|
[1] REN21, "Renewables 2019 Global Status Report," Paris: REN21 Secretariat, 2019. Accessed: 26 July 2019. [2] I. E. C. (IEC), "Electrical Energy Storage," 2011. [3] B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang, H. Lv, C. Shen, A. Shellikeri, Y. Zheng, R. Gong, J. P. Zheng, and C. Zhang, "Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors," Advanced Materials, vol. 30, no. 17, p. 1705670, 2018. [4] J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, "Ageing Mechanisms in Lithium-ion Batteries," (in English), J Power Sources, vol. 147, no. 1-2, pp. 269-281, 2005. [5] D. Aurbach, E. Zinigrad, H. Teller, and P. Dan, "Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries," (in English), J Electrochem Soc, vol. 147, no. 4, pp. 1274-1279, 2000. [6] J. W. Fergus, "Ceramic and Polymeric Solid Electrolytes for Lithium-ion Batteries," J Power Sources, vol. 195, no. 15, pp. 4554-4569, 2010. [7] J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, "Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction," Chem Rev, vol. 116, no. 1, pp. 140-162, 2016. [8] N. Izyumskaya, D. O. Demchenko, S. Das, Ü. Özgür, V. Avrutin, and H. Morkoç, "Recent Development of Boron Nitride towards Electronic Applications," Advanced Electronic Materials, vol. 3, no. 5, p. 1600485, 2017. [9] R. H. Wentorf, "Cubic Form of Boron Nitride," (in English), J Chem Phys, vol. 26, no. 4, pp. 956-956, 1957. [10] T. Soma, A. Sawaoka, and S. Saito, "Characterization of Wurtzite-Type Boron-Nitride Synthesized by Shock Compression," (in English), Mater Res Bull, vol. 9, no. 6, pp. 755-762, 1974. [11] A. Brager, "An X-ray Examination of the Structure of Boron Nitride," (in English), Acta Physicochim Urs, vol. 7, no. 5, pp. 699-706, 1937. [12] A. V. Kurdyumov, V. L. Solozhenko, and W. B. Zelyavski, "Lattice Parameters of Boron Nitride Polymorphous Modifications as a Function of Their Crystal-Structure Perfection," Journal of Applied Crystallography, vol. 28, no. 5, pp. 540-545, 1995. [13] K. Yan, H. W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, and Y. Cui, "Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode," Nano Lett, vol. 14, no. 10, pp. 6016-22, 2014. [14] Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, and P. M. Ajayan, "Ultrathin High-temperature Oxidation-resistant Coatings of Hexagonal Boron Nitride," Nat Commun, vol. 4, no. 1, 2013. [15] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, "Boron Nitride Nanotubes and Nanosheets," ACS Nano, vol. 4, no. 6, pp. 2979-93, 2010. [16] K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, "C2f, Bn and C Nanoshell Elasticity from ab Initio Computations," Physical Review B, vol. 64, no. 23, p. 235406, 2001. [17] M. H. Khan, H. K. Liu, X. D. Sun, Y. Yamauchi, Y. Bando, D. Golberg, and Z. Huang, "Few-Atomic-Layered Hexagonal Boron Nitride: CVD Growth, Characterization, and Applications," (in English), Mater Today, vol. 20, no. 10, pp. 611-628, 2017. [18] H. J. Deiseroth, S. T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, and M. Schlosser, "Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility," Angew Chem Int Ed Engl, vol. 47, no. 4, pp. 755-8, 2008. [19] P. R. Rayavarapu, N. Sharma, V. K. Peterson, and S. Adams, "Variation in Structure and Li+-Ion Migration in Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes," Journal of Solid State Electrochemistry, vol. 16, no. 5, pp. 1807-1813, 2011. [20] N. J. J. de Klerk, I. Rosłoń, and M. Wagemaker, "Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder," Chemistry of Materials, vol. 28, no. 21, pp. 7955-7963, 2016. [21] J. Auvergniot, A. Cassel, J. B. Ledeuil, V. Viallet, V. Seznec, and R. Dedryvere, "Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries," (in English), Chemistry of Materials, vol. 29, no. 9, pp. 3883-3890, 2017. [22] Y. Zhu, X. He, and Y. Mo, "Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations," ACS Appl Mater Interfaces, vol. 7, no. 42, pp. 23685-93, 2015. [23] J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, and P. G. Bruce, "Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells," Nat Mater, vol. 18, no. 10, pp. 1105-1111, 2019. [24] K. Okada, N. Machida, M. Naito, T. Shigematsu, S. Ito, S. Fujiki, M. Nakano, and Y. Aihara, "Preparation and Electrochemical Properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for All-Solid-State Batteries," Solid State Ionics, vol. 255, pp. 120-127, 2014. [25] N. Ohta, K. Takada, I. Sakaguchi, L. Q. Zhang, R. Z. Ma, K. Fukuda, M. Osada, and T. Sasaki, "LiNbO3-Coated LiCoO2 as Cathode Material for all Solid-State Lithium Secondary Batteries," (in English), Electrochem Commun, vol. 9, no. 7, pp. 1486-1490, 2007. [26] S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T. Y. Kim, S. W. Baek, J. M. Lee, S. Doo, and N. Machida, "A Rocking Chair Type All-Solid-State Lithium Ion Battery Adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a Sulfide Based Electrolyte," (in English), J Power Sources, vol. 248, pp. 943-950, 2014. [27] S. H. Jung, K. Oh, Y. J. Nam, D. Y. Oh, P. Bruner, K. Kang, and Y. S. Jung, "Li3BO3-Li2CO3: Rationally Designed Buffering Phase for Sulfide All Solid-State Li-Ion Batteries," (in English), Chemistry of Materials, vol. 30, no. 22, pp. 8190-8200, 2018. [28] G. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, and Y. Cui, "Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes," Nat Nanotechnol, vol. 9, no. 8, pp. 618-23, 2014. [29] W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, "Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte," J Am Chem Soc, vol. 138, no. 30, pp. 9385-8, 2016. [30] M.-T. F. Rodrigues, K. Kalaga, H. Gullapalli, G. Babu, A. L. M. Reddy, and P. M. Ajayan, "Hexagonal Boron Nitride-Based Electrolyte Composite for Li-Ion Battery Operation from Room Temperature to 150 °C," Advanced Energy Materials, vol. 6, no. 12, p. 1600218, 2016. [31] Q. Cheng, A. J. Li, N. Li, S. Li, A. Zangiabadi, T. D. Li, W. L. Huang, A. C. Li, T. W. Jin, Q. Q. Song, W. H. Xu, N. Ni, H. W. Zhai, M. Dontigny, K. Zaghib, X. Y. Chuan, D. Su, K. Yan, and Y. Yang, "Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating," (in English), Joule, vol. 3, no. 6, pp. 1510-1522, 2019. [32] N. E. a. I. T. D. Organization. (2018) Aiming for a Breakthrough in the Transition to a Low-Carbon Society Advanced Batteries. Focus NEDO. 8-15. [33] W. Quester, "Sketch Pseudopotentials," S. Pseudopotentials, Ed., ed. , 2006, p. Originally uploaded at en.wikipedia by W. Quester.Transferred from en.wikipedia to Commons by Leyo using CommonsHelper. [34] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," (in English), Physical Review B, vol. 136, no. 3b, pp. B864-+, 1964. [35] P. E. Blochl, "Projector Augmented-Wave method," Phys Rev B Condens Matter, vol. 50, no. 24, pp. 17953-17979, 1994. [36] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation," Phys Rev B Condens Matter, vol. 46, no. 11, pp. 6671-6687, 1992. [37] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys Rev Lett, vol. 77, no. 18, pp. 3865-3868, 1996. [38] Y. K. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, "Self-Consistent-Field Calculations Using Chebyshev-Filtered Subspace Iteration," (in English), J Comput Phys, vol. 219, no. 1, pp. 172-184, 2006. [39] S. Kristyán and P. Pulay, "Can (semi)local density functional theory account for the London dispersion forces?," Chemical Physics Letters, vol. 229, no. 3, pp. 175-180, 1994. [40] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu," The Journal of Chemical Physics, vol. 132, no. 15, p. 154104, 2010. [41] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950. [42] Nzjacobmartin, "Statistical Ensembles," S. Ensembles, Ed., ed. en.wikipedia.org, 2017. [43] G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys Rev B Condens Matter, vol. 54, no. 16, pp. 11169-11186, 1996. [44] G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," (in English), Physical Review B, vol. 59, no. 3, pp. 1758-1775, 1999. [45] E. J. Covington and D. J. Montgomery, "Lattice Constants of Separated Lithium Isotopes," The Journal of Chemical Physics, vol. 27, no. 5, pp. 1030-1032, 1957. [46] E. R. Davidson, "The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices," J Comput Phys, vol. 17, no. 1, pp. 87-94, 1975. [47] G. Kresse and J. Furthmüller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Physical Review B, vol. 54, no. 16, pp. 11169-11186, 1996. [48] FDK株式會社. [Online]. Available: https://www.fdk.co.jp/ [49] R. S. Pease, "An X-Ray Study of Boron Nitride," Acta Crystallographica, vol. 5, no. 3, pp. 356-361, 1952. [50] H.-J. Deiseroth, J. Maier, K. Weichert, V. Nickel, S.-T. Kong, and C. Reiner, "Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements," Zeitschrift für anorganische und allgemeine Chemie, vol. 637, no. 10, pp. 1287-1294, 2011. |