帳號:guest(18.191.45.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭立函
作者(外文):Peng, Li-Han
論文名稱(中文):鋰電池以h-BN作為固態電解質Li6PS5Cl單層鍍膜之Ab Initio分子動力學分析
論文名稱(外文):AIMD Study on Li6PS5Cl Solid Electrolyte with h-BN as Monolayer Coating in Lithium Batteries
指導教授(中文):洪哲文
指導教授(外文):Hong, Che-Wun
口試委員(中文):董瑞安
陳馨怡
李明蒼
黃嘉宏
口試委員(外文):Doong, Ruey-an
Chen, Hsin-Yi
Lee, Ming-Tsang
Hwang, Chia Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:107033503
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:鋰離子電池固態電解質第一原理計算
外文關鍵詞:Lithium ion batterySolid electrolyteAIMD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:218
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以固態電解質組成的全固態鋰離子電池為未來商業化應用之電池趨勢。本研究之固態電解質Li6PS5Cl其在常溫下離子傳導率高,然而電極與固態電解質接觸具介面不穩定性問題,因此本研究提出鍍膜材料並事先評估其性能作為目標。鍍膜材料六方氮化硼 (hexagonal boron nitride, h-BN)與鋰金屬接觸穩定性高,機械性質強(1TPa),為極具潛力之固態鋰離子電池鍍膜材料,使電池之效能與壽命提高。實驗上亦成功利用化學沉積法由h-BN製作出奈米片狀氮化硼(BNNS)。
利用從頭計算分子動力學(Ab-initio molecular dynamics, AIMD)探討添加鍍膜材料對於全固態鋰離子電池系統之性能分析,其特點在於不需給予系統經驗勢能函數於跨尺度預估材料性質並考慮溫度效應之特性。本研究探討之Li6PS5Cl鋰離子擴散係數隨操作溫度上升而增加,鋰離子傳導率亦因升溫而漸高,範圍介於10-3至10-4 S/m之間。而透過建立單層鍍膜h-BN之方式於鋰離子陽極材料與固態電解質介面,比較Li/Li6PS5Cl以及Li/h-BN/Li6PS5Cl系統之結構劣化情形,發現未鍍膜之系統較鍍膜單層h-BN者在高溫下劣化情形嚴重;且鍍膜h-BN不影響鋰離子於電解質與電極間之遷移。未來全固態鋰離子電池會逐漸普及,此Ab Initio分子動力學模擬可用以提前預測電池效能,並開發更高充放電、高穩定性之全固態鋰離子電池,促使全電動車之全面商業化。
Solid–state lithium ion batteries are the current key technology for commercial electric vehicles due to the high charging/discharging rate and extraordinary safety reasons. Batteries employ solid electrolyte (e.g., Li6PS5Cl in this thesis) have great ionic conductivity and better heat conduction at room temperatures. However, they exist interfacial instability problem between the electrolyte and the anode which deteriorates the battery performance significantly. This research proposes to coat a hexagonal boron nitride (h-BN) thin film at the interface. The reasons are h-BN has great chemical stability with Li metal and strong mechanical strength with 1TPa. Boron nitride nano sheets (BNNs) were also successfully fabricated in research labs recently.
Ab-initio molecular dynamics (AIMD) methodology is employed in this research to predict the lithium ion diffusivity near the h-BN coating and among the solid electrolyte molecules (Li6PS5Cl) where the anode is purely lithium metal. The supremacy of the AIMD technology is that it calculates the inter-molecular potential from the computational quantum mechanics directly and keeps the advantage of the molecular dynamics to consider the temperature effects. This thesis has found that the diffusion coefficient of lithium ions in the solid electrolyte increases with higher temperatures, which make the ionic conductivity increases as well, ranging from 10-3 to 10-4 S/m. Also found is that Li/Li6PS5Cl interface (without coating) deteriorates seriously compared with the coating case at high temperatures. In addition, coating monolayer h-BN would not affect lithium ion migration between the solid electrolyte and the anode.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
符號表 XII
縮寫表 XIV
第一章 緒論 1
1.1 前言 1
1.2 鋰離子電池 3
1.2.1 傳統鋰離子電池 3
1.2.2 全固態鋰離子電池 4
1.3 文獻回顧 7
1.4 研究動機與目的 9
第二章 計算理論 11
2.1 密度泛函理論 11
2.1.1 薛丁格方程式 11
2.1.2 平面波 12
2.1.3 布洛赫定理 14
2.1.3.1 倒晶格 14
2.1.3.2 第一布里淵區 16
2.1.4 贗勢 16
2.1.5 波恩–歐本海默近似 17
2.1.6 哈特里-福克方程式 18
2.1.7 Hohenberg-Kohn定理 19
2.1.8 科恩-沈方程式 20
2.1.9 投影綴加波 21
2.1.10 局域密度近似 23
2.1.11 廣義梯度近似 24
2.1.12 Perdew-Wang 91 (PW91) 24
2.1.13 Perdew-Burke-Ernzerhof (PBE) 25
2.1.14 自洽場方法 26
2.1.15 凡德瓦爾力之三種型式 27
2.1.15.1 DFT-D2 28
2.1.15.2 DFT-D3 29
2.2 Ab-initio Molecular Dynamics 30
2.2.1 運動方程式 30
2.2.2 週期性邊界 31
2.2.3 統計系綜 32
2.2.4 溫度控制 33
2.2.4.1 Nosé-Hoover恆溫器 33
2.2.5 均方位移 35
2.2.6 擴散係數 36
2.2.7 離子傳導率 36
第三章 模擬方法及參數設定 37
3.1 材料性質與模擬流程 37
3.2 Vienna Ab-initio Simulation Package (VASP) 38
3.2.1 輸入檔案 39
3.2.2 輸出檔案 39
3.2.3 結構最佳化計算 40
3.3.4 Ab Initio分子動力學計算 41
3.3 晶胞能量與收斂性測試 42
3.3.1 h-BN 42
3.3.2 Li6PS5Cl 48
3.3.3 Li金屬 52
3.4 Ab Initio分子動力學計算 55
3.4.1 Li6PS5Cl 固態電解質 56
3.4.2 Li金屬/ Li6PS5Cl固態電解質鋰離子電池系統 56
第四章 結果與討論 58
4.1 結構最佳化分析 58
4.1.1 h-BN結構最佳化 58
4.1.2 Li6PS5Cl結構最佳化 59
4.1.3 Li金屬結構最佳化 60
4.2 Ab Initio分子動力學分析 60
4.2.1 Li6PS5Cl固態電解質 60
4.2.2 Li金屬/ Li6PS5Cl固態電解質鋰離子電池系統 62
第五章 結論及未來工作建議 64
5.1 結論 64
5.2 未來工作建議 65
參考文獻 67
[1] REN21, "Renewables 2019 Global Status Report," Paris: REN21 Secretariat, 2019. Accessed: 26 July 2019.
[2] I. E. C. (IEC), "Electrical Energy Storage," 2011.
[3] B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang, H. Lv, C. Shen, A. Shellikeri, Y. Zheng, R. Gong, J. P. Zheng, and C. Zhang, "Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors," Advanced Materials, vol. 30, no. 17, p. 1705670, 2018.
[4] J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, "Ageing Mechanisms in Lithium-ion Batteries," (in English), J Power Sources, vol. 147, no. 1-2, pp. 269-281, 2005.
[5] D. Aurbach, E. Zinigrad, H. Teller, and P. Dan, "Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries," (in English), J Electrochem Soc, vol. 147, no. 4, pp. 1274-1279, 2000.
[6] J. W. Fergus, "Ceramic and Polymeric Solid Electrolytes for Lithium-ion Batteries," J Power Sources, vol. 195, no. 15, pp. 4554-4569, 2010.
[7] J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, "Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction," Chem Rev, vol. 116, no. 1, pp. 140-162, 2016.
[8] N. Izyumskaya, D. O. Demchenko, S. Das, Ü. Özgür, V. Avrutin, and H. Morkoç, "Recent Development of Boron Nitride towards Electronic Applications," Advanced Electronic Materials, vol. 3, no. 5, p. 1600485, 2017.
[9] R. H. Wentorf, "Cubic Form of Boron Nitride," (in English), J Chem Phys, vol. 26, no. 4, pp. 956-956, 1957.
[10] T. Soma, A. Sawaoka, and S. Saito, "Characterization of Wurtzite-Type Boron-Nitride Synthesized by Shock Compression," (in English), Mater Res Bull, vol. 9, no. 6, pp. 755-762, 1974.
[11] A. Brager, "An X-ray Examination of the Structure of Boron Nitride," (in English), Acta Physicochim Urs, vol. 7, no. 5, pp. 699-706, 1937.
[12] A. V. Kurdyumov, V. L. Solozhenko, and W. B. Zelyavski, "Lattice Parameters of Boron Nitride Polymorphous Modifications as a Function of Their Crystal-Structure Perfection," Journal of Applied Crystallography, vol. 28, no. 5, pp. 540-545, 1995.
[13] K. Yan, H. W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, and Y. Cui, "Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode," Nano Lett, vol. 14, no. 10, pp. 6016-22, 2014.
[14] Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, and P. M. Ajayan, "Ultrathin High-temperature Oxidation-resistant Coatings of Hexagonal Boron Nitride," Nat Commun, vol. 4, no. 1, 2013.
[15] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, "Boron Nitride Nanotubes and Nanosheets," ACS Nano, vol. 4, no. 6, pp. 2979-93, 2010.
[16] K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, "C2f, Bn and C Nanoshell Elasticity from ab Initio Computations," Physical Review B, vol. 64, no. 23, p. 235406, 2001.
[17] M. H. Khan, H. K. Liu, X. D. Sun, Y. Yamauchi, Y. Bando, D. Golberg, and Z. Huang, "Few-Atomic-Layered Hexagonal Boron Nitride: CVD Growth, Characterization, and Applications," (in English), Mater Today, vol. 20, no. 10, pp. 611-628, 2017.
[18] H. J. Deiseroth, S. T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, and M. Schlosser, "Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility," Angew Chem Int Ed Engl, vol. 47, no. 4, pp. 755-8, 2008.
[19] P. R. Rayavarapu, N. Sharma, V. K. Peterson, and S. Adams, "Variation in Structure and Li+-Ion Migration in Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes," Journal of Solid State Electrochemistry, vol. 16, no. 5, pp. 1807-1813, 2011.
[20] N. J. J. de Klerk, I. Rosłoń, and M. Wagemaker, "Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder," Chemistry of Materials, vol. 28, no. 21, pp. 7955-7963, 2016.
[21] J. Auvergniot, A. Cassel, J. B. Ledeuil, V. Viallet, V. Seznec, and R. Dedryvere, "Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries," (in English), Chemistry of Materials, vol. 29, no. 9, pp. 3883-3890, 2017.
[22] Y. Zhu, X. He, and Y. Mo, "Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations," ACS Appl Mater Interfaces, vol. 7, no. 42, pp. 23685-93, 2015.
[23] J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, and P. G. Bruce, "Critical Stripping Current Leads to Dendrite Formation on Plating in Lithium Anode Solid Electrolyte Cells," Nat Mater, vol. 18, no. 10, pp. 1105-1111, 2019.
[24] K. Okada, N. Machida, M. Naito, T. Shigematsu, S. Ito, S. Fujiki, M. Nakano, and Y. Aihara, "Preparation and Electrochemical Properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for All-Solid-State Batteries," Solid State Ionics, vol. 255, pp. 120-127, 2014.
[25] N. Ohta, K. Takada, I. Sakaguchi, L. Q. Zhang, R. Z. Ma, K. Fukuda, M. Osada, and T. Sasaki, "LiNbO3-Coated LiCoO2 as Cathode Material for all Solid-State Lithium Secondary Batteries," (in English), Electrochem Commun, vol. 9, no. 7, pp. 1486-1490, 2007.
[26] S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T. Y. Kim, S. W. Baek, J. M. Lee, S. Doo, and N. Machida, "A Rocking Chair Type All-Solid-State Lithium Ion Battery Adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a Sulfide Based Electrolyte," (in English), J Power Sources, vol. 248, pp. 943-950, 2014.
[27] S. H. Jung, K. Oh, Y. J. Nam, D. Y. Oh, P. Bruner, K. Kang, and Y. S. Jung, "Li3BO3-Li2CO3: Rationally Designed Buffering Phase for Sulfide All Solid-State Li-Ion Batteries," (in English), Chemistry of Materials, vol. 30, no. 22, pp. 8190-8200, 2018.
[28] G. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, and Y. Cui, "Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes," Nat Nanotechnol, vol. 9, no. 8, pp. 618-23, 2014.
[29] W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, "Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte," J Am Chem Soc, vol. 138, no. 30, pp. 9385-8, 2016.
[30] M.-T. F. Rodrigues, K. Kalaga, H. Gullapalli, G. Babu, A. L. M. Reddy, and P. M. Ajayan, "Hexagonal Boron Nitride-Based Electrolyte Composite for Li-Ion Battery Operation from Room Temperature to 150 °C," Advanced Energy Materials, vol. 6, no. 12, p. 1600218, 2016.
[31] Q. Cheng, A. J. Li, N. Li, S. Li, A. Zangiabadi, T. D. Li, W. L. Huang, A. C. Li, T. W. Jin, Q. Q. Song, W. H. Xu, N. Ni, H. W. Zhai, M. Dontigny, K. Zaghib, X. Y. Chuan, D. Su, K. Yan, and Y. Yang, "Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating," (in English), Joule, vol. 3, no. 6, pp. 1510-1522, 2019.
[32] N. E. a. I. T. D. Organization. (2018) Aiming for a Breakthrough in the Transition to a Low-Carbon Society Advanced Batteries. Focus NEDO. 8-15.
[33] W. Quester, "Sketch Pseudopotentials," S. Pseudopotentials, Ed., ed. , 2006, p. Originally uploaded at en.wikipedia by W. Quester.Transferred from en.wikipedia to Commons by Leyo using CommonsHelper.
[34] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," (in English), Physical Review B, vol. 136, no. 3b, pp. B864-+, 1964.
[35] P. E. Blochl, "Projector Augmented-Wave method," Phys Rev B Condens Matter, vol. 50, no. 24, pp. 17953-17979, 1994.
[36] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, "Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation," Phys Rev B Condens Matter, vol. 46, no. 11, pp. 6671-6687, 1992.
[37] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys Rev Lett, vol. 77, no. 18, pp. 3865-3868, 1996.
[38] Y. K. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, "Self-Consistent-Field Calculations Using Chebyshev-Filtered Subspace Iteration," (in English), J Comput Phys, vol. 219, no. 1, pp. 172-184, 2006.
[39] S. Kristyán and P. Pulay, "Can (semi)local density functional theory account for the London dispersion forces?," Chemical Physics Letters, vol. 229, no. 3, pp. 175-180, 1994.
[40] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu," The Journal of Chemical Physics, vol. 132, no. 15, p. 154104, 2010.
[41] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950.
[42] Nzjacobmartin, "Statistical Ensembles," S. Ensembles, Ed., ed. en.wikipedia.org, 2017.
[43] G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys Rev B Condens Matter, vol. 54, no. 16, pp. 11169-11186, 1996.
[44] G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," (in English), Physical Review B, vol. 59, no. 3, pp. 1758-1775, 1999.
[45] E. J. Covington and D. J. Montgomery, "Lattice Constants of Separated Lithium Isotopes," The Journal of Chemical Physics, vol. 27, no. 5, pp. 1030-1032, 1957.
[46] E. R. Davidson, "The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices," J Comput Phys, vol. 17, no. 1, pp. 87-94, 1975.
[47] G. Kresse and J. Furthmüller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Physical Review B, vol. 54, no. 16, pp. 11169-11186, 1996.
[48] FDK株式會社. [Online]. Available: https://www.fdk.co.jp/
[49] R. S. Pease, "An X-Ray Study of Boron Nitride," Acta Crystallographica, vol. 5, no. 3, pp. 356-361, 1952.
[50] H.-J. Deiseroth, J. Maier, K. Weichert, V. Nickel, S.-T. Kong, and C. Reiner, "Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements," Zeitschrift für anorganische und allgemeine Chemie, vol. 637, no. 10, pp. 1287-1294, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *