity with Interface Stiffness and Tension,” International Journal of Fracture, Vol. 159, No. 2, pp. 191-207, 2009. [55] Z. Li, and Q. Chen, “Crack-inclusion Interaction for Mode I crack Analyzed by Eshelby Equivalent Inclusion Method,” International Journal of Fracture, Vol. 118, No.1, pp. 29-40, 2002. [56] J. D. Eshelby, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 241, No. 1226, pp. 376-396, 1957. [57] J. Carlsson, and P. Isaksson, “Crack Dynamics and Crack Tip Shielding in a Material Containing Pores Analysed by a Phase Field Method,” Engineering Fracture Mechanics, Vol. 206, pp. 526-540, 2019. [58] G. Bhardwaj, S. K. Singh, I. V. Singh, B. K. Mishra, and T. Rabczuk, “Fatigue Crack Growth Analysis of an Interfacial Crack in Heterogeneous Materials Using Homogenized XIGA,” Theoretical and Applied Fracture Mechanics, Vol. 85, pp. 294-319, 2016. [59] J. C. Wang, “Young's Modulus of Porous Materials,” Journal of Materials Science, Vol. 19, No. 3, pp. 801-808, 1984. [60] M. L. Dunn, and H. Ledbetter, and H. Ledbetter, “Poisson's Ratio of Porous and Microcracked Solids: Theory and Application to Oxide Superconductors,” Journal of Materials Research, Vol. 10, No. 11, pp. 2715-2722, 1995. [61] M. Arnold, A. R. Boccaccini, and G. Ondracek, “Prediction of the Poisson's Ratio of Porous Materials,” Journal of Materials Science, Vol. 31, No. 6, pp. 1643-1646, 1996. [62] J. Kováčik, “Correlation between Young's Modulus and Porosity in Porous Materials,” Journal of Materials Science Letters, Vol. 18, No. 13, pp. 1007-1010, 1999. [63] A. P. Roberts, and E. J. Garboczi, “Elastic Properties of Model Porous Ceramics,” Journal of the American Ceramic Society, Vol. 83, No. 12, pp. 3041-3048, 2000. [64] J. Kováčik, “Correlation between Poisson's Ratio and Porosity in Porous Materials,” Journal of Materials Science, Vol. 41, No. 4, pp. 1247-1249, 2006. [65] W. Pabst, and E. Gregorová, “Young's Modulus of Isotropic Porous Materials with Spheroidal Pores,” Journal of the European Ceramic Society, Vol. 34, No. 13, pp. 3195-3207, 2014. [66] R. Eckhardt, “Stan Ulam, John von Neumann, and the Monte Carlo Method,” Los Alamos Science, Vol. 15, pp.131-137, 1987. [67] N. Metropolis, and S. Ulam, ‘‘The Monte Carlo Method,’’ Journal of the American Statistical Association, Vol. 44, No. 247, pp. 335-341, 1949. [68] 徐鍾濟, ‘‘蒙特卡羅方法,’’ 上海科學技術出版社,1985. [69] A. Herbert, ‘‘Metropolis, Monte Carlo, and the MANIAC,’’ Los Alamos Science, Vol. 14, pp. 96-108, 1986. [70] G. Marsaglia, and A. Zaman, ‘‘A New Class of Random Number Generators,’’ The Annals of Applied Probability, Vol. 1, pp. 462-480, 1991. [71] G. Marsaglia, Florida State University Report: FSU-SCRI-87-SO, 1987. [72] G. Marsaglia, A. Zaman, and W. W. Tsang, “Toward a Universal Random Number Generator,” Statistics & Probability Letters, Vol. 9, No. 1, pp. 35-39, 1990. [73] J. Dundurs, “Edge-bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading,” Journal of Applied Mechanics, Vol. 36, No. 3, pp. 650-652, 1969. [74] J. R. Rice, Z. Suo, and J. S. Wang, “Mechanics and Thermodynamics of Brittle Interfacial Failure in Bimaterial Systems,” Metal-Ceramic Interfaces, Vol. 4, pp. 269-294, 1990. [75] R. Krueger, ‘‘Virtual Crack Closure Technique: History, Approach, and Applications,’’ Applied Mechanics Reviews, Vol. 57, No. 2, pp. 109-143, 2004. [76] I. S. Raju, “Calculation of Strain-Energy Release Rates with Higher Order and Singular Finite Elements,” Engineering Fracture Mechanics, Vol. 28, No. 3, pp. 251-274, 1987. [77] G. P. Cherepanov, ‘‘Crack Propagation in Continuous Media,’’ Journal of Applied Mathematics and Mechanics, Vol. 31, No. 3, pp. 476-488, 1967. [78] Montgomery, ‘‘實驗設計與分析,’’ 高立圖書, 2011. [79] 葉怡成, ‘‘實驗規劃法-製程與產品最佳化,’’ 五南圖書,2001. [80] ASTM International, ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International, 2012. [81] M. R. Miller, and P. S. Ho, “Interfacial Adhesion Study for Copper/Silk Interconnects in Flip-Chip Packages,” Proceedings of the 51st Electronic Components and Technology Conference, IEEE, 2001. [82] S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer II, and P. H. Townsend, “Development of a Low‐Dielectric‐Constant Polymer for the Fabrication of Integrated Circuit Interconnect,” Advanced Materials, Vol. 12, No. 23, pp. 1769-1778, 2000.
|