帳號:guest(18.116.86.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃偉禎
作者(外文):Huang, Wei-Chen
論文名稱(中文):應用多圖形顯示卡叢集與晶格波茲曼法模擬液滴碰撞之研究
論文名稱(外文):Numerical simulation of droplet collision with two-phase lattice Boltzmann method on multi-GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):牛仰堯
陳慶耀
口試委員(外文):Niu, Yang-Yao
Chen, Ching-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033522
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:39
中文關鍵詞:液滴碰撞晶格波茲曼法Cahn-Hilliard 方程圖形顯示卡
外文關鍵詞:droplet collisionlattice Boltzmann methodCahn-Hilliard equationGPU
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用兩晶格波茲曼方法提供了三維液滴碰撞的數值研究。密度和粘度比設置為100和10。採用的邊界條件為周期性邊界。為驗證數值模擬結果,結果與實驗研究文獻進行相比較。由於求解Cahn-Hilliard方程時,會造成液滴非物理性的收縮結果,此現象可透過降低遷移率來減緩。 數值模擬結果還討論了液滴碰撞系統中的能量演化。為了加速計算,該程序在多GPU群集上實現。
The two-phase field lattice Boltzmann method provided the numerical investigation of three-dimensional droplet collision in this study. The density and viscosity ratio is set as 100 and 10. The periodic boundary is adopted. The validation test of the simulation method is compared with experimental research. Because of the droplet's unphysical shrinkage when solving the Cahn-Hilliard equation, the mobility effect is also discussed. The simulation results are also discussed the energy evolution in droplet collision system. For accelerating the computation, the program is implemented on the multi-GPU cluster.
摘要
目次
第一章---------------2
第二章---------------9
第三章---------------23
第四章---------------34
[1] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-stokes equation. Physical Review Letters, 56:1505-1508, 1986.
[2] S. Wolfram. Cellular automaton fluids 1: Basic theory. Journal of Statistical Physics, 45:471-526, 1986.
[3] S. Succi, E. Foti, and F. Higuera. Three-dimensional flows in complex geometries with the lattice boltzmann method. Europhysics Letters, 10(5):433, 1989.
[4] F. J. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations. Europhysics Letters, 9(7):663, 1989.
[5] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3):511, 1954.
[6] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31:567-603, 1999.
[7] S. Osher and R. P.Fedkiw. Level set methods: An overview and some recent results. Journal of Computational Physics, 169(2):463-502, 2001.
[8] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Di use-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30:139-165, 1998.
[9] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Boundary integral methods for multicomponent fluids and multiphase materials. Journal of Computational Physics, 169(2):302{362, 2001.
[10] G. M. Faeth. Current status of droplet and liquid combustion. Progress in Energy and Combustion Science, 3(4):191-224, 1977.
[11] J. R. Adam, N. R. Lindblad, and C. D. Hendricks. The collision, coalescence, and disruption of water droplets. Journal of Applied Physics, 39(11):5173-5180, 1968.
[12] N. Ashgriz and J. Y. Poo. Coalescence and separation in binary collision of liquid drops. Journal of Fluid Mechanics, 221:183-204, 1990.
[13] Y. J. Jiang, A. Umemura, and C. K. Law. An experimental investigation on the collision behaviour of hydrocarbon droplets. Journal of Fluid Mechanics, 234:171-190, 1992.
[14] M. R. H. Nobari and Gretar Tryggvason. Numerical simulations of three-dimensional drop collisions. AIAA Journal, 34(4), 1996.
[15] M. R. Nobari, Y.-J. Jan, and G. Tryggvason. Head-on collision of drops-a numerical investigation. Physics of Fluids, 8(1), 1996.
[16] N. Nikolopoulos, A. Theodorakakos, and G. Bergeles. O -centre binary collision of droplets: A numerical investigation. International Journal of Heat and Mass Transfer, 52:4160-4174, 2009.
[17] N. Nikolopoulos, K.-S. Nikas, and G. Bergeles. A numerical investigation of central binary collision of droplets. Computers & Fluids, 38:1191-1202, 2009.
[18] K. N. Premnath and J. Abraham. Simulations of binary drop collisions with a multiple-relaxation-time lattice-boltzmann model. Physics of Fluids, 17, 2005.
[19] X. He, S. Chen, and R. Zhang. A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability1. Journal of Computational Physics, 152:642-663, 1999.
[20] T. Inamuro, S. Tajima, and F. Ogino. Lattice boltzmann simulation of droplet collision dynamics. International Journal of Heat and Mass Transfer, 47:4649-4657, 2004.
[21] A. M. Moqaddam, S. S. Chikatamarla, and I. V. Karlin. Simulation of binary droplet collisions with the entropic lattice boltzmann method. Physics of Fluids, 28:022106, 2016.
[22] D. Lycett-Brown, K. H. Luo, R. Liu, and P. Lv. Binary droplet collision simulations by a multiphase cascaded lattice boltzmann method. Physics of Fluids, 26:023303, 2014.
[23] K. Sun, M. Jia, and T. Wang. Numerical investigation of head-on droplet collision with lattice boltzmann method. International Journal of Heat and Mass Transfer, 58:260-275, 2013.
[24] T. Lee and L. Liu. Lattice boltzmann simulations of micron-scale drop impact on dry surfaces. Journal of Computational Physics, 229(20):8045-8063, 2010.
[25] J. Tolke and M. Krafczyk. Teraflop computing on a desktop pc with gpus for 3d cfd. International Journal of Computational Fluid Dynamics, 22(7):443-456, 2008.
[26] J. Tolke. Implementation of a lattice boltzmann kernel using the compute uni ed device architecture developed by nvidia. Comput Visual Sci, 13:29-39, 2010.
[27] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J.Roux. Scalable lattice boltzmann solvers for cuda gpu clusters. Parallel Computing, 39:259-270, 2013.
[28] X. Wang and T. Aoki. Multi-gpu performance of incompressible flow computation by lattice boltzmann method on gpu cluster. Parallel Computing, 37:521-535, 2011.
[29] Tzu-Chun Huang. Lattice boltzmann simulations of two-phase flow at high density ratio on multi-gpu cluster. Master's thesis, National Tsing Hua University, July 2016.
[30] C. Gotaas, P. Havelka, H. A. Jakobsen, and H. F. Svendsen. Eff ect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison. Physics of Fluids, 19:102106, 2007.
[31] J. Qian and C. K. Law. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331(1):59-80, 1997.
[32] Chien-Yi Chang. Lattice boltzmann simulations of bubbles rising dynamics on multi-gpu cluster. Master's thesis, National Tsing Hua University, July 2017.
[33] Ching-Wen Yang. Numerical simulation of a single droplet impact onto a liquid film using lattice boltzmann method on multi-gpu cluster. Master's thesis, National Tsing Hua University, July 2018.
[34] T.Lee. Eff ects of incompressibility on the elimination of parasitic currents in the lattice boltzmann equation method for binary fluids. Computers & Mathematics with Applications, 58(5):987-994, 2009.
[35] T. C. Huang, C. Y. Chang, and C. A. Lin. Simulation of droplet dynamic with high density ratio two-phase lattice boltzmann model on multi-gpu cluster. Computers & Fluids, 173:80-87, 2018.
[36] T. I. Gombosi. Gas kinetic theory. Cambridge University Press, 1994.
[37] S. Harris. An introduction to the theory of the Boltzmann equation. Holt, Rinehart and Winston, New York, 1971.
[38] X. He and L. S. Luo. Theory of the lattice boltzmann method: From the boltzmann equation to the lattice boltzmann equation. Physical Review E, 56:6811-6817, 1997.
[39] T. Lee and P. F. Fischer. Eliminating parasitic currents in the lattice boltzmann equation method for nonideal gases. Physical Review E, 74:046709, 2006.
[20] Wang Xian and Aoki Takayuki. Multi-gpu performance of incompressible flow computation by lattice boltzmann method on gpu cluster. Parallel Computing, 37:521-535, 2011.
[21] J. Qian and C. K. Law. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 331(1):59-80, 1997.
[40] J.-P. Estrade, H. Carentz, G. Lavergne, and Y. Biscos. Experimental investigation of dynamic binary collision of ethanol droplets a model for droplet coalescence and bouncing. International Journal of Heat and Fluid Flow, 20(5):486-491, 1999.
[41] P. Yue, C. Zhou, and J. J. Feng. Spontaneous shrinkage of drops and mass conservation in phase-fi eld simulations. Journal of Computational Physics, 223:1-9, 2007.
[42] X. Chen and Vigor Yang. Direct numerical simulation of multiscale flow physics of binary droplet collision. Physics of Fluids, 32:062103, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *