|
[1]FANUC. SCARA. Retrieved from: https://www.fanuctaiwan.com.tw/product-fa.php?t=2 [2]KUKA Robotics. Retrieved from: https://www.kuka.com/ [3]Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., ... & Isozumi, T. (2004, April). Humanoid robot HRP-2. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 2, pp. 1083-1090). IEEE. [4]Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008, September). Humanoid robot HRP-3. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2471-2478). IEEE. [5]"HRP-4" Humanoid Platform for Robotics. Retrieved from: https://www.youtube.com/watch?v=cfBpqsqnf80 [6]Park, I. W., Kim, J. Y., Lee, J., & Oh, J. H. (2005, December). Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO). In 5th IEEE-RAS International Conference on Humanoid Robots, 2005. (pp. 321-326). IEEE [7]Boston Dynamics. More Parkour Atlas. Retrieved from: https://www.youtube.com/watch?v=_sBBaNYex3E [8]Li, Z., Tsagarakis, N. G., & Caldwell, D. G. (2013). Walking pattern generation for a humanoid robot with compliant joints. Autonomous Robots, 35(1), 1-14. [9]Istituto Italiano di Tecnologia. Stabilization for the Full Body CoMan Humanoid Robot. Retrieved from: https://www.youtube.com/watch?v=8xdrwE9mJoA [10]Katz, B. G. (2018). A low cost modular actuator for dynamic robots (Doctoral dissertation, Massachusetts Institute of Technology). [11]Mazumdar, A., Spencer, S. J., Hobart, C., Kuehl, M., Brunson, G., Coleman, N., & Buerger, S. P. (2016, October). Improving robotic actuator torque density and efficiency through enhanced heat transfer. In Dynamic Systems and Control Conference (Vol. 50701, p. V002T26A004). American Society of Mechanical Engineers. [12]Pratt, G. A., & Williamson, M. M. (1995, August). Series elastic actuators. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Vol. 1, pp. 399-406). IEEE. [13]Hobbelen, D., De Boer, T., & Wisse, M. (2008, September). System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2486-2491). IEEE. [14]Tsagarakis, N. G., Li, Z., Saglia, J., & Caldwell, D. G. (2011, May). The design of the lower body of the compliant humanoid robot “cCub”. In 2011 IEEE International Conference on Robotics and Automation (pp. 2035-2040). IEEE. [15]Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., ... & Diethelm, R. (2016, October). Anymal-a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 38-44). IEEE. [16]Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2014). Introduction to humanoid robotics (Vol. 101, p. 2014). Springer Berlin Heidelberg. [17]Kim, J. Y., Park, I. W., & Oh, J. H. (2007). Walking control algorithm of biped humanoid robot on uneven and inclined floor. Journal of Intelligent and Robotic Systems, 48(4), 457-484. [18]Vukobratović, M., & Borovac, B. (2004). Zero-moment point—thirty five years of its life. International journal of humanoid robotics, 1(01), 157-173. [19]Nagasaka, K. I., Inoue, H., & Inaba, M. (1999, October). Dynamic walking pattern generation for a humanoid robot based on optimal gradient method. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028) (Vol. 6, pp. 908-913). IEEE. [20]Kajita, S., Morisawa, M., Miura, K., Nakaoka, S. I., Harada, K., Kaneko, K., ... & Yokoi, K. (2010, October). Biped walking stabilization based on linear inverted pendulum tracking. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4489-4496). IEEE. [21]Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., & Hirukawa, H. (2001, October). The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180) (Vol. 1, pp. 239-246). IEEE. [22]Park, J. H., & Kim, K. D. (1998, May). Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146) (Vol. 4, pp. 3528-3533). IEEE. [23]Albert, A., & Gerth, W. (2003). Analytic path planning algorithms for bipedal robots without a trunk. Journal of Intelligent and Robotic Systems, 36(2), 109-127. [24]Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003, September). Biped walking pattern generation by using preview control of zero-moment point. In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422) (Vol. 2, pp. 1620-1626). IEEE. [25]Zafar, M., Hutchinson, S., & Theodorou, E. A. (2019, May). Hierarchical optimization for whole-body control of wheeled inverted pendulum humanoids. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 7535-7542). IEEE. [26]Duchaine, V., & Gosselin, C. M. (2007, March). General model of human-robot cooperation using a novel velocity based variable impedance control. In Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07) (pp. 446-451). IEEE. [27]Sugihara, T., Nakamura, Y., & Inoue, H. (2002, May). Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 2, pp. 1404-1409). IEEE. [28]Kurt, O., & Erbatur, K. (2006, March). Biped robot reference generation with natural ZMP trajectories. In 9th IEEE International Workshop on Advanced Motion Control, 2006. (pp. 403-410). IEEE. [29]鄭逸倫(2018)。整合力矩控制與重心估測並利用增強式學習提升雙足機器人行走穩定性。國立清華大學動力機械工程學系碩士論文,新竹市。 取自https://hdl.handle.net/11296/7yfthz
[30]蔡禾庭(2017)。整合重心估測與力矩控制於提昇雙足機器人行走穩定性。國立清華大學動力機械工程學系碩士論文,新竹市。 取自https://hdl.handle.net/11296/vmjprx [31]STMicroelectronics. STM32F446RE. Retrieved from: https://www.st.com/en/evaluation-tools/nucleo-f446re.html [32]ROBOTIS. Dynamixel MX-106T. Retrieved from: https://emanual.robotis.com/docs/en/dxl/mx/mx-106-2/ [33]Adafruit Industries. LSM9DS0. Retrieved from: https://cdn-shop.adafruit.com/datasheets/LSM9DS0.pdf [34]Huang, C. F., Dai, B. H., & Yeh, T. J. (2018). Determination of Motor Torque for Power-Assist Electric Bicycles Using Observer-Based Sensor Fusion. Journal of Dynamic Systems, Measurement, and Control, 140(7), 071019. [35]ams. AS5048 High Resolution Position Sensor. Retrieved from: https://ams.com/as0548b [36]Chen, C. P., Chen, J. Y., Huang, C. K., Lu, J. C., & Lin, P. C. (2015). Sensor data fusion for body state estimation in a bipedal robot and its feedback control application for stable walking. Sensors, 15(3), 4925-4946. [37]Wawrzyński, P., Możaryn, J., & Klimaszewski, J. (2013, August). Robust velocity estimation for legged robot using on-board sensors data fusion. In 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR) (pp. 717-722). IEEE. [38]MathWorks. Simulink Simscape. Retrieved from: https://www.mathworks.com/products/simscape.html [39]Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media. [40]Zelenak, A., Peterson, C., Thompson, J., & Pryor, M. (2015, October). The advantages of velocity control for reactive robot motion. In Dynamic Systems and Control Conference (Vol. 57267, p. V003T43A003). American Society of Mechanical Engineers. [41]Dadashzadeh, B., Vejdani, H. R., & Hurst, J. (2014, September). From template to anchor: A novel control strategy for spring-mass running of bipedal robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2566-2571). IEEE. [42]Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: an integrative view. science, 288(5463), 100-106. [43]Arbulú, M., Kaynov, D., & Balaguer, C. (2010). The Rh-1 full-size humanoid robot: Control system design and Walking pattern generation. Climbing and Walking Robots, 446-508.
|