帳號:guest(3.15.208.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李元鈞
作者(外文):Li, Yuan-Chun
論文名稱(中文):超薄均溫板蒸汽流道深度研究與性能測試
論文名稱(外文):Experimental Study on the Effects of Vapor Duct Depth in Ultra-thin Vapor Chambers
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):許文震
楊愷祥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033524
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:54
中文關鍵詞:超薄均溫板蒸汽流道深度毛細聚水熱阻最大熱傳量
外文關鍵詞:vapor chambercapillary blockingvapor duct depththermal resistancemaximum heat transfer rate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:688
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究製作面積為140 mm × 80 mm,厚度分別為0.38 mm、0.48 mm與0.58 mm之銅/水超薄均溫板,其蒸汽流道深度分別為0.15 mm、0.25 mm與0.35 mm。針對此三種蒸汽流道深度分別進行低功率自然對流與高功率強制對流實驗,以觀察不同的蒸汽流道深度對於熱性能與冷凝區聚水現象之影響。實驗結果顯示,蒸汽流道深度僅0.15 mm時,冷凝區聚水現象容易發生,但可使填充量適當低於飽和值(毛細孔隙體積)以避免聚水發生並維持一定散熱性能。蒸汽流道深度在低功率(<15 W)自然對流冷卻下對熱阻的影響有限,但在高功率強制對流冷卻下則有影響。在適當填充量下,厚度0.58 mm之均溫板在乾化發生前的最大熱傳量為150.4 W,最佳均溫板熱阻為0.025 K/W;厚度0.48 mm之均溫板的最大熱傳量為57.6 W,最佳熱阻則為0.033 K/W。當均溫板厚度為0.38 mm (蒸汽流道深度為0.15 mm)、填充率為0.66時,在15 W自然對流冷卻下,均溫板熱阻為0.33 K/W,與另兩厚度之均溫板的熱阻值相近,但在強制對流冷卻下,厚度0.38 mm之均溫板因填充量過低,在20 W以上即產生乾化。
In this study, ultra-thin vapor chambers (VCs) with thickness of 0.38 mm, 0.48 mm, and 0.58 mm, with the vapor duct thickness of 0.15 mm, 0.25 mm, and 0.35 mm, respectively, were fabricated and tested natural-convection air cooling and forced-convection water cooling. The aims are to investigate the effect of vapor duct thickness on the thermal performance and the capillary blocking. Capillary blocking tends to occur when the vapor duct thickness is as thin as 0.15 mm. But suitably reducing the filling ratio below the saturate value (the pore volume of the wick) may avoid capillary blocking and maintain the function of 0.38 mm-thick VCs up to a certain limit. The vapor duct thickness does not affect the vapor chamber thermal resistance under low-heat-load natural-convection cooling (<15 W), but becomes influential to the thermal performance under high-load forced-convection cooling. With near saturate fillings, the maximum heat transfer rate and the minimum thermal resistance for the 0.58 mm VCs are 150.4 W and 0.025 K/W, respectively. For the 0.48 mm-thick VCs, they are 57.6 W and 0.033 K/W, respectively. For the 0.38 mm-thick VCs (vapor duct thickness of 0.15 mm) under a filling ratio of 0.66, the thermal resistance is 0.33 K/W under 15 W natural-convection cooling, approximately equal to those of the other two thicker VCs under the same cooling condition. When water cooled, dryout occurs above 20 W for the 0.38 mm-thick VC due to the low water filling.
摘要 .......................................I
Abstract...................................II
致謝.......................................III
圖表目錄 ...................................VI
符號表......................................IX
第一章 緒論.................................1
1.1研究背景...............................1
1.2文獻回顧...............................2
1.2.1 熱管與超薄熱管.....................2
1.2.2 超薄均溫板........................8
1.2.3 冷凝區末端聚水....................14
1.3研究動機與目的........................16
第二章 實驗設備與方法.......................18
2.1均溫板製作............................18
2.1.1均溫板設計.........................18
2.1.2製作設備...........................19
2.1.3製作步驟...........................21
2.2 自然對流實驗.........................25
2.2.1實驗設備與架構.....................25
2.2.2實驗步驟..........................27
2.2.3實驗參數..........................28
2.2.4實驗誤差分析......................29
2.3 強制對流實驗........................31
2.3.1實驗設備與架構....................31
2.3.2實驗步驟.........................32
2.3.3實驗參數.........................33
2.3.4實驗誤差分析.....................34
第三章 實驗結果與討論.....................36
3.1 自然對流實驗.......................36
3.1.1冷凝區邊緣聚水現象................36
3.1.2蒸汽流道深度對均溫性與熱阻之影響...39
3.2 強制對流實驗.......................42
3.2.1蒸汽流道深度對性能之影響..........42
3.2.2填充量對性能之影響................48
3.2.3與現有文獻結果之比較..............49
第四章 結論..............................50
參考文獻.................................52
[1]K.-T. Lin, S.-C. Wong, “Performance degradation of flattened heat pipes,” Applied Thermal Engineering 50 (2013) 46-54.
[2]H. Aoki, M. Ikeda, Y. Kimura, “Ultra thin heat pipe and its application,” Frontiers in Heat Pipes 2 (4) (2011) 043003.
[3]M. S. Ahamed, Y. Saito, M. Takahashi, “Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices,” Heat Mass Transfer 53 (2017) 3241-3247.
[4]Y. Li, J.-B. He, H.-F. He, Y.-Y. Yan, Z.-X. Zeng, Bo Li, “Investigation of ultra-thin flattened heat pipes with sintered wick structure,” Applied Thermal Engineering 86 (2015) 106-118.
[5]C. Ding, G. Soni, P. Bozorgi, B.D. Piorek, C.D. Meinhart, N.C. MacDonald, “A flat heat pipe architecture based on nanostructured titania,” Journal of Micro-electromechanical System 19 (4) (2010) 878–884.
[6]R. Lewis, S. Xu, L.-A. Liew, C. Coolidge, R. Yang, Y.-C. Lee, “Thin flexible thermal ground planes: fabrication and scaling characterization,” Journal of Micro- electromechanical System 24 (6) (2015) 2040–2048.
[7]S. Xu, R. Lewis, L.-A.Liew, Y.-C. Lee, R. Yang, “Development of ultra-thin thermal ground planes by using stainless-steel mesh as wicking structure,” Journal of Micro- electromechanical System 25 (5) (2016) 842–844.
[8]L.-A. Liew, C.-Y. Lin, R. Lewis, S. Song, Q. Li, R. Yang, Y.-C. Lee, “Flexible thermal ground planes fabricated with printed circuit board technology,” Journal of Electronic Packaging 139 (1) (2016) 011003.
[9]M. Mochizuki, T. Nguyen, “Review of thin vapor chamber design, performance and lifetime reliability,” Frontiers in Heat and Mass Transfer, 13 (12) (2019).
[10]Y. Yadavalli, J.A.Weibel, S.V. Garimella, Flat heat pipe performance thresholds at ultra-thin form factors, 14th IEEE ITHERM Conference, 2014.
[11]R. Ranjan, J.Y. Murthy, S.V. Garimella, D.H. Altman, M.T. North, Modeling and design optimization of ultrathin vapor chambers for high heat flux applications, IEEE Transactions on Components Packaging Manufacturing Technology,2 (9) (2012) 1465-1479.
[12]G. Patankar, J.A. Weibel, S.V. Garimella, “Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices,” International Journal of Heat and Mass Transfer, 101 (2016) 927–936.
[13]G. Patankar, J.A. Weibel, S.V. Garimella, “Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers,” International Journal of Heat and Mass Transfer, 106 (2017) 648–654.
[14]K.-C. Hsieh, S.-C. Wong, “Performance tests on 0.4mm-thick novel ultra-thin vapor chambers,” Joint 19th International Heat Pipe Conference & 13th International Heat Pipe Symposium, June 10-14, 2018, Pisa, Italy.
[15]S.-C. Wong, J.-D. Wu, W.-L. Han, “A novel vapor chamber and its performance,” International Journal of Heat and Mass Transfer 53 (2010) 2377–2384.
[16]A. Nematollahisarvestani, R. Lewis, Y.-C. Lee, “Design of thermal ground planes for cooling of foldable smartphones,” Journal of Electronic Packaging, 141 (2) (2019) 021004.
[17]Z.-S. Chen, Y. Li, W.-J. Zhou, L.-Q. Deng, Y.-Y. Yan, “Design, fabrication and thermal performance of a novel ultra-thin vapour,” Energy Conservation and Management, 187 (2019) 221-231.
[18]E. Begg, D. Khrustalev, A. Faghri, “Complete condensation of forced convection two-phase flow in a miniature tube,” Journal of Heat Transfer 121 (1999) 904-915.
[19]Y. Zhang, A. Faghri, M. Shafii, “Capillary blocking in forced convective condensation in horizontal miniature channels,” Journal of Heat Transfer 123 (2001) 501-511.
[20]S.-C. Wong, S.-F. Huang, K.-C. Hsieh, “Performance tests on a novel vapor chamber,” Applied Thermal Engineering 31 (2011) 1757-1762.
[21]A. Faghri, Heat Pipe Science and Technology, Second Edition, 2016
[22]S.-C. Wong, Y.-C. Lin, J.-H. Liou, “Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone,” International Journal of Thermal Sciences 52 (2012) 154-160.
[23]S.-C. Wong, H.-H. Tseng, S.-H. Chen, “Visualization experiments on the condensation process in heat pipe wicks,” International Journal of Heat and Mass Transfer 123 (2014) 625-632.
[24]S.-C. Wong, W.-S. Liao, “Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles,” International Journal of Heat and Mass Transfer 123 (2018) 839-847.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *