帳號:guest(18.116.40.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):凡恩森
作者(外文):Nguyen, Vinh Son
論文名稱(中文):新穎材料用於高效率染料敏化太陽能電池之研究
論文名稱(外文):A Study on Novel Materials for High Efficiency Dye-Sensitized Solar Cells
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):陳志銘
劉振良
吳茂松
潘詠庭
口試委員(外文):Chen, Chih-Ming
Liu, Cheng-Liang
Wu, Mao-Sung
Pan, Yung-Tin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032895
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:183
中文關鍵詞:染料敏化太陽能電池電解液穩定度染料對電極
外文關鍵詞:dye-sensitized solar cellssensitizersredox shuttlesstabilitycounter electrodes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在從分子工程的面向開發高效率之染料敏化太陽能電池(DSSC)。目前已設計了許多染料,並結合不同的氧化還原介質應用於DSSC中。除了新穎的染料外,DSSC組成中的氧化還原介質、對電極之電化學特性及其對元件性能的影響皆被深入地研究,使其逐漸發展成熟。
染料敏化太陽能電池以弱光(像是螢光及LED等光源)下具有較好的光捕獲能力而聞名,然而DSSC在弱光與太陽光之性質差異非常大,因此大多數高效率之DSSC都是針對弱光條件下去設計的。在此,我們針對新穎的全色釕金屬染料進行研究,其帶有三級丁基取代的6-quinolin-8-yl-2,2’-bipyridine與外圍的輔助基團C3F7,不僅提升了可見光與近紅外光區域之光捕獲能力效率,還能有效抑制介面再結合。在太陽光模擬器與T5螢光下,TF36染料結合I-/I3-氧化還原介質的最佳效率分別為10.37%和31.82%。值得注意的是,此效率不需要共敏化及修改製作元件之流程即可達到。
在接下來的章節中,介紹了一種供體-π-受體結構的有機染料。此染料以1,2-di(anthracene-9-yl)ethyne基團作為延伸的 π-bridge,並且在第二個蒽基的4,5-位結合了雙羧基,第二個蒽基以及兩個錨定基團的引進能讓吸收光譜紅移以及改善元件的穩定性。
第四章針對新型“雙柵欄”結構的鋅-卟啉染料之開創性工作去做討論,該結構帶有四個在鄰位被長烷氧基取代的 β-苯基卟啉環。相較於其“單柵欄”內消旋替代之對應物,新提出的“雙柵欄”卟啉染料與Co3+/ Co2+氧化還原介質一起使用在抑制染料聚集與介面再結合有更好的表現。
第五章介紹了一系列根據Cu2+/ Cu+氧化還原介質所設計的蒽基-bridge染料。在蒽基 2,6-位取代的長鏈烷基抑制了染料聚集與電子再結合,得到 1.12 V 的高光電壓。此外,該染料在照度6000勒克斯之T5螢光下表現出37%的創紀錄效率。
第六章深入探討了TBP與[Cu(dmp)2] 2+/+的配位機制及其與元件穩定性的關係。通過光度滴定、循環伏安法和質子核磁共振光譜法證實了電解質中形成了新的氧化還原物質,並研究了它們在對電極處對電荷轉移的電化學性質。
TBP對原本氧化還原對造成破壞的解決方法將在接下來的兩章中被介紹。第一種解決方法使用了一系列的吡啶衍生物來檢查電解液添加物之結構對配位的影響,並研究了它們對電化學特性的影響,以期能提高元件的穩定性;第二種解決方法是透過分子工程設計一個以dmodmbp作為螯合配位基之新的銅氧化還原介質,不僅提升了PCE,而且還提高了元件的穩定性。
最後一章介紹了一種用於銅氧化還原對的新型鉑對電極材料。PVA-Pt奈米團簇的合成採用化學還原法,並以一種新型聚合物作為穩定劑;而PVA-Pt對電極是在沒有表面活性劑幫助的情況下透過“一步”浸漬法製備而成的。結合沉積機制,對 PVA-Pt 對電極的電化學特性進行了評估,顯示出其在[Cu(dmp)2] 2+/+氧化還原對下具有良好的催化表現。
The study focuses on the preparation of high-efficiency dye-sensitized solar cells (DSSCs) from various perspectives. In including sensitizer innovation, Cu(I)/Cu(II) redox couple implantation and nanosized Pt counter electrode renovation.
The first section summarizes comprehensive investigation of four novel sensitizer systems. In chapter 2, we report a novel panchromatic ruthenium(II)-based sensitizer bearing tert-butyl substituted 6-quinolin-8-yl-2,2’-bipyridine ancillary with peripheral C3F7, which not only enhances light harvesting efficiency in visible and near-IR region, matching with fluorescent light spectrum but also suppresses interfacial recombination. The best-performing sensitizer TF36 with iodide/triiodide (I-/I3-) redox system exhibits efficiency of 10.37 % and 31.82 % under simulated sunlight and T5 fluorescent, respectively. It is worth to mention that the device does not require modification of fabrication or co-sensitization. In the following chapter, a donor-π-acceptor organic sensitizer DY2, featuring 1,2-di(anthracene-9-yl)ethyne as an extended π-bridge with a dual carboxylic group incorporated at 4,5-positions of the second anthracene moiety is introduced. The introduction of second anthracene moiety and double anchors is in order to (i) red shift the absorption spectra and (ii) improve device stability.
In chapter 4, a pioneering work on zinc-porphyrin-based sensitizer using novel “double fence” architecture, dye bJS2, bearing four β-phenyl porphyrin rings substituted with long alkoxyl groups at the ortho-positions is presented. The proposed “double fence” porphyrin sensitizer used with tris-(2,2’-bipyridine)cobalt(III/II) redox mediator outperforms to its “single fence” meso-substituted counter parts due to better suppression of aggregation and interfacial recombination. In chapter 6, a series of anthracene-bridged sensitizers, namely CXC12 and CXC22, designed for copper(II/I) complex mediator is introduced. Long alkyl chains substituted at 2,6-positions of the anthracene on CXC12 suppress dye aggregation and electron recombination, yielding remarkable high photo-voltage of 1.12V. Meanwhile, its counterpart sensitizer CXC22 exhibits record efficiency of 37 % under 6000 lux T5 fluorescent illumination.
The second section of this dissertation dives into the mechanism of 4-tert-butylpyridine (TBP) coordination with bis(2,9-dimethyl-1,10-phenanthroline) copper(II/I), [Cu(dmp)2] 2+/+, and its connection to device stability. In chapter 6, the formation of new redox species in the electrolyte is confirmed by photometric titration, cyclic voltammetry, and proton nuclear magnetic resonance spectroscopy. In addition, their electrochemical properties toward charge transfer at counter electrode are also investigated. The solutions for TBP poison effect on Cu(dmp)2] 2+ are presented in chapter 7, where we examine the effect of additive structure to coordination behavior by using a series of pyridine derivatives. Their effects on electrochemical properties are carefully investigated with the intention of improving long-term stability of device. The second approach is molecularly engineered a new copper(II/I) complex mediator, which is presented in chapter 8. By using 4,4-dimethoxy-6,6’-dimethyl-2,2’-bipyridine), dmodmbp, as chelating ligand, new copper(II/I) complex not only improves PCE but also long-term stability.
The final section of this dissertation is a renovation project on polymer-capped Pt nanocluster-based counter electrode. We publish a unprecedent efficient Pt-based counter electrode material for copper(II/I) complex mediator. By using chemical reduction method, together with a new polymer as a stabilizer, polyvinyl alcohol-capped Pt (PVA-Pt) nanoclusters are synthesized. PVA-Pt counter electrode is prepared by “one-step” dipping process without the help of surfactant. Together with deposition mechanism, the electrochemical properties of PVA-Pt counter electrode are evaluated, showing excellent catalytic performance to [Cu(dmp)2] 2+/+ redox couple.
Acknowledgement------------------------------------------------- i
Abbreviations--------------------------------------------------- ii
Abstract-------------------------------------------------------- iv
摘要------------------------------------------------------------ vi
Table of Contents----------------------------------------------- viii
List of Figures and Schemes------------------------------------- xv
List of Table----------------------------------------------------xxiii
Chapter 1 Introduction-------------------------------------------1
1.1 Evolution of Photovoltaics-----------------------------------1
1.2 Dye-Sensitized Solar Cells-----------------------------------2
1.2.1 Configuration and working mechanism of Dye-sensitized Solar Cells------------------------------------------------------------3
1.2.2 Key components of Dye-sensitized Solar Cells---------------4
1.3 Poison issues in copper complex-based electrolyte------------14
1.4 Counter electrode for copper complex-based electrolyte-------16
1.5 Development of dye-sensitized solar cells for indoor applications------------------------------------------------------------------17
1.6 Main characterization methods--------------------------------19
1.6.1 Current-voltage (I-V) characteristics----------------------19
1.6.2 Electrochemical Impedance Spectroscopy---------------------21
1.7 The Aim of This Study----------------------------------------24
Chapter 2 High Efficiency Thiocyanate-Free Ruthenium Dye for Both of Outdoor and Indoor Applications----------------------------------26
2.1 Introduction-------------------------------------------------27
2.2 Experimental-------------------------------------------------29
2.2.1 Photophysical measurements---------------------------------29
2.2.2 DSSC fabrication-------------------------------------------29
2.2.3 Photovoltaic performance characterization------------------30
2.2.4 Measurement of device performance under dim light:---------31
2.2.5 EIS measurement--------------------------------------------31
2.2.6 Stability Test---------------------------------------------31
2.3 Results and Discussion---------------------------------------31
2.3.1 Optical and electrochemical properties---------------------31
2.3.2 Photovoltaic performance under different light sources-----33
2.4 Conclusion---------------------------------------------------42
Chapter 3 Anthracene-based Sensitizers with Double Anchors for Efficient and Stable Dye-Sensitized Solar Cells------------------44
3.1 Introduction-------------------------------------------------45
3.2 Experimental-------------------------------------------------46
3.2.1 Optical and Electrochemical measurements-------------------46
3.2.2 Device Fabrication for DSCs--------------------------------46
3.2.3 Measurement of device performance under artificial sun simulator:-------------------------------------------------------47
3.2.4 EIS Measurement of device performance:---------------------48
3.2.5 Stability Test---------------------------------------------48
3.3 Results and discussions--------------------------------------48
3.3.1 Optical and electrochemical properties---------------------48
3.3.2 Photovoltaic performance-----------------------------------51
3.3.3 Electrochemical impedance spectroscopy study---------------53
3.3.4 Device stability-------------------------------------------54
3.4 Conclusions--------------------------------------------------56
Chapter 4 Novel Double Fence Porphyrins Sensitizers for High Efficiency Dye-Sensitized Solar Cells----------------------------57
4.1 Introduction-------------------------------------------------58
4.2 Experimental-------------------------------------------------59
4.2.1 Device fabrication-----------------------------------------60
4.2.2 Photovoltaic performance characterization------------------60
4.2.3 Electrochemical impedance spectroscopy (EIS) measurement---61
4.2.4 Electrochemical measurements-------------------------------61
4.3 Results and discussions--------------------------------------61
4.3.1 Optical and electrochemical properties---------------------62
4.3.2 Density functional theory study----------------------------64
4.3.3 Photovoltaic Performance of DSSCs--------------------------65
4.3.4 Electrochemical impedance spectroscopy study---------------68
4.4 Conclusion---------------------------------------------------70
Chapter 5 Molecular Engineering of Anthracene-Bridged Sensitizer for Indoor Dye-Sensitized Solar Cells--------------------------------71
5.1 Introduction-------------------------------------------------72
5.2 Experimental-------------------------------------------------74
5.2.1 DFT calculations-------------------------------------------74
5.2.2 Electrochemical measurements-------------------------------74
5.2.3 Device fabrication-----------------------------------------74
5.2.4 Photovoltaic performance characterization------------------75
5.2.5 Measurement of device performance under dim light----------75
5.2.6 Electrochemical impedance spectroscopy (EIS) measurement---76
5.3 Results and Discussion---------------------------------------76
5.3.1 Optical and electrochemical properties---------------------76
5.3.2 Theoretical investigation----------------------------------80
5.3.3 Photovoltaic performance of CXC-based DSSCs with copper-based electrolyte------------------------------------------------------81
5.3.4 Electrochemical Impedance Spectroscopy study.--------------85
5.3.5 Device stability ------------------------------------------87
5.4 Conclusion.--------------------------------------------------88
Chapter 6 Tert-butylpyridine Coordination with [Cu(dmp)2]2+/+ Redox Couple and its Connection to the Stability of the Dye-sensitized Solar Cell-------------------------------------------------------------90
6.1 Introduction-------------------------------------------------91
6.2 Experimental Section-----------------------------------------92
6.2.1 Synthesis of copper complex--------------------------------92
6.2.2 DSSC fabrication-------------------------------------------92
6.2.3 Solar cell characterization--------------------------------94
6.2.4 UV-Vis measurement-----------------------------------------94
6.2.5 Electrochemical Characterization---------------------------94
6.2.6 NMR measurement--------------------------------------------94
6.3 Results and Discussion---------------------------------------95
6.4 Conclusions--------------------------------------------------108
Chapter 7 Stable Lewis base additive for copper complex-mediated dye-sensitized solar cells-------------------------------------------109
7.1 Introduction-------------------------------------------------110
7.2 Experimental-------------------------------------------------111
7.2.1 DSSC fabrication-------------------------------------------112
7.2.2 Characterization methods-----------------------------------112
7.3 Results and Discussions--------------------------------------113
7.3.1 Photophysical study----------------------------------------113
7.3.2 1H-NMR spectroscopy study----------------------------------117
7.3.3 Cyclic voltammetry measurement-----------------------------119
7.3.4 Electrochemical impedance spectroscopy---------------------121
7.3.5 Photovoltaic performance-----------------------------------122
7.3.6 Electron transport and recombination study-----------------123
7.3.7 Device stability-------------------------------------------125
7.4 Conclusions--------------------------------------------------127
Chapter 8 Stable Dye-Sensitized Solar Cells Based on New Copper(II/I) Complex Redox Mediator-------------------------------------------128
8.1 Introduction-------------------------------------------------129
8.2 Experimental-------------------------------------------------130
8.2.1 Optical and electrochemical properties---------------------130
8.2.2 Device fabrication-----------------------------------------131
8.2.3 Photovoltaic performance characterization------------------131
8.3 Results and discussions--------------------------------------131
8.3.1 Optical properties-----------------------------------------131
8.3.2 Electrochemical properties---------------------------------133
8.3.3 Photovoltaic performance-----------------------------------136
8.3.4 Device stability-------------------------------------------137
8.4 Conclusions--------------------------------------------------137
Chapter 9 Efficient polyvinyl alcohol-capped platinum counter electrode for copper complex-mediated dye-sensitized solar cells-139
9.1 Introduction-------------------------------------------------140
9.2 Experimental-------------------------------------------------141
9.2.1 Preparation of polymer-capped Pt nanoclusters--------------141
9.2.2 Preparation of counter electrode---------------------------141
9.2.3 Fabrication of DSSC----------------------------------------143
9.2.4 Characterizations------------------------------------------144
9.3 Results and Discussion---------------------------------------145
9.3.1 Characterization of Pt nanoclusters------------------------145
9.3.2 Deposition mechanism of PVA-Pt and PVP-Pt on FTO-----------146
9.3.3 Optical property, morphology and Pt loading of CEs---------149
9.3.4 Electrochemical catalytic performance of CEs---------------153
9.3.5 Photovoltaic performance and electrochemical stability-----156
9.4 Conclusion---------------------------------------------------158
Chapter 10 Conclusions-------------------------------------------159
Appendix---------------------------------------------------------163
References-------------------------------------------------------167
Curriculum Vitae-------------------------------------------------180

1. Agency IE. World Energy Outlook 2019. International Energy Agency; 2019.
2. Agency IE. World Energy Outlook 2020. International Energy Agency; 2020.
3. Green MA. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications. 2009;17(3):183-189.
4. Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Materials and Solar Cells. 2017;173:37-42.
5. Metaferia W, Schulte KL, Simon J, Johnston S, Ptak AJ. Gallium arsenide solar cells grown at rates exceeding 300 µm h−1 by hydride vapor phase epitaxy. Nature Communications. 2019;10(1):3361.
6. Kuang Y, Vece MD, Rath JK, Dijk Lv, Schropp REI. Elongated nanostructures for radial junction solar cells. Reports on Progress in Physics. 2013;76(10):106502.
7. Shockley W, Queisser HJ. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics. 1961;32(3):510-519.
8. Green MA. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications. 2001;9(2):123-135.
9. Tributsch H, Calvin M. ELECTROCHEMISTRY OF EXCITED MOLECULES: PHOTO-ELECTROCHEMICAL REACTIONS OF CHLOROPHYLLS*. Photochemistry and Photobiology. 1971;14(2):95-112.
10. Matsumura M, Matsudaira S, Tsubomura H, Takata M, Yanagida H. Dye Sensitization and Surface Structures of Semiconductor Electrodes. Industrial & Engineering Chemistry Product Research and Development. 1980;19(3):415-421.
11. Sima C, Grigoriu C, Antohe S. Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films. 2010;519(2):595-597.
12. Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, et al. Control of dark current in photoelectrochemical (TiO2/I−–I3−) and dye-sensitized solar cells. Chemical Communications. 2005(34):4351-4353.
13. Kavan L, Grätzel M. Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta. 1995;40(5):643-652.
14. Kim K-J, Benkstein KD, van de Lagemaat J, Frank AJ. Characteristics of Low-Temperature Annealed TiO2 Films Deposited by Precipitation from Hydrolyzed TiCl4 Solutions. Chemistry of Materials. 2002;14(3):1042-1047.
15. Kavan L, Tétreault N, Moehl T, Grätzel M. Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2014;118(30):16408-16418.
16. Hara K, Sugihara H, Tachibana Y, Islam A, Yanagida M, Sayama K, et al. Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers. Langmuir. 2001;17(19):5992-5999.
17. Zhai P, Hsieh T-Y, Yeh C-Y, Reddy KSK, Hu C-C, Su J-H, et al. Trifunctional TiO2 Nanoparticles with Exposed {001} Facets as Additives in Cobalt-Based Porphyrin-Sensitized Solar Cells. Advanced Functional Materials. 2015;25(38):6093-6100.
18. Li Z-Q, Ding Y, Mo L-E, Hu L-H, Wu J-H, Dai S-Y. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2015;7(40):22277-22283.
19. Anta JA, Guillén E, Tena-Zaera R. ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2012;116(21):11413-11425.
20. Guillén E, Peter LM, Anta JA. Electron Transport and Recombination in ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2011;115(45):22622-22632.
21. Gubbala S, Chakrapani V, Kumar V, Sunkara MK. Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires. Advanced Functional Materials. 2008;18(16):2411-2418.
22. Qian J, Liu P, Xiao Y, Jiang Y, Cao Y, Ai X, et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. Advanced Materials. 2009;21(36):3663-3667.
23. Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2003;4(2):145-153.
24. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-Sensitized Solar Cells. Chemical Reviews. 2010;110(11):6595-6663.
25. Wang P, Zakeeruddin SM, Moser J-E, Grätzel M. A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B. 2003;107(48):13280-13285.
26. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society. 1993;115(14):6382-6390.
27. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society. 2001;123(8):1613-1624.
28. Chen KS, Liu WH, Wang YH, Lai CH, Chou PT, Lee GH, et al. New Family of Ruthenium-Dye- Sensitized Nanocrystalline TiO2 Solar Cells with a High Solar-Energy-Conversion Efficiency. Advanced Functional Materials. 2007;17(15):2964-2974.
29. Wang S-W, Chou C-C, Hu F-C, Wu K-L, Chi Y, Clifford JN, et al. Panchromatic Ru(ii) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. Journal of Materials Chemistry A. 2014;2(41):17618-17627.
30. Chiang C-C, Hung C-Y, Chou S-W, Shyue J-J, Cheng K-Y, Chang P-J, et al. PtCoFe Nanowire Cathodes Boost Short-Circuit Currents of Ru(II)-Based Dye-Sensitized Solar Cells to a Power Conversion Efficiency of 12.29%. Advanced Functional Materials. 2018;28(3):1703282.
31. Privalov T, Boschloo G, Hagfeldt A, Svensson PH, Kloo L. A Study of the Interactions between I−/I3− Redox Mediators and Organometallic Sensitizing Dyes in Solar Cells. The Journal of Physical Chemistry C. 2009;113(2):783-790.
32. Tuyet Nguyen P, Degn R, Thai Nguyen H, Lund T. Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures. Solar Energy Materials and Solar Cells. 2009;93(11):1939-1945.
33. Nazeeruddin MK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Grätzel M. Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir. 2004;20(15):6514-6517.
34. Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, et al. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2007;111(32):11760-11762.
35. Park JK, Lee HR, Chen J, Shinokubo H, Osuka A, Kim D. Photoelectrochemical Properties of Doubly β-Functionalized Porphyrin Sensitizers for Dye-Sensitized Nanocrystalline-TiO2 Solar Cells. The Journal of Physical Chemistry C. 2008;112(42):16691-16699.
36. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, et al. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science. 2011;334(6056):629.
37. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry. 2014;6:242.
38. Shiu J-W, Chang Y-C, Chan C-Y, Wu H-P, Hsu H-Y, Wang C-L, et al. Panchromatic co-sensitization of porphyrin-sensitized solar cells to harvest near-infrared light beyond 900 nm. Journal of Materials Chemistry A. 2015;3(4):1417-1420.
39. Ball JM, Davis NKS, Wilkinson JD, Kirkpatrick J, Teuscher J, Gunning R, et al. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Advances. 2012;2(17):6846-6853.
40. Ji J-M, Zhou H, Eom YK, Kim CH, Kim HK. 14.2% Efficiency Dye-Sensitized Solar Cells by Co-sensitizing Novel Thieno[3,2-b]indole-Based Organic Dyes with a Promising Porphyrin Sensitizer. Advanced Energy Materials. 2020;10(15):2000124.
41. Ren Y, Sun D, Cao Y, Tsao HN, Yuan Y, Zakeeruddin SM, et al. A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency. Journal of the American Chemical Society. 2018;140(7):2405-2408.
42. Ning Z, Tian H. Triarylamine: a promising core unit for efficient photovoltaic materials. Chemical Communications. 2009(37):5483-5495.
43. Tingare YS, Vinh NSn, Chou H-H, Liu Y-C, Long Y-S, Wu T-C, et al. New Acetylene-Bridged 9,10-Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye-Sensitized Solar Cells. Advanced Energy Materials. 2017;7(18):1700032.
44. Yeh-Yung Lin R, Lin H-W, Yen Y-S, Chang C-H, Chou H-H, Chen P-W, et al. 2,6-Conjugated anthracene sensitizers for high-performance dye-sensitized solar cells. Energy & Environmental Science. 2013;6(8):2477-2486.
45. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications. 2008(41):5194-5196.
46. Wang Z-S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, et al. Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification. Chemistry of Materials. 2008;20(12):3993-4003.
47. Mishra A, Fischer MKR, Bäuerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie International Edition. 2009;48(14):2474-2499.
48. Clifford JN, Planells M, Palomares E. Advances in high efficiency dye sensitized solar cells based on Ru(ii) free sensitizers and a liquid redox electrolyte. Journal of Materials Chemistry. 2012;22(46):24195-24201.
49. Wu Y, Zhang X, Li W, Wang Z-S, Tian H, Zhu W. Hexylthiophene-Featured D–A–π–A Structural Indoline Chromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells. Advanced Energy Materials. 2012;2(1):149-156.
50. Cui Y, Wu Y, Lu X, Zhang X, Zhou G, Miapeh FB, et al. Incorporating Benzotriazole Moiety to Construct D–A−π–A Organic Sensitizers for Solar Cells: Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group. Chemistry of Materials. 2011;23(19):4394-4401.
51. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, et al. Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews. 2015;115(5):2136-2173.
52. Boschloo G, Hagfeldt A. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research. 2009;42(11):1819-1826.
53. Stergiopoulos T, Falaras P. Minimizing Energy Losses in Dye-Sensitized Solar Cells Using Coordination Compounds as Alternative Redox Mediators Coupled with Appropriate Organic Dyes. Advanced Energy Materials. 2012;2(6):616-627.
54. Snaith HJ. Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells. Advanced Functional Materials. 2010;20(1):13-19.
55. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2010;132(46):16714-16724.
56. Yum J-H, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Communications. 2012;3:631.
57. Freitag M, Giordano F, Yang W, Pazoki M, Hao Y, Zietz B, et al. Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2016;120(18):9595-9603.
58. Saygili Y, Soderberg M, Pellet N, Giordano F, Cao Y, Munoz-Garcia AB, et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J Am Chem Soc. 2016;138(45):15087-15096.
59. Zhang D, Stojanovic M, Ren Y, Cao Y, Eickemeyer FT, Socie E, et al. A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nature Communications. 2021;12(1):1777.
60. Ren Y, Zhang D, Suo J, Cao Y, Eickemeyer FT, Vlachopoulos N, et al. Hydroxamic acid preadsorption raises efficiency of cosensitized solar cells. Nature. 2022.
61. Yun S, Hagfeldt A, Ma T. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency. Advanced Materials. 2014;26(36):6210-6237.
62. Fang X, Ma T, Guan G, Akiyama M, Abe E. Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. Journal of Photochemistry and Photobiology A: Chemistry. 2004;164(1):179-182.
63. Lan J-L, Wang Y-Y, Wan C-C, Wei T-C, Feng H-P, Peng C, et al. The simple and easy way to manufacture counter electrode for dye-sensitized solar cells. Current Applied Physics. 2010;10(2, Supplement):S168-S171.
64. Hoa NTQ, Dao V-D, Choi H-S. Fabrication of platinum nanoparticle counter electrode for highly efficient dye-sensitized solar cells by controlled thermal reduction time. Journal of Materials Science. 2014;49(14):4973-4978.
65. Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells. 1996;44(1):99-117.
66. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, et al. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of The Electrochemical Society. 2006;153(12):A2255.
67. Ahmad S, Yum J-H, Xianxi Z, Grätzel M, Butt H-J, Nazeeruddin MK. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. Journal of Materials Chemistry. 2010;20(9):1654-1658.
68. Fang X, Ma T, Akiyama M, Guan G, Tsunematsu S, Abe E. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells. Thin Solid Films. 2005;472(1):242-245.
69. Boschloo G, Häggman L, Hagfeldt A. Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. The Journal of Physical Chemistry B. 2006;110(26):13144-13150.
70. Yang L, Lindblad R, Gabrielsson E, Boschloo G, Rensmo H, Sun L, et al. Experimental and Theoretical Investigation of the Function of 4-tert-Butyl Pyridine for Interface Energy Level Adjustment in Efficient Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2018;10(14):11572-11579.
71. Dürr M, Yasuda A, Nelles G. On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte. Applied Physics Letters. 2006;89(6):061110.
72. Rorabacher DB. Electron Transfer by Copper Centers. Chemical Reviews. 2004;104(2):651-698.
73. Hoffeditz WL, Katz MJ, Deria P, Cutsail Iii GE, Pellin MJ, Farha OK, et al. One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2016;120(7):3731-3740.
74. Kavan L, Saygili Y, Freitag M, Zakeeruddin SM, Hagfeldt A, Grätzel M. Electrochemical Properties of Cu(II/I)-Based Redox Mediators for Dye-Sensitized Solar Cells. Electrochimica Acta. 2017;227:194-202.
75. Saygili Y, Stojanovic M, Michaels H, Tiepelt J, Teuscher J, Massaro A, et al. Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Applied Energy Materials. 2018;1(9):4950-4962.
76. Fürer SO, Milhuisen RA, Kashif MK, Raga SR, Acharya SS, Forsyth C, et al. The Performance-Determining Role of Lewis Bases in Dye-Sensitized Solar Cells Employing Copper-Bisphenanthroline Redox Mediators. Advanced Energy Materials. 2020;10(37):2002067.
77. Hu M, Shen J, Yu Z, Liao R-Z, Gurzadyan GG, Yang X, et al. Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator. ACS Applied Materials & Interfaces. 2018;10(36):30409-30416.
78. Rui H, Shen J, Yu Z, Li L, Han H, Sun L. Stable Dye-Sensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand. Angewandte Chemie International Edition. 2021;n/a(n/a).
79. Park B-w, Pazoki M, Aitola K, Jeong S, Johansson EMJ, Hagfeldt A, et al. Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2014;6(3):2074-2079.
80. Cameron PJ, Peter LM, Zakeeruddin SM, Grätzel M. Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coordination Chemistry Reviews. 2004;248(13):1447-1453.
81. Roy-Mayhew JD, Boschloo G, Hagfeldt A, Aksay IA. Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2012;4(5):2794-2800.
82. Tsao HN, Burschka J, Yi C, Kessler F, Nazeeruddin MK, Grätzel M. Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science. 2011;4(12):4921-4924.
83. Ahmad S, Bessho T, Kessler F, Baranoff E, Frey J, Yi C, et al. A new generation of platinum and iodine free efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics. 2012;14(30):10631-10639.
84. Bunea GE, Wilson KE, Meydbray Y, Campbell MP, Ceuster DMD, editors. Low Light Performance of Mono-Crystalline Silicon Solar Cells. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference; 2006 7-12 May 2006.
85. Cojocaru L, Uchida S, Tamaki K, Jayaweera PVV, Kaneko S, Nakazaki J, et al. Determination of unique power conversion efficiency of solar cell showing hysteresis in the I-V curve under various light intensities. Scientific Reports. 2017;7(1):11790.
86. De Rossi F, Pontecorvo T, Brown TM. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy. 2015;156:413-422.
87. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics. 2017;11:372.
88. Cao Y, Liu Y, Zakeeruddin SM, Hagfeldt A, Grätzel M. Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule. 2018;2(6):1108-1117.
89. Freunek M, Freunek M, Reindl LM. Maximum efficiencies of indoor photovoltaic devices. IEEE Journal of Photovoltaics. 2013;3(1):59-64.
90. Ho JKW, Yin H, So SK. From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics. Journal of Materials Chemistry A. 2020;8(4):1717-1723.
91. Lu MN, Su T-S, Pylnev M, Long Y-S, Wu T-C, Tsai M-A, et al. Stepwise optimizing photovoltaic performance of dye-sensitized cells made under 50-lux dim light. Progress in Photovoltaics: Research and Applications. 2021;29(5):533-545.
92. Wang S, Zhang J, Gharbi O, Vivier V, Gao M, Orazem ME. Electrochemical impedance spectroscopy. Nature Reviews Methods Primers. 2021;1(1):41.
93. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells. 2005;87(1):117-131.
94. Bisquert J. Influence of the boundaries in the impedance of porous film electrodes. Physical Chemistry Chemical Physics. 2000;2(18):4185-4192.
95. Bisquert J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics. 2003;5(24):5360-5364.
96. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S. Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. The Journal of Physical Chemistry C. 2009;113(40):17278-17290.
97. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials. 2003;2(6):402-407.
98. O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737-740.
99. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society. 1993;115(14):6382-6390.
100. Nazeeruddin MK, Klein C, Liska P, Grätzel M. Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coordination Chemistry Reviews. 2005;249(13):1460-1467.
101. Wadman SH, Kroon JM, Bakker K, Lutz M, Spek AL, van Klink GPM, et al. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications. 2007(19):1907-1909.
102. Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, et al. New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society. 2009;131(16):5930-5934.
103. Wu K-L, Hsu H-C, Chen K, Chi Y, Chung M-W, Liu W-H, et al. Development of thiocyanate-free, charge-neutral Ru(ii) sensitizers for dye-sensitized solar cells. Chemical Communications. 2010;46(28):5124-5126.
104. Chou C-C, Wu K-L, Chi Y, Hu W-P, Yu SJ, Lee G-H, et al. Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition. 2011;50(9):2054-2058.
105. Wu K-L, Li C-H, Chi Y, Clifford JN, Cabau L, Palomares E, et al. Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2012;134(17):7488-7496.
106. Chou C-C, Hu F-C, Yeh H-H, Wu H-P, Chi Y, Clifford JN, et al. Highly Efficient Dye-Sensitized Solar Cells Based on Panchromatic Ruthenium Sensitizers with Quinolinylbipyridine Anchors. Angewandte Chemie International Edition. 2014;53(1):178-183.
107. Liu Y, Cao Y, Zhang W, Stojanovic M, Dar MI, Péchy P, et al. Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells. Angewandte Chemie International Edition. 2018;57(43):14125-14128.
108. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics. 2011;13(20):9083-9118.
109. Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. The Journal of Physical Chemistry B. 1997;101(14):2576-2582.
110. Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E. Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells. The Journal of Physical Chemistry. 1994;98(21):5552-5556.
111. Barendt TA, Ferreira L, Marques I, Félix V, Beer PD. Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane. Journal of the American Chemical Society. 2017;139(26):9026-9037.
112. Reddy KSK, Chen Y-C, Wu C-C, Hsu C-W, Chang Y-C, Chen C-M, et al. Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2018;10(3):2391-2399.
113. Justin Thomas KR, Singh P, Baheti A, Hsu Y-C, Ho K-C, Lin JTs. Electro-optical properties of new anthracene based organic dyes for dye-sensitized solar cells. Dyes and Pigments. 2011;91(1):33-43.
114. Teng C, Yang X, Yang C, Li S, Cheng M, Hagfeldt A, et al. Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2010;114(19):9101-9110.
115. Mai C-L, Moehl T, Kim Y, Ho F-Y, Comte P, Su P-C, et al. Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells. RSC Advances. 2014;4(66):35251-35257.
116. Hung W-I, Liao Y-Y, Lee T-H, Ting Y-C, Ni J-S, Kao W-S, et al. Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells. Chemical Communications. 2015;51(11):2152-2155.
117. Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EW-G, Grätzel M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor–Acceptor-Substituted Porphyrins. Angewandte Chemie International Edition. 2010;49(37):6646-6649.
118. Su T-S, Hsieh T-Y, Hong C-Y, Wei T-C. Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells. Scientific Reports. 2015;5(1):16098.
119. Jiang ML, Wen J-J, Chen Z-M, Tsai W-H, Lin T-C, Chow TJ, et al. High-Performance Organic Dyes with Electron-Deficient Quinoxalinoid Heterocycles for Dye-Sensitized Solar Cells under One Sun and Indoor Light. ChemSusChem. 2019;12(15):3654-3665.
120. Wang X, Wang Y, Zou J, Luo J, Li C, Xie Y. Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. ChemSusChem. 2022;15(16):e202201116.
121. Venkatesan S, Lin W-H, Hsu T-H, Teng H, Lee Y-L. Indoor Dye-Sensitized Solar Cells with Efficiencies Surpassing 26% Using Polymeric Counter Electrodes. ACS Sustainable Chemistry & Engineering. 2022;10(7):2473-2483.
122. Wei T-C, Wan C-C, Wang Y-Y, Chen C-m, Shiu H-s. Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium−Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2007;111(12):4847-4853.
123. Snaith HJ, Schmidt-Mende L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells. Advanced Materials. 2007;19(20):3187-3200.
124. Tian H, Sun L. Iodine-free redox couples for dye-sensitized solar cells. Journal of Materials Chemistry. 2011;21(29):10592-10601.
125. Yu Z, Vlachopoulos N, Gorlov M, Kloo L. Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions. 2011;40(40):10289-10303.
126. Daeneke T, Mozer AJ, Kwon T-H, Duffy NW, Holmes AB, Bach U, et al. Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy & Environmental Science. 2012;5(5):7090-7099.
127. Oskam G, Bergeron BV, Meyer GJ, Searson PC. Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. The Journal of Physical Chemistry B. 2001;105(29):6867-6873.
128. Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA. Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2002;124(37):11215-11222.
129. Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2005;127(26):9648-9654.
130. Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chemical Communications. 2011;47(15):4376-4378.
131. Kim J-Y, Kim JY, Lee D-K, Kim B, Kim H, Ko MJ. Importance of 4-tert-Butylpyridine in Electrolyte for Dye-Sensitized Solar Cells Employing SnO2 Electrode. The Journal of Physical Chemistry C. 2012;116(43):22759-22766.
132. Wang Y, Hamann TW. Improved performance induced by in situ ligand exchange reactions of copper bipyridyl redox couples in dye-sensitized solar cells. Chemical Communications. 2018;54(87):12361-12364.
133. Leandri V, Daniel Q, Chen H, Sun L, Gardner JM, Kloo L. Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex. Inorganic Chemistry. 2018;57(8):4556-4562.
134. Chen C-C, Nguyen VS, Chiu H-C, Chen Y-D, Wei T-C, Yeh C-Y. Anthracene-Bridged Sensitizers for Dye-Sensitized Solar Cells with 37% Efficiency under Dim Light. Advanced Energy Materials. 2022;12(20):2104051.
135. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, et al. Characteristics of High Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B. 2006;110(50):25210-25221.
136. Magni M, Giannuzzi R, Colombo A, Cipolla MP, Dragonetti C, Caramori S, et al. Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells. Inorganic Chemistry. 2016;55(11):5245-5253.
137. Nelson JJ, Amick TJ, Elliott CM. Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes. The Journal of Physical Chemistry C. 2008;112(46):18255-18263.
138. Liu Y-C, Chou H-H, Ho F-Y, Wei H-J, Wei T-C, Yeh C-Y. A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. Journal of Materials Chemistry A. 2016;4(30):11878-11887.
139. Kannankutty K, Chen C-C, Nguyen VS, Lin Y-C, Chou H-H, Yeh C-Y, et al. tert-Butylpyridine Coordination with [Cu(dmp)2]2+/+ Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces. 2020;12(5):5812-5819.
140. Ferdowsi P, Saygili Y, Zakeeruddin SM, Mokhtari J, Grätzel M, Hagfeldt A, et al. Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator. Electrochimica Acta. 2018;265:194-201.
141. Michaels H, Rinderle M, Freitag R, Benesperi I, Edvinsson T, Socher R, et al. Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chemical Science. 2020;11(11):2895-2906.
142. Cong J, Kinschel D, Daniel Q, Safdari M, Gabrielsson E, Chen H, et al. Bis(1,1-bis(2-pyridyl)ethane)copper(i/ii) as an efficient redox couple for liquid dye-sensitized solar cells. Journal of Materials Chemistry A. 2016;4(38):14550-14554.
143. Michaels H, Benesperi I, Edvinsson T, Muñoz-Garcia AB, Pavone M, Boschloo G, et al. Copper Complexes with Tetradentate Ligands for Enhanced Charge Transport in Dye-Sensitized Solar Cells. Inorganics [Internet]. 2018; 6(2).
144. Nguyen VS, Su T-S, Chen C-C, Yeh C-Y, Wei T-C. Efficient counter electrode for copper (I)(II)-mediated dye-sensitized solar cells based on polyvinyl alcohol capped platinum nanoclusters. Journal of the Taiwan Institute of Chemical Engineers. 2023;142:104626.
145. Hasin P, Alpuche-Aviles MA, Li Y, Wu Y. Mesoporous Nb-Doped TiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2009;113(17):7456-7460.
146. Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, et al. Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications. 2008;10(9):1299-1302.
147. Pradhan SC, Hagfeldt A, Soman S. Resurgence of DSCs with copper electrolyte: a detailed investigation of interfacial charge dynamics with cobalt and iodine based electrolytes. Journal of Materials Chemistry A. 2018;6(44):22204-22214.
148. Mosconi E, Yum J-H, Kessler F, Gómez García CJ, Zuccaccia C, Cinti A, et al. Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. Journal of the American Chemical Society. 2012;134(47):19438-19453.
149. Wei TC, Wan CC, Wang YY. Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters. 2006;88(10):103122.
150. Zhao Y, Baeza JA, Koteswara Rao N, Calvo L, Gilarranz MA, Li YD, et al. Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase. Journal of Catalysis. 2014;318:162-169.
151. Roy PS, Bhattacharya SK. Size-controlled synthesis and characterization of polyvinyl alcohol-coated platinum nanoparticles: role of particle size and capping polymer on the electrocatalytic activity. Catalysis Science & Technology. 2013;3(5):1314-1323.
152. Wang X, Huang C, Li X, Xie C, Yu S. PVA-encapsulated Palladium Nanoparticles: Eco-friendly and Highly Selective Catalyst for Hydrogenation of Nitrobenzene in Aqueous Medium. Chemistry – An Asian Journal. 2019;14(13):2266-2272.
153. Qiu L, Liu F, Zhao L, Yang W, Yao J. Evidence of a Unique Electron Donor−Acceptor Property for Platinum Nanoparticles as Studied by XPS. Langmuir. 2006;22(10):4480-4482.
154. Louette P, Bodino F, Pireaux J-J. Poly(vinyl alcohol) (PVA) XPS Reference Core Level and Energy Loss Spectra. Surface Science Spectra. 2005;12(1):106-110.
155. Safo IA, Werheid M, Dosche C, Oezaslan M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances. 2019;1(8):3095-3106.
156. Hsieh T-Y, Wei T-C, Zhai P, Feng S-P, Ikegami M, Miyasaka T. A room-temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-sensitized cells. Journal of Power Sources. 2015;283:351-357.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *