帳號:guest(18.222.7.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃凱辰
作者(外文):Huang, Kai-Chen.
論文名稱(中文):基於雙質量倒單擺動態之雙足機器人速度/力矩混成控制與步態規劃
論文名稱(外文):Hybrid Velocity/Torque Control and Walking Trajectory Planning of Biped Robot Based on Two-Mass Inverted Pendulum Dynamics
指導教授(中文):葉廷仁
指導教授(外文):Yeh, Ting-Jen
口試委員(中文):劉承賢
顏炳郎
口試委員(外文):Liu, Cheng-Hsien
Yen, Ping-Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033527
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:87
中文關鍵詞:雙足機器人雙質量倒單擺串聯彈性致動器力矩控制零力矩點行走軌跡規劃
外文關鍵詞:Biped Robotdouble masses inverted pendulumseries elastic actuatortorque controlZMPwalking trajectory planning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:376
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  本研究旨在透過階層化控制架構與步態規劃使雙足機器人可以達成穩定行走。透過階層化控制架構可將機器人控制分為和上層質心軌跡追蹤控制器與下層機器人全身控制器(Full-Body Controller),使用此控制架構的目的是為了能利用更具成本效益的硬體設計,機器人的髖、膝關節致動器皆使用速度伺服控制,踝關節則使用串聯彈性致動器做力矩伺服控制。具體地說,下層全身控制器利用速度伺服控制來穩定機器人姿態與質心高度,所以機器人動態才可以定錨為一簡單的雙質量倒單擺物理模板;上層控制器則利用腳踝力矩讓機器人質心可以追蹤基於此模板產生的參考軌跡。為了減少擺動腳動態對行走穩定的影響,我們使用雙質量倒單擺的另外一個形式-雙質量滑車模型來規劃擺動腳軌跡使得零力矩點(Zero Moment Point, ZMP)可以在整個行走週期都存在於穩定區域內。我們將此控制架構實現在實驗室所開發之雙足機器人原型機,並利用一系列實驗包含:雙足平衡、單腳站立、原地踏步和向前步行來驗證控制性能。
  This thesis aims to achieve stable walking of the bipedal robot by a hierarchical control structure and walking pattern planning. The hierarchical control structure is composed of a high-level Center of Mass (COM) trajectory tracking controller and a low-level full-body controller. Such a control structure is meant to exploit a cost-effective hardware design which uses velocity servos for knee and hip actuation but uses SEA (serial elastic actuator)-based torque servos for ankle actuation. Specifically, the low-level full-body controller applies the velocity servos to stabilize the robot posture and the COM height so that the robot dynamics can be anchored to a simplified template of a two-mass inverted pendulum. The high-level controller applies the torque servos to make the COM track a reference trajectory generated by the template. To reduce the influence of the swing leg motion on the stability, a cart-table model with an augmented mass, which is an alternative form of the two-mass inverted pendulum model, is used to plan a swing-leg trajectory so that zero moment point (ZMP) of the robot can remain within the stability region throughout the walking cycle. The controllers are implemented on a prototype bipedal robot developed in the laboratory and experiments including balancing, standing on one foot, stepping in place, and walking forward are conducted to validate the control performance.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
符號表 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 論文簡介 8
第二章 機器人硬體架構 9
2.1機構設計與硬體架構 9
2.2機器人座標系定義 12
2.3串聯彈性致動器 13
第三章 階層化控制架構 16
3.1 系統控制架構 16
3.2 機器人運動學模型(單支撐週期) 17
3.2.1 支撐腳之運動學模型 17
3.2.2 機器人全身姿態控制 20
3.2.3 模擬結果(支撐腳) 22
3.2.4 擺動腳之運動學模型 25
3.2.5 模擬結果(擺動腳) 27
3.3 機器人運動學模型(雙支撐週期) 29
3.3.1 雙支撐週期下的控制策略 29
3.4 系統動態模型 33
3.4.1系統動態模型推導 33
3.4.2雙質量倒單擺 35
3.4.3質心追蹤控制 37
第四章 質心軌跡規劃 40
4.1 零力矩點和穩定軌跡的定義 40
4.2 擺動腳軌跡設計(矢狀平面) 42
4.3 質心軌跡設計(矢狀平面) 45
4.4 擺動腳軌跡設計(額狀平面) 52
4.5 質心軌跡設計(額狀平面) 57
第五章 實驗結果與分析 63
5.1 全身控制器響應測試 63
5.2 雙足平衡控制 65
5.3 單足站立測試 68
5.4 原地踏步 71
5.5 直線行走 75
第六章 結論與未來工作 80
6.1 結論 80
6.2 未來工作 80

[1]FANUC. SCARA. Retrieved from:
https://www.fanuctaiwan.com.tw/product-fa.php?t=2
[2]KUKA Robotics. Retrieved from:
https://www.kuka.com/
[3]Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., ... & Isozumi, T. (2004, April). Humanoid robot HRP-2. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1083-1090). IEEE.
[4]Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008, September). Humanoid robot HRP-3. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2471-2478). IEEE.
[5]"HRP-4" Humanoid Platform for Robotics. Retrieved from:
https://www.youtube.com/watch?v=cfBpqsqnf80
[6]Park, I. W., Kim, J. Y., Lee, J., & Oh, J. H. (2005, December). Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO). In 5th IEEE-RAS International Conference on Humanoid Robots, 2005. (pp. 321-326). IEEE
[7]Boston Dynamics. More Parkour Atlas. Retrieved from:
https://www.youtube.com/watch?v=_sBBaNYex3E
[8]Li, Z., Tsagarakis, N. G., & Caldwell, D. G. (2013). Walking pattern generation for a humanoid robot with compliant joints. Autonomous Robots, 35(1), 1-14.
[9]Istituto Italiano di Tecnologia. Stabilization for the Full Body CoMan Humanoid Robot. Retrieved from:
https://www.youtube.com/watch?v=8xdrwE9mJoA
[10]Katz, B. G. (2018). A low cost modular actuator for dynamic robots (Doctoral dissertation, Massachusetts Institute of Technology).
[11]Mazumdar, A., Spencer, S. J., Hobart, C., Kuehl, M., Brunson, G., Coleman, N., & Buerger, S. P. (2016, October). Improving robotic actuator torque density and efficiency through enhanced heat transfer. In Dynamic Systems and Control Conference (Vol. 50701, p. V002T26A004). American Society of Mechanical Engineers.
[12]Pratt, G. A., & Williamson, M. M. (1995, August). Series elastic actuators. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Vol. 1, pp. 399-406). IEEE.
[13]Hobbelen, D., De Boer, T., & Wisse, M. (2008, September). System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2486-2491). IEEE.
[14]Tsagarakis, N. G., Li, Z., Saglia, J., & Caldwell, D. G. (2011, May). The design of the lower body of the compliant humanoid robot “cCub”. In 2011 IEEE International Conference on Robotics and Automation (pp. 2035-2040). IEEE.
[15]Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., ... & Diethelm, R. (2016, October). Anymal-a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 38-44). IEEE.
[16]Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2014). Introduction to humanoid robotics (Vol. 101, p. 2014). Springer Berlin Heidelberg.
[17]Kim, J. Y., Park, I. W., & Oh, J. H. (2007). Walking control algorithm of biped humanoid robot on uneven and inclined floor. Journal of Intelligent and Robotic Systems, 48(4), 457-484.
[18]Vukobratović, M., & Borovac, B. (2004). Zero-moment point—thirty five years of its life. International journal of humanoid robotics, 1(01), 157-173.
[19]Nagasaka, K. I., Inoue, H., & Inaba, M. (1999, October). Dynamic walking pattern generation for a humanoid robot based on optimal gradient method. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028) (Vol. 6, pp. 908-913). IEEE.
[20]Kajita, S., Morisawa, M., Miura, K., Nakaoka, S. I., Harada, K., Kaneko, K., ... & Yokoi, K. (2010, October). Biped walking stabilization based on linear inverted pendulum tracking. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4489-4496). IEEE.
[21]Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., & Hirukawa, H. (2001, October). The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180) (Vol. 1, pp. 239-246). IEEE.
[22]Park, J. H., & Kim, K. D. (1998, May). Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146) (Vol. 4, pp. 3528-3533). IEEE.
[23]Albert, A., & Gerth, W. (2003). Analytic path planning algorithms for bipedal robots without a trunk. Journal of Intelligent and Robotic Systems, 36(2), 109-127.
[24]Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003, September). Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422) (Vol. 2, pp. 1620-1626). IEEE.
[25]Zafar, M., Hutchinson, S., & Theodorou, E. A. (2019, May). Hierarchical optimization for whole-body control of wheeled inverted pendulum humanoids. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 7535-7542). IEEE.
[26]Duchaine, V., & Gosselin, C. M. (2007, March). General model of human-robot cooperation using a novel velocity based variable impedance control. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07) (pp. 446-451). IEEE.
[27]Sugihara, T., Nakamura, Y., & Inoue, H. (2002, May). Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 2, pp. 1404-1409). IEEE.
[28]Kurt, O., & Erbatur, K. (2006, March). Biped robot reference generation with natural ZMP trajectories. In 9th IEEE International Workshop on Advanced Motion Control, 2006. (pp. 403-410). IEEE.
[29]鄭逸倫(2018)。整合力矩控制與重心估測並利用增強式學習提升雙足機器人行走穩定性。國立清華大學動力機械工程學系碩士論文,新竹市。 取自https://hdl.handle.net/11296/7yfthz

[30]蔡禾庭(2017)。整合重心估測與力矩控制於提昇雙足機器人行走穩定性。國立清華大學動力機械工程學系碩士論文,新竹市。 取自https://hdl.handle.net/11296/vmjprx
[31]STMicroelectronics. STM32F446RE. Retrieved from:
https://www.st.com/en/evaluation-tools/nucleo-f446re.html
[32]ROBOTIS. Dynamixel MX-106T. Retrieved from:
https://emanual.robotis.com/docs/en/dxl/mx/mx-106-2/
[33]Adafruit Industries. LSM9DS0. Retrieved from:
https://cdn-shop.adafruit.com/datasheets/LSM9DS0.pdf
[34]Huang, C. F., Dai, B. H., & Yeh, T. J. (2018). Determination of Motor Torque for Power-Assist Electric Bicycles Using Observer-Based Sensor Fusion. Journal of Dynamic Systems, Measurement, and Control, 140(7), 071019.
[35]ams. AS5048 High Resolution Position Sensor. Retrieved from:
https://ams.com/as0548b
[36]Chen, C. P., Chen, J. Y., Huang, C. K., Lu, J. C., & Lin, P. C. (2015). Sensor data fusion for body state estimation in a bipedal robot and its feedback control application for stable walking. Sensors, 15(3), 4925-4946.
[37]Wawrzyński, P., Możaryn, J., & Klimaszewski, J. (2013, August). Robust velocity estimation for legged robot using on-board sensors data fusion. In 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR) (pp. 717-722). IEEE.
[38]MathWorks. Simulink Simscape. Retrieved from:
https://www.mathworks.com/products/simscape.html
[39]Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media.
[40]Zelenak, A., Peterson, C., Thompson, J., & Pryor, M. (2015, October). The advantages of velocity control for reactive robot motion. In Dynamic Systems and Control Conference (Vol. 57267, p. V003T43A003). American Society of Mechanical Engineers.
[41]Dadashzadeh, B., Vejdani, H. R., & Hurst, J. (2014, September). From template to anchor: A novel control strategy for spring-mass running of bipedal robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2566-2571). IEEE.
[42]Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: an integrative view. science, 288(5463), 100-106.
[43]Arbulú, M., Kaynov, D., & Balaguer, C. (2010). The Rh-1 full-size humanoid robot: Control system design and Walking pattern generation. Climbing and Walking Robots, 446-508.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *