帳號:guest(3.137.171.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱子軒
作者(外文):Chiu, Tzu-Hsuan
論文名稱(中文):應用圖形顯示卡叢集於不可壓縮複雜流場模擬演算法之開發
論文名稱(外文):Development of numerical algorithms for incompressible complex flow on GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳慶耀
陳明志
劉通敏
黃美嬌
周逸儒
張敬
口試委員(外文):Chen, Ching-Yao
Chern, Ming-Jyh
Liou, Tong-Miin
Huang, Mei-Jiau
Chou, Yi-Ju
Chang, Ching
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033517
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:117
中文關鍵詞:計算流體力學顯式方法黏彈性流體自然對流兩相流圖形顯示卡
外文關鍵詞:Computational Fluid DynamicsExplicit MethodFENE-P FluidNatural ConvectionTwo-phase FlowGPU
相關次數:
  • 推薦推薦:0
  • 點閱點閱:247
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文主要使用不同種類顯式數值演算法在圖形顯示卡上進行複雜流場的模擬研究,其中包含DTAC、PM、LBM、GPE、EDAC等方法。這項研究主要有四個目的;第一個是將PM方法從CPU平台轉移至GPU平台進行模擬,本文使用多重網格方法並且搭配粗網格聚合之技術來進行收斂加速。從模擬結果可以得到最佳的多重網格為採用到8^3的粗網格以及最佳粗網格聚合的網格數為32^3,並且搭配粗網格聚合方法可以得到2.3至2.6倍的加速。

第二個目標為探討各顯式數值方法之計算效率,藉由模擬紊流腔體拉板流場與黏彈流體自然對流,比較各顯式方法對於不同剛性流場的優劣。結果表明,在Nvidia Tesla V100顯示卡上,我們所使用的PM演算法搭配多重網格方法比原先在CPU平台的PM方法加速了1000倍,也比弱可壓縮方法(GPE)加速了3倍。相反的,當我們針對剛性較大的黏彈流體自然對流進行模擬,發現GPE方法因為避免求解泊松方程式以及有著較好的平行效率,得到了比PM方法快2.2倍的加速效果。

第三個目的為使用GPE方法來模擬FENE-P流體的自然對流流場。結果表明,低彈性力影響(Wi=10)時,接近壁面的最大水平以及垂直速度能觀察到些微的增加,相反的,高彈性力影響(Wi=100,L^2_{max}=500)時,水平速度以及垂直速度明顯下降,導致壁面熱傳降低。針對不同$Ra$數,可以觀察到彈性力的影響在高Ra數時變的不明顯。此外我們也利用尺度分析推導出一個關係公式來精準捕捉黏彈流體在自然對流的熱傳行為。最後發現在Ra=10^4時,觀察到12%的熱傳降低效果。

第四個目標為利用弱可壓縮流場模擬兩相流場,我們藉由使用GPE與EDAC方法來探討在壓力方程式中的對流項對模擬兩相流場的影響。從水壩潰堤以及注水模擬結果可以發現,當有對流項引入的壓力方程式(EDAC),擁有較好的計算穩定性,也從模擬案例可以觀察到弱可壓縮流方法在掌握這種高剛性流場以及大尺度網格的高效率求解能力。
In the present study, several explicit numerical methods are investigated on Newtonian and non-Newtonian flows using the graphics processing unit (GPU) cluster. Due to the nature of the parallel structure of GPU, the explicit method is suitable to adopt for the computational fluid dynamics (CFD). Previous studies developed several numerical algorithms, including the projection method with conjugate gradient smoother on CPU, the dual-time artificial compressibility (DTAC) method on GPU, the lattice Boltzmann method (LBM) on GPU, and the weakly compprssible method on GPU. The projection method is migrated to the GPU platform with multigrid technology in the present study. However, the advantage of each method is not clear. Hence, the methods are examined by simulating the different stiff systems to judge their performance.

\noindent First, a GPU-enabled numerical procedure based on the projection method is developed for simulating incompressible turbulent flows. The pressure Poisson equation is efficiently solved using the V-cycle geometric multigrid method. Additionally, the coarse grid aggregation (CGA) technique enhances the multigrid level of multi-GPU simulations, resulting in significant performance improvements. The validity of the proposed method is confirmed through direct numerical simulations of the turbulent lid-driven cavity (LDC) flows at a Reynolds number of 3200. The computed mean, and turbulence quantities closely match the available measured data, validating the accuracy of the approach.
For the cubic cavity under consideration, the optimized minimum grid sizes for multigrid and CGA are determined to be $8^3$ and $32^3$, respectively. An additional speedup of approximately 2.3 to 2.6 is achieved by employing CGA. In terms of performance based on turbulent LDC simulations, the current implementation demonstrates compatibility with the LBM while also being three times faster than the general pressure equation scheme. The superior performance of the GPU implementation over CPU is further highlighted, with a remarkable one thousandfold speedup observed between the Nvidia Tesla V100 and a single core of the Intel I7-6900K (8 cores). Specifically, the performance of one Tesla V100 is found to be equivalent to 125 I7-6900K CPUs. On the other hand, a 2.2 times speedup is achieved using the GPE method over the multigrid-based projection method solver for the natural convection flow with FENE-P fluid.

\noindent Then, we simulate the 2D viscoelastic natural convection flow using the general pressure equation with parameters of Rayleigh (Ra) number ranging from $10^4$ to $10^7$, Weissenberg (Wi) number ranging from 1 to 100, and maximum characteristic length ($L_{max}^2$) equal to 10, 100, and 500. The solver is validated using Newtonian natural convection cases at Ra number ranging from $10^3$ to $10^7$. Results indicate that at low elasticity effects ($Wi=10$), the maximum horizontal and vertical velocity slightly increased, leading to higher heat transfer. In contrast, high elasticity effects ($Wi=100$, $L_{max}^2=500$) resulted in a decrease in horizontal and vertical velocity, reducing heat transfer. The presence of polymer generated opposing stress near the wall, leading to a decrease in vertical velocity at $Wi=100$, $L_{max}^2=500$.
From the Ra number effect, increasing the value of Ra resulted in a decrease in the amount of stress generated by the polymer.
Additionally, the mean kinetic energy budget shows that buoyant production is the main source of energy generation, and this process is counterbalanced by pressure diffusion, viscous diffusion, and polymer diffusion.
Moreover, a scaling correlation is derived based on the FENE-P fluid for predicting the heat transfer performance. Although the scaling is simplified to produce order-of-magnitude estimates for quantities of interest, the both HTE and HTR effect are nicely captured at a range of $Wi$, $L^2_{max}$ and $b$.
It was found that viscoelastic rheological behavior had a significant impact on flow intensity and thermal structures, with the highest heat transfer rate reducing by 12$\%$ at $Ra=10^4$, $Wi=100$, $L_{max}^2=500$, which represented a resistance force. These findings provide valuable insights into understanding the behavior of viscoelastic fluids in natural convection.

\noindent Finally, weakly compressible method with various artificial pressure evolution equations have been proposed as alternatives to solving the Poisson equation in order to simulate incompressible fluid flows. Notably, the general pressure equation (GPE) and entropically damped artificial compressibility (EDAC) methods have emerged as novel approaches, differing mainly in the presence of an convective term in the pressure equation. In this study, our focus is to analyze the performance of these two pressure evolution equations on GPUs specifically for simulating two-phase flows. To accurately capture the gas-liquid interface and minimize errors associated with surface tension force calculations, our solver incorporates the coupled level set and phase-field equation method. To validate the solver's interface capturing capability, we conducted simulations of the reversed single vortex and Rayleigh Taylor instability problems, yielding results that closely matched established benchmark solutions. Particularly, the inclusion of the convective term in the pressure evolution equation yielded a more stable numerical simulation, especially in the presence of violent two-phase flow. The obtained results revealed intricate interactions between two liquids, including phenomena such as droplet splashing and the formation of dense bubble clusters. Furthermore, the computational efficiency of the solver was demonstrated through high-resolution simulations capable of handling billion-level grid sizes.
Contents
Abstract i
Contents vi
List of Figures xii
List of Tables xv
1 Introduction 1
1.1 Explicit Schemes for GPU Computing . . . . . . . . . . . . . . . 2
1.2 Projection method with multigrid technology . . . . . . . . . . 3
1.3 Simulations of polymer stress induced viscoelastic natural convection
flow by general pressure equation . . . . . . . . . . . . . . . . . 6
1.3.1 Non-Newtonian fluid . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Viscoelastic natural convection flow . . . . . . . . . . . . . 8
1.4 Numerical simulations of two-phase flow by weakly compressible method 11
1.4.1 Analysis of pressure evolution equation . . . . . . . . . . 11
1.4.2 Interface-capturing method . . . . . . . . . . . . . . . . . 14
1.5 Objective of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Outlines of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Methodology 18
2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Multigrid implementation . . . . . . . . . . . . . . . . . . . . 21
2.3 Weakly compressible method . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 FENE-P model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Interface-Capturing method . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Performance efficiency 36
3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Laminar lid-driven cavity flow . . . . . . . . . . . . . . . . . . 37
3.1.2 Turbulent lid-driven cavity flow . . . . . . . . . . . . . . . . . 37
3.2 Performance of V-cycle multigrid solver . . . . . . . . . . . . . . . . . 48
3.3 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Performance comparisons with explicit methods . . . . . . . . . . . . 59
3.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 Simulation of polymer stress induced viscoelastic natural convection
flow by general pressure equation 64
4.1 Scaling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.1 Natural convection of Newtonian fluid . . . . . . . . . . . . . 67
4.2.2 Natural convection of visco-elastic fluid . . . . . . . . . . . . . 70
4.2.3 Flow structure and maximum velocities . . . . . . . . . . . . . 71
4.2.4 Mean kinetic energy . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Comparison with literature results . . . . . . . . . . . . . . . . . . . . 81
5 Numerical simulations of two-phase flow by weakly compressible
method 85
5.1 Reversed Single Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Two-Dimensional Rayleigh Taylor instability . . . . . . . . . . . . . . 86
5.3 Three-Dimensional Bubble rising . . . . . . . . . . . . . . . . . . . . 88
5.4 Dam Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Water Injection into A Container . . . . . . . . . . . . . . . . . . . . 96
6 Conclusions and recommendations for further research 99
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.1 General pressure equation for Natural convection flow
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.2 Weakly compressible method for two-phase flow simulations . 101
6.2 Recommendations for further research . . . . . . . . . . . . . . . . . 102
[1] S. Albensoeder and H.C. Kuhlmann. Accurate three-dimensional lid-driven
cavity flow. Journal of Computational Physics, 206(2):536–558, 2005.
[2] A.K. Prasad and J.R. Koseff. Reynolds number and end-wall effects on a
lid-driven cavity flow. Physics of Fluids A, 1(2):208–218, 1989.
[3] A. Chauhan, P.M. Sahu, and C. Sasmal. Effect of polymer additives and viscous
dissipation on natural convection in a square cavity with differentially heated
side walls. International Journal of Heat and Mass Transfer, 175:121342, 2021.
[4] O. Turan, N. Chakraborty, and R.J. Poole. Laminar natural convection of
bingham fluids in a square enclosure with differentially heated side walls.
Journal of Non-Newtonian Fluid Mechanics, 165(15):901–913, 2010.
[5] J.L. Guermond and L. Quartapelle. A projection fem for variable density
incompressible flows. Journal of Computational Physics, 165(1):167–188, 2000.
[6] H. Ding, P.D.M. Spelt, and C. Shu. Diffuse interface model for incompressible
two-phase flows with large density ratios. Journal of Computational Physics,
226(2):2078–2095, 2007.
[7] J.C. Martin, W.J. Moyce, J.C. Martin, W.J. Moyce, W.G. Penney, A.T.
Price, and C.K. Thornhill. Part iv. an experimental study of the collapse
of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,
244(882):312–324, 1952.
[8] S. Matsushita and T. Aoki. Gas-liquid two-phase flows simulation based on
weakly compressible scheme with interface-adapted amr method. Journal of
Computational Physics, 445:110605, 2021.
[9] P. Le Qu ́er ́e. Accurate solutions to the square thermally driven cavity at high
rayleigh number. Computers & Fluids, 20(1):29–41, 1991.
[10] A. Munshi, B. Gaster, T.G. Mattson, and D. Ginsburg. OpenCL programming
guide. Pearson Education, 2011.
[11] CUDA NVIDIA. C programming guide v10. 0. Technical Document, 2018.
[12] X. Wang and T. Aoki. Multi-gpu performance of incompressible flow
computation by lattice boltzmann method on gpu cluster. Parallel Computing,
37(9):521–535, 2011.
[13] P.Y. Hong, L.M. Huang, L.S. Lin, and C.A. Lin. Scalable multi-relaxation-
time lattice boltzmann simulations on multi-gpu cluster. Computers & Fluids,
220:1–8, 2015.
[14] S. Ha, J. Park, and D. You. A gpu-accelerated semi-implicit fractional-
step method for numerical solutions of incompressible navier–stokes equations.
Journal of Computational Physics, 352:246–264, 2018.
[15] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-
M ́onico, Y. Yang, D. Lohse, R. Verzicco, et al. Afid-gpu: a versatile navier–
stokes solver for wall-bounded turbulent flows on gpu clusters. Computer
physics communications, 229:199–210, 2018.
[16] X. Shi, T. Agrawal, C.A. Lin, F.N. Hwang, and T.H. Chiu. A parallel nonlinear
multigrid solver for unsteady incompressible flow simulation on multi-gpu
cluster. Journal of Computational Physics, page 109447, 2020.
[17] A.B. Vieira-e Silva, C. dos Santos Brito, Francisco P.M. Sim ̃oes, and
V. Teichrieb. A fluid simulation system based on the mps method. Computer
Physics Communications, 258:107572, 2021.
[18] X. Wang and T. Aoki. Multi-gpu performance of incompressible flow
computation by lattice boltzmann method on gpu cluster. Parallel Computing,
37(9):521–535, 2011.
[19] J.R. Clausen. Entropically damped form of artificial compressibility for explicit
simulation of incompressible flow. Phys. Rev. E, 87:013309, Jan 2013.
[20] A. Toutant. General and exact pressure evolution equation. Physics Letters
A, 381(44):3739 – 3742, 2017.
[21] A.J. Chorin. On the convergence of discrete approximations to the navier-
stokes equations. Mathematics of computation, 23(106):341–353, 1969.
[22] X. Shi, T. Agrawal, C.A. Lin, F.N. Hwang, and T.H. Chiu. A parallel nonlinear
multigrid solver for unsteady incompressible flow simulation on multi-gpu
cluster. Journal of Computational Physics, page 109447, 2020.
[23] K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue. A d3q27 multiple-
relaxation-time lattice boltzmann method for turbulent flows. Computers &
Mathematics with Applications, 69(6):518–529, 2015.
[24] Y.H. Lee, L.M. Huang, Y.S. Zou, S.C. Huang, and C.A. Lin. Simulations of
turbulent duct flow with lattice boltzmann method on gpu cluster. Computers
& Fluids, 168:14–20, 2018.
[25] W.J. Lin, M.J. Li, C.W. Su, X.Y. Huang, and C.A. Lin. Direct numerical
simulations of turbulent periodic-hill flows with mass-conserving lattice
boltzmann method. Physics of Fluids, 32(11):115122, 2020.
[26] C.M. Wu, Y.S. Zhou, and C.A. Lin. Direct numerical simulations of turbulent
channel flows with mesh-refinement lattice boltzmann methods on gpu cluster.
Computers & Fluids, 210:104647, 2020.
[27] A. Kajzer and J. Pozorski. Application of the entropically damped artificial
compressibility model to direct numerical simulation of turbulent channel flow.
Computers & Mathematics with Applications, 76(5):997–1013, 2018.
[28] D. Dupuy, A. Toutant, and F. Bataille. Analysis of artificial pressure equations
in numerical simulations of a turbulent channel flow. Journal of Computational
Physics, 411:109407, 2020.
[29] X. Shi and C.A. Lin. Simulations of wall bounded turbulent flows using general
pressure equation. Flow, Turbulence and Combustion, pages 1–16, 2020.
[30] J. Kim and P. Moin. Application of a fractional-step method to incompressible
Navier-Stokes equations. Journal of computational physics, 59(2):308–323,
1985.
[31] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, and C.A. Lin. A parallel multilevel
preconditioned iterative pressure Poisson solver for the large-eddy simulation
of turbulent flow inside a duct. Computers & Fluids, 45:138 – 146, 2011.
[32] B.E. Owolabi and C.A. Lin. Marginally turbulent couette flow in a spanwise
confined passage of square cross section. Physics of Fluids, 30(7):075102, 2018.
[33] C.Y. Lin, B.E. Owolabi, and C.A. Lin. Polymer-turbulence interactions in a
complex flow and implications for the drag reduction phenomenon. Physics of
Fluids, 34(4):043106, 2022.
[34] D. Jacobsen and I. Senocak. A full-depth amalgamated parallel 3d geometric
multigrid solver for gpu clusters. In 49th AIAA Aerospace Sciences Meeting,
pages 2011–946. AIAA, 2011.
[35] R. Deleon, D. Jacobsen, and I. Senocak. Large-eddy simulations of turbulent
incompressible flows on GPU clusters. Computing in Science & Engineering,
15:26–33, 2013.
[36] S. Ha, J. Park, and D. You. A gpu-accelerated semi-implicit fractional-
step method for numerical solutions of incompressible navier–stokes equations.
Journal of Computational Physics, 352:246–264, 2018.
[37] Z. Wei, B. Jang, Y. Zhang, and Y. Jia. Parallelizing alternating direction
implicit solver on gpus. Procedia Computer Science, 18:389–398, 2013.
[38] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-
M ́onico, Y. Yang, D. Lohse, R. Verzicco, et al. Afid-gpu: a versatile navier–
stokes solver for wall-bounded turbulent flows on gpu clusters. Computer
physics communications, 229:199–210, 2018.
[39] D.D.J. Chandar, J. Sitaraman, and D.J. Mavriplis. A gpu-based incompressible
navier—stokes solver on moving overset grids. International Journal of
Computational Fluid Dynamics, 27:268–282, 2013.
[40] P. Zaspel and M. Griebel. Solving incompressible two-phase flows on multi-
GPU clusters. Computers & Fluids, 80:356 – 364, 2013.
[41] G. Oyarzun, R. Borrell, A. Gorobets, and A. Oliva. MPi-CUDA sparse
matrix–vector multiplication for the conjugate gradient method with an
approximate inverse preconditioner. Computers & Fluids, 92:244 – 252, 2014.
[42] A. Brandt. Multi-level adaptive solutions to boundary-value problems.
Mathematics of Computation, 31:333–390, 1977.
[43] A. Brandt. Multilevel adaptive computations in fluid dynamics. AIAA Journal,
18:1165–1172, 1980.
[44] A. Brandt and O. Livne. Multigrid techniques. 1984 guide with applications
to fluid dynamics. Revised ed, volume 67 of Classics in Applied Mathematics.
SIAM, 2011.
[45] W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial. SIAM, 2nd
edition, 2000.
[46] A. Shinn, S. Vanka, and W.M. Hwu. Direct numerical simulation of turbulent
flow in a square duct using a graphics processing unit (gpu). In 40th Fluid
Dynamics Conference and Exhibit, pages AIAA 2010–5029, 2010.
[47] R. Chaudhary, S.P. Vanka, and B.G. Thomas. Direct numerical simulations
of magnetic field effects on turbulent flow in a square duct. Physics of fluids,
22(7):075102, 2010.
[48] K. Nakajima. Openmp/mpi hybrid parallel multigrid method on fujitsu fx10
supercomputer system. In 2012 IEEE International Conference on Cluster
Computing Workshops, pages 199–206. IEEE, 2012.
[49] A. Nomura, N.and Fujii, T. Tanaka, O. Marques, and K. Nakajima. Algebraic
multigrid solver using coarse grid aggregation with independent aggregation.
In 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 1104–1112, 2018.
[50] O. Turan, A. Sachdeva, N. Chakraborty, and R.J. Poole. Laminar natural
convection of power-law fluids in a square enclosure with differentially heated
side walls subjected to constant temperatures. Journal of Non-Newtonian Fluid
Mechanics, 166(17-18):1049–1063, 2011.
[51] M. Shahabadi, S.A.M. Mehryan, M. Ghalambaz, and M. Ismael. Controlling
the natural convection of a non-newtonian fluid using a flexible fin. Applied
Mathematical Modelling, 92:669–686, 2021.
[52] S.S. Mendu and P.K. Das. Lattice boltzmann modeling for natural convection
in power-law fluids within a partially heated square enclosure. Journal of Heat
Transfer, 143(3):032601, 2021.
[53] V.K. Patnana, R.P. Bharti, and R.P. Chhabra. Two-dimensional unsteady
forced convection heat transfer in power-law fluids from a cylinder.
International Journal of Heat and Mass Transfer, 53(19-20):4152–4167, 2010.
[54] R.P. Chhabra and J.F. Richardson. Non-Newtonian flow and applied rheology:
engineering applications. Butterworth-Heinemann, 2011.
[55] D.H. Choi, J. Lee, H. Hong, and Y.T. Kang. Thermal conductivity and
heat transfer performance enhancement of phase change materials (pcm)
containing carbon additives for heat storage application. International journal
of refrigeration, 42:112–120, 2014.
[56] X. Luo, R. Hu, S. Liu, and K. Wang. Heat and fluid flow in high-power led
packaging and applications. Progress in Energy and Combustion Science, 56:1–
32, 2016.
[57] H. Alenezi, M.E. Cam, and M. Edirisinghe. Experimental and theoretical
investigation of the fluid behavior during polymeric fiber formation with and
without pressure. Applied Physics Reviews, 6(4):041401, 2019.
[58] M. Sheikholeslami, B. Rezaeianjouybari, M. Darzi, A. Shafee, Z. Li, and T.K.
Nguyen. Application of nano-refrigerant for boiling heat transfer enhancement
employing an experimental study. International Journal of Heat and Mass
Transfer, 141:974–980, 2019.
[59] T. Hayat, S. Asghar, and A.M. Siddiqui. Periodic unsteady flows of a non-
newtonian fluid. Acta mechanica, 131(3):169–175, 1998.
[60] T. Hayat, A.M. Siddiqui, and S. Asghar. Some simple flows of an oldroyd-b
fluid. International Journal of Engineering Science, 39(2):135–147, 2001.
[61] N.P. Thien and R.I. Tanner. A new constitutive equation derived from network
theory. Journal of Non-Newtonian Fluid Mechanics, 2(4):353–365, 1977.
[62] R.B. Bird, P.J. Dotson, and N.L. Johnson. Polymer solution rheology based
on a finitely extensible bead—spring chain model. Journal of Non-Newtonian
Fluid Mechanics, 7(2-3):213–235, 1980.
[63] P.J. Oliveira. An exact solution for tube and slit flow of a fene-p fluid. Acta
Mechanica, 158(3):157–167, 2002.
[64] Y. Dubief. Heat transfer enhancement and reduction by polymer additives in
turbulent rayleigh b ́enard convection. arXiv preprint arXiv:1009.0493, 2010.
[65] R. Benzi, E.S.C. Ching, C.K. Wilson, and Y. Wang. Heat transport
modification by finitely extensible polymers in laminar boundary layer flow.
Journal of Fluid Mechanics, 788:337–357, 2016.
[66] Y. Dubief and V.E. Terrapon. Heat transfer enhancement and reduction in
low-rayleigh number natural convection flow with polymer additives. Physics
of Fluids, 32(3):033103, 2020.
[67] B.A. Toms. Some observations on the flow of linear polymer solutions through
straight tubes at large reynolds numbers. Proc. of In. Cong. On Rheology,
1948, 135, 1948.
[68] C.M. White and M.G. Mungal. Mechanics and prediction of turbulent drag
reduction with polymer additives. Annu. Rev. Fluid Mech., 40:235–256, 2008.
[69] B.E. Owolabi, D.J.C Dennis, and R.J. Poole. Turbulent drag reduction by
polymer additives in parallel-shear flows. Journal of Fluid Mechanics, 827,
2017.
[70] C.Y. Lin, B.E. Owolabi, and C.A. Lin. Polymer-turbulence interactions in a
complex flow and implications for the drag reduction phenomenon. Physics of
Fluids, 34(4):043106, 2022.
[71] G. Ahlers and A. Nikolaenko. Effect of a polymer additive on heat transport in
turbulent rayleigh-b ́enard convection. Physical review letters, 104(3):034503,
2010.
[72] R. Benzi, E.S.C. Ching, and E. De Angelis. Effect of polymer additives
on heat transport in turbulent thermal convection. Physical review letters,
104(2):024502, 2010.
[73] G. Boffetta, A. Mazzino, S. Musacchio, and L. Vozella. Polymer heat transport
enhancement in thermal convection: The case of rayleigh-taylor turbulence.
Physical review letters, 104(18):184501, 2010.
[74] P. Wei, R. Ni, K.Q. Xia, et al. Enhanced and reduced heat transport in
turbulent thermal convection with polymer additives. Physical Review E,
86(1):016325, 2012.
[75] J.P. Cheng, H.N. Zhang, W.H. Cai, S.N. Li, and F.C. Li. Effect of polymer
additives on heat transport and large-scale circulation in turbulent rayleigh-
b ́enard convection. Physical Review E, 96(1):013111, 2017.
[76] R. Benzi, E.S.C. Ching, C.K. Wilson, and Y. Wang. Heat transport
modification by finitely extensible polymers in laminar boundary layer flow.
Journal of Fluid Mechanics, 788:337–357, 2016.
[77] Q. Wang, H.R. Liu, R. Verzicco, O. Shishkina, and D. Lohse. Regime
transitions in thermally driven high-rayleigh number vertical convection.
Journal of Fluid Mechanics, 917, 2021.
[78] A.J. Chorin. On the convergence of discrete approximations to the navier-
stokes equations. Mathematics of computation, 23(106):341–353, 1969.
[79] X. Wang and T. Aoki. Multi-gpu performance of incompressible flow
computation by lattice boltzmann method on gpu cluster. Parallel Computing,
37(9):521–535, 2011.
[80] J.R. Clausen. Entropically damped form of artificial compressibility for explicit
simulation of incompressible flow. Physical Review E, 87(1):013309, 2013.
[81] A. Toutant. General and exact pressure evolution equation. Physics Letters
A, 381(44):3739–3742, 2017.
[82] W.Y. Soh and J.W. Goodrich. Unsteady solution of incompressible navier-
stokes equations. Journal of computational physics, 79(1):113–134, 1988.
[83] T.C. Huang, C.Y. Chang, and C.A. Lin. Simulation of droplet dynamic with
high density ratio two-phase lattice boltzmann model on multi-gpu cluster.
Computers & Fluids, 173:80–87, 2018.
[84] C.Y. Chang, C.W. Yang, F.T. Lin, T.H. Chiu, and C.A. Lin. Lattice boltzmann
simulations of bubble interactions on gpu cluster. Journal of the Chinese
Institute of Engineers, 44(5):491–500, 2021.
[85] C.M. Wu, Y.S. Zhou, and C.A. Lin. Direct numerical simulations of turbulent
channel flows with mesh-refinement lattice boltzmann methods on gpu cluster.
Computers & Fluids, 210:104647, 2020.
[86] A. Kajzer and J. Pozorski. Application of the entropically damped artificial
compressibility model to direct numerical simulation of turbulent channel flow.
Computers & Mathematics with Applications, 76(5):997–1013, 2018.
[87] X. Shi and C.A. Lin. Simulations of wall bounded turbulent flows using general
pressure equation. Flow, Turbulence and Combustion, pages 1–16, 2020.
[88] D. Dupuy, A. Toutant, and journal=Journal of Computational Physics
volume=411 pages=109407 year=2020 publisher=Elsevier Bataille, F.
Analysis of artificial pressure equations in numerical simulations of a turbulent
channel flow.
[89] A. Kajzer and J. Pozorski. A weakly compressible, diffuse-interface model for
two-phase flows. Flow, Turbulence and Combustion, 105:299–333, 2020.
[90] J.E. Welch, F.H. Harlow, J.P. Shannon, and B.J. Daly. The mac method-
a computing technique for solving viscous, incompressible, transient fluid-
flow problems involving free surfaces. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 1965.
[91] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. The physics of fluids, 8(12):2182–
2189, 1965.
[92] C.W. Hirt and B.D. Nichols. Volume of fluid (vof) method for the dynamics
of free boundaries. Journal of computational physics, 39(1):201–225, 1981.
[93] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed:
Algorithms based on hamilton-jacobi formulations. Journal of computational
physics, 79(1):12–49, 1988.
[94] M. Sussman and E.G. Puckett. A coupled level set and volume-of-fluid method
for computing 3d and axisymmetric incompressible two-phase flows. Journal
of computational physics, 162(2):301–337, 2000.
[95] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing
solutions to incompressible two-phase flow. Journal of Computational physics,
114(1):146–159, 1994.
[96] E. Olsson and G. Kreiss. A conservative level set method for two phase flow.
Journal of computational physics, 210(1):225–246, 2005.
[97] J.W. Cahn and J.E. Hilliard. Free energy of a nonuniform system. i. interfacial
free energy. The Journal of chemical physics, 28(2):258–267, 1958.
[98] S.M. Allen and J.W. Cahn. Mechanisms of phase transformations within the
miscibility gap of fe-rich fe-al alloys. Acta Metallurgica, 24(5):425–437, 1976.
[99] D. Furihata. A stable and conservative finite difference scheme for the cahn-
hilliard equation. Numerische Mathematik, 87(4):675–699, 2001.
[100] P.H. Chiu and Y.T. Lin. A conservative phase field method for solving
incompressible two-phase flows. Journal of Computational Physics, 230(1):185–
204, 2011.
[101] S. Albensoeder and H.C. Kuhlmann. Accurate three-dimensional lid-driven
cavity flow. Journal of Computational Physics, 206(2):536–558, 2005.
[102] A.K. Prasad and J.R. Koseff. Reynolds number and end-wall effects on a
lid-driven cavity flow. Physics of Fluids A, 1(2):208–218, 1989.
[103] S. Matsushita and T. Aoki. A weakly compressible scheme with a diffuse-
interface method for low mach number two-phase flows. Journal of
Computational Physics, 376:838–862, 2019.
[104] K. Yokoi. A density-scaled continuum surface force model within a balanced
force formulation. Journal of Computational Physics, 278:221–228, 2014.
[105] J.B. Bell, P. Colella, and H.M. Glaz. A second-order projection method for
the incompressible navier-stokes equations. Journal of Computational Physics,
85(2):257–283, 1989.
[106] J. Kim and P. Moin. Application of a fractional-step method to incompressible
Navier-Stokes equations. Journal of computational physics, 59(2):308–323,
1985.
[107] H. Choi and P. Moin. Effects of the computational time step on numerical
solutions of turbulent flow. Journal of Computational Physics, 113(1):1–4,
1994.
[108] C.C. Liao and C.A. Lin. Influence of prandtl number on the instability of
natural convection flows within a square enclosure containing an embedded
heated cylinder at moderate rayleigh number. Physics of Fluids, 27(1):013603,
2015.
[109] S. Gottlieb and C.W. Shu. Total variation diminishing runge-kutta schemes.
Mathematics of computation, 67(221):73–85, 1998.
[110] H. Choi and P. Moin. Effects of the computational time step on numerical
solutions of turbulent flow. Journal of Computational Physics, 113(1):1–4,
1994.
[111] C.C. Liao and C.A. Lin. Influence of prandtl number on the instability of
natural convection flows within a square enclosure containing an embedded
heated cylinder at moderate rayleigh number. Physics of Fluids, 27(1):013603,
2015.
[112] D. Drikakis, O.P. Iliev, and D.P. Vassileva. A nonlinear multigrid method
for the three-dimensional incompressible navier–stokes equations. Journal of
Computational Physics, 146(1):301–321, 1998.
[113] W.L. Briggs, V.E. Henson, and S.F. McCormick. A multigrid tutorial. SIAM,
2000.
[114] S. Sid, V.E. Terrapon, and Y. Dubief. Two-dimensional dynamics of elasto-
inertial turbulence and its role in polymer drag reduction. Physical Review
Fluids, 3(1):011301, 2018.
[115] J.H. Williamson. Low-storage runge-kutta schemes. Journal of computational
physics, 35(1):48–56, 1980.
[116] M. Sussman and M. Ohta. A stable and efficient method for treating
surface tension in incompressible two-phase flow. SIAM Journal on Scientific
Computing, 31(4):2447–2471, 2009.
[117] H.C. Ku, R.S. Hirsh, and T.D. Taylor. A pseudospectral method for solution
of the three-dimensional incompressible navier-stokes equations. Journal of
Computational Physics, 70(2):439–462, 1987.
[118] Y. Feldman and A.Y. Gelfgat. Oscillatory instability of a three-dimensional
lid-driven flow in a cube. Physics of Fluids, 22:093602, 2010.
[119] B.E. Owolabi and C.A. Lin. Marginally turbulent couette flow in a spanwise
confined passage of square cross section. Physics of Fluids, 30(7):075102, 2018.
[120] D. Samantaray and M.K. Das. Nature of turbulence inside a cubical lid-driven
cavity: Effect of reynolds number. International Journal of Heat and Fluid
Flow, 80:108498, 2019.
[121] A. Brandt. Multi-level adaptive solutions to boundary-value problems.
Mathematics of computation, 31(138):333–390, 1977.
[122] Y.H. Lee, L.M. Huang, Y.S. Zou, S.C. Huang, and C.A. Lin. Simulations of
turbulent duct flow with lattice boltzmann method on gpu cluster. Computers
& Fluids, 168:14–20, 2018.
[123] B. M. Berkovsky and Viktor Polevikov. Numerical study of problems on high-
intensive free convection. In D.B. Spalding and H. Afgan, editors, Heat Transfer
and Turbulent Buoyant Convection, pages 443–455. Hemisphere Publ., 1977.
[124] O. Turan, N.n Chakraborty, and R.J. Poole. Laminar natural convection
of bingham fluids in a square enclosure with differentially heated side walls.
Journal of Non-Newtonian Fluid Mechanics, 165(15-16):901–913, 2010.
[125] W.J. Rider and D.B. Kothe. Reconstructing volume tracking. Journal of
computational physics, 141(2):112–152, 1998.
[126] J.R. Grace. Shapes and velocities of bubbles rising in infinite liquids. Trans.
Inst. Chem. Eng., 54:116–120, 1973.
[127] M. van Sint Annaland, N.G. Deen, and J.A.M. Kuipers. Numerical simulation
of gas bubbles behaviour using a three-dimensional volume of fluid method.
Chemical engineering science, 60(11):2999–3011, 2005.
[128] N. Mohd, M.M. Kamra, M. Sueyoshi, and C. Hu. Lattice boltzmann method
for free surface impacting on vertical cylinder: a comparison with experimental
data. 2017.
[129] C. Hu and M. Sueyoshi. Numerical simulation and experiment on dam break
problem. Journal of Marine Science and Application, 9:109–114, 2010.
[130] P.K. Stansby, A. Chegini, and T. Barnes. The initial stages of dam-break flow.
Journal of Fluid Mechanics, 374:407–424, 1998.
[131] M. Rieber and A. Frohn. A numerical study on the mechanism of splashing.
International Journal of Heat and Fluid Flow, 20(5):455–461, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *