|
1. Agency IE. World Energy Outlook 2019. International Energy Agency; 2019. 2. Agency IE. World Energy Outlook 2020. International Energy Agency; 2020. 3. Green MA. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications. 2009;17(3):183-189. 4. Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Materials and Solar Cells. 2017;173:37-42. 5. Metaferia W, Schulte KL, Simon J, Johnston S, Ptak AJ. Gallium arsenide solar cells grown at rates exceeding 300 µm h−1 by hydride vapor phase epitaxy. Nature Communications. 2019;10(1):3361. 6. Kuang Y, Vece MD, Rath JK, Dijk Lv, Schropp REI. Elongated nanostructures for radial junction solar cells. Reports on Progress in Physics. 2013;76(10):106502. 7. Shockley W, Queisser HJ. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics. 1961;32(3):510-519. 8. Green MA. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications. 2001;9(2):123-135. 9. Tributsch H, Calvin M. ELECTROCHEMISTRY OF EXCITED MOLECULES: PHOTO-ELECTROCHEMICAL REACTIONS OF CHLOROPHYLLS*. Photochemistry and Photobiology. 1971;14(2):95-112. 10. Matsumura M, Matsudaira S, Tsubomura H, Takata M, Yanagida H. Dye Sensitization and Surface Structures of Semiconductor Electrodes. Industrial & Engineering Chemistry Product Research and Development. 1980;19(3):415-421. 11. Sima C, Grigoriu C, Antohe S. Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films. 2010;519(2):595-597. 12. Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, et al. Control of dark current in photoelectrochemical (TiO2/I−–I3−) and dye-sensitized solar cells. Chemical Communications. 2005(34):4351-4353. 13. Kavan L, Grätzel M. Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta. 1995;40(5):643-652. 14. Kim K-J, Benkstein KD, van de Lagemaat J, Frank AJ. Characteristics of Low-Temperature Annealed TiO2 Films Deposited by Precipitation from Hydrolyzed TiCl4 Solutions. Chemistry of Materials. 2002;14(3):1042-1047. 15. Kavan L, Tétreault N, Moehl T, Grätzel M. Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2014;118(30):16408-16418. 16. Hara K, Sugihara H, Tachibana Y, Islam A, Yanagida M, Sayama K, et al. Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers. Langmuir. 2001;17(19):5992-5999. 17. Zhai P, Hsieh T-Y, Yeh C-Y, Reddy KSK, Hu C-C, Su J-H, et al. Trifunctional TiO2 Nanoparticles with Exposed {001} Facets as Additives in Cobalt-Based Porphyrin-Sensitized Solar Cells. Advanced Functional Materials. 2015;25(38):6093-6100. 18. Li Z-Q, Ding Y, Mo L-E, Hu L-H, Wu J-H, Dai S-Y. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2015;7(40):22277-22283. 19. Anta JA, Guillén E, Tena-Zaera R. ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2012;116(21):11413-11425. 20. Guillén E, Peter LM, Anta JA. Electron Transport and Recombination in ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2011;115(45):22622-22632. 21. Gubbala S, Chakrapani V, Kumar V, Sunkara MK. Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires. Advanced Functional Materials. 2008;18(16):2411-2418. 22. Qian J, Liu P, Xiao Y, Jiang Y, Cao Y, Ai X, et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. Advanced Materials. 2009;21(36):3663-3667. 23. Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2003;4(2):145-153. 24. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-Sensitized Solar Cells. Chemical Reviews. 2010;110(11):6595-6663. 25. Wang P, Zakeeruddin SM, Moser J-E, Grätzel M. A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B. 2003;107(48):13280-13285. 26. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society. 1993;115(14):6382-6390. 27. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society. 2001;123(8):1613-1624. 28. Chen KS, Liu WH, Wang YH, Lai CH, Chou PT, Lee GH, et al. New Family of Ruthenium-Dye- Sensitized Nanocrystalline TiO2 Solar Cells with a High Solar-Energy-Conversion Efficiency. Advanced Functional Materials. 2007;17(15):2964-2974. 29. Wang S-W, Chou C-C, Hu F-C, Wu K-L, Chi Y, Clifford JN, et al. Panchromatic Ru(ii) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. Journal of Materials Chemistry A. 2014;2(41):17618-17627. 30. Chiang C-C, Hung C-Y, Chou S-W, Shyue J-J, Cheng K-Y, Chang P-J, et al. PtCoFe Nanowire Cathodes Boost Short-Circuit Currents of Ru(II)-Based Dye-Sensitized Solar Cells to a Power Conversion Efficiency of 12.29%. Advanced Functional Materials. 2018;28(3):1703282. 31. Privalov T, Boschloo G, Hagfeldt A, Svensson PH, Kloo L. A Study of the Interactions between I−/I3− Redox Mediators and Organometallic Sensitizing Dyes in Solar Cells. The Journal of Physical Chemistry C. 2009;113(2):783-790. 32. Tuyet Nguyen P, Degn R, Thai Nguyen H, Lund T. Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures. Solar Energy Materials and Solar Cells. 2009;93(11):1939-1945. 33. Nazeeruddin MK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Grätzel M. Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir. 2004;20(15):6514-6517. 34. Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, et al. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2007;111(32):11760-11762. 35. Park JK, Lee HR, Chen J, Shinokubo H, Osuka A, Kim D. Photoelectrochemical Properties of Doubly β-Functionalized Porphyrin Sensitizers for Dye-Sensitized Nanocrystalline-TiO2 Solar Cells. The Journal of Physical Chemistry C. 2008;112(42):16691-16699. 36. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, et al. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science. 2011;334(6056):629. 37. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry. 2014;6:242. 38. Shiu J-W, Chang Y-C, Chan C-Y, Wu H-P, Hsu H-Y, Wang C-L, et al. Panchromatic co-sensitization of porphyrin-sensitized solar cells to harvest near-infrared light beyond 900 nm. Journal of Materials Chemistry A. 2015;3(4):1417-1420. 39. Ball JM, Davis NKS, Wilkinson JD, Kirkpatrick J, Teuscher J, Gunning R, et al. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Advances. 2012;2(17):6846-6853. 40. Ji J-M, Zhou H, Eom YK, Kim CH, Kim HK. 14.2% Efficiency Dye-Sensitized Solar Cells by Co-sensitizing Novel Thieno[3,2-b]indole-Based Organic Dyes with a Promising Porphyrin Sensitizer. Advanced Energy Materials. 2020;10(15):2000124. 41. Ren Y, Sun D, Cao Y, Tsao HN, Yuan Y, Zakeeruddin SM, et al. A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency. Journal of the American Chemical Society. 2018;140(7):2405-2408. 42. Ning Z, Tian H. Triarylamine: a promising core unit for efficient photovoltaic materials. Chemical Communications. 2009(37):5483-5495. 43. Tingare YS, Vinh NSn, Chou H-H, Liu Y-C, Long Y-S, Wu T-C, et al. New Acetylene-Bridged 9,10-Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye-Sensitized Solar Cells. Advanced Energy Materials. 2017;7(18):1700032. 44. Yeh-Yung Lin R, Lin H-W, Yen Y-S, Chang C-H, Chou H-H, Chen P-W, et al. 2,6-Conjugated anthracene sensitizers for high-performance dye-sensitized solar cells. Energy & Environmental Science. 2013;6(8):2477-2486. 45. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications. 2008(41):5194-5196. 46. Wang Z-S, Koumura N, Cui Y, Takahashi M, Sekiguchi H, Mori A, et al. Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification. Chemistry of Materials. 2008;20(12):3993-4003. 47. Mishra A, Fischer MKR, Bäuerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie International Edition. 2009;48(14):2474-2499. 48. Clifford JN, Planells M, Palomares E. Advances in high efficiency dye sensitized solar cells based on Ru(ii) free sensitizers and a liquid redox electrolyte. Journal of Materials Chemistry. 2012;22(46):24195-24201. 49. Wu Y, Zhang X, Li W, Wang Z-S, Tian H, Zhu W. Hexylthiophene-Featured D–A–π–A Structural Indoline Chromophores for Coadsorbent-Free and Panchromatic Dye-Sensitized Solar Cells. Advanced Energy Materials. 2012;2(1):149-156. 50. Cui Y, Wu Y, Lu X, Zhang X, Zhou G, Miapeh FB, et al. Incorporating Benzotriazole Moiety to Construct D–A−π–A Organic Sensitizers for Solar Cells: Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group. Chemistry of Materials. 2011;23(19):4394-4401. 51. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, et al. Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews. 2015;115(5):2136-2173. 52. Boschloo G, Hagfeldt A. Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research. 2009;42(11):1819-1826. 53. Stergiopoulos T, Falaras P. Minimizing Energy Losses in Dye-Sensitized Solar Cells Using Coordination Compounds as Alternative Redox Mediators Coupled with Appropriate Organic Dyes. Advanced Energy Materials. 2012;2(6):616-627. 54. Snaith HJ. Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells. Advanced Functional Materials. 2010;20(1):13-19. 55. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2010;132(46):16714-16724. 56. Yum J-H, Baranoff E, Kessler F, Moehl T, Ahmad S, Bessho T, et al. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Communications. 2012;3:631. 57. Freitag M, Giordano F, Yang W, Pazoki M, Hao Y, Zietz B, et al. Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2016;120(18):9595-9603. 58. Saygili Y, Soderberg M, Pellet N, Giordano F, Cao Y, Munoz-Garcia AB, et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J Am Chem Soc. 2016;138(45):15087-15096. 59. Zhang D, Stojanovic M, Ren Y, Cao Y, Eickemeyer FT, Socie E, et al. A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nature Communications. 2021;12(1):1777. 60. Ren Y, Zhang D, Suo J, Cao Y, Eickemeyer FT, Vlachopoulos N, et al. Hydroxamic acid preadsorption raises efficiency of cosensitized solar cells. Nature. 2022. 61. Yun S, Hagfeldt A, Ma T. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency. Advanced Materials. 2014;26(36):6210-6237. 62. Fang X, Ma T, Guan G, Akiyama M, Abe E. Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. Journal of Photochemistry and Photobiology A: Chemistry. 2004;164(1):179-182. 63. Lan J-L, Wang Y-Y, Wan C-C, Wei T-C, Feng H-P, Peng C, et al. The simple and easy way to manufacture counter electrode for dye-sensitized solar cells. Current Applied Physics. 2010;10(2, Supplement):S168-S171. 64. Hoa NTQ, Dao V-D, Choi H-S. Fabrication of platinum nanoparticle counter electrode for highly efficient dye-sensitized solar cells by controlled thermal reduction time. Journal of Materials Science. 2014;49(14):4973-4978. 65. Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells. 1996;44(1):99-117. 66. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, et al. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of The Electrochemical Society. 2006;153(12):A2255. 67. Ahmad S, Yum J-H, Xianxi Z, Grätzel M, Butt H-J, Nazeeruddin MK. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. Journal of Materials Chemistry. 2010;20(9):1654-1658. 68. Fang X, Ma T, Akiyama M, Guan G, Tsunematsu S, Abe E. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells. Thin Solid Films. 2005;472(1):242-245. 69. Boschloo G, Häggman L, Hagfeldt A. Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. The Journal of Physical Chemistry B. 2006;110(26):13144-13150. 70. Yang L, Lindblad R, Gabrielsson E, Boschloo G, Rensmo H, Sun L, et al. Experimental and Theoretical Investigation of the Function of 4-tert-Butyl Pyridine for Interface Energy Level Adjustment in Efficient Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2018;10(14):11572-11579. 71. Dürr M, Yasuda A, Nelles G. On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte. Applied Physics Letters. 2006;89(6):061110. 72. Rorabacher DB. Electron Transfer by Copper Centers. Chemical Reviews. 2004;104(2):651-698. 73. Hoffeditz WL, Katz MJ, Deria P, Cutsail Iii GE, Pellin MJ, Farha OK, et al. One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2016;120(7):3731-3740. 74. Kavan L, Saygili Y, Freitag M, Zakeeruddin SM, Hagfeldt A, Grätzel M. Electrochemical Properties of Cu(II/I)-Based Redox Mediators for Dye-Sensitized Solar Cells. Electrochimica Acta. 2017;227:194-202. 75. Saygili Y, Stojanovic M, Michaels H, Tiepelt J, Teuscher J, Massaro A, et al. Effect of Coordination Sphere Geometry of Copper Redox Mediators on Regeneration and Recombination Behavior in Dye-Sensitized Solar Cell Applications. ACS Applied Energy Materials. 2018;1(9):4950-4962. 76. Fürer SO, Milhuisen RA, Kashif MK, Raga SR, Acharya SS, Forsyth C, et al. The Performance-Determining Role of Lewis Bases in Dye-Sensitized Solar Cells Employing Copper-Bisphenanthroline Redox Mediators. Advanced Energy Materials. 2020;10(37):2002067. 77. Hu M, Shen J, Yu Z, Liao R-Z, Gurzadyan GG, Yang X, et al. Efficient and Stable Dye-Sensitized Solar Cells Based on a Tetradentate Copper(II/I) Redox Mediator. ACS Applied Materials & Interfaces. 2018;10(36):30409-30416. 78. Rui H, Shen J, Yu Z, Li L, Han H, Sun L. Stable Dye-Sensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand. Angewandte Chemie International Edition. 2021;n/a(n/a). 79. Park B-w, Pazoki M, Aitola K, Jeong S, Johansson EMJ, Hagfeldt A, et al. Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2014;6(3):2074-2079. 80. Cameron PJ, Peter LM, Zakeeruddin SM, Grätzel M. Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coordination Chemistry Reviews. 2004;248(13):1447-1453. 81. Roy-Mayhew JD, Boschloo G, Hagfeldt A, Aksay IA. Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2012;4(5):2794-2800. 82. Tsao HN, Burschka J, Yi C, Kessler F, Nazeeruddin MK, Grätzel M. Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science. 2011;4(12):4921-4924. 83. Ahmad S, Bessho T, Kessler F, Baranoff E, Frey J, Yi C, et al. A new generation of platinum and iodine free efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics. 2012;14(30):10631-10639. 84. Bunea GE, Wilson KE, Meydbray Y, Campbell MP, Ceuster DMD, editors. Low Light Performance of Mono-Crystalline Silicon Solar Cells. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference; 2006 7-12 May 2006. 85. Cojocaru L, Uchida S, Tamaki K, Jayaweera PVV, Kaneko S, Nakazaki J, et al. Determination of unique power conversion efficiency of solar cell showing hysteresis in the I-V curve under various light intensities. Scientific Reports. 2017;7(1):11790. 86. De Rossi F, Pontecorvo T, Brown TM. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy. 2015;156:413-422. 87. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics. 2017;11:372. 88. Cao Y, Liu Y, Zakeeruddin SM, Hagfeldt A, Grätzel M. Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule. 2018;2(6):1108-1117. 89. Freunek M, Freunek M, Reindl LM. Maximum efficiencies of indoor photovoltaic devices. IEEE Journal of Photovoltaics. 2013;3(1):59-64. 90. Ho JKW, Yin H, So SK. From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics. Journal of Materials Chemistry A. 2020;8(4):1717-1723. 91. Lu MN, Su T-S, Pylnev M, Long Y-S, Wu T-C, Tsai M-A, et al. Stepwise optimizing photovoltaic performance of dye-sensitized cells made under 50-lux dim light. Progress in Photovoltaics: Research and Applications. 2021;29(5):533-545. 92. Wang S, Zhang J, Gharbi O, Vivier V, Gao M, Orazem ME. Electrochemical impedance spectroscopy. Nature Reviews Methods Primers. 2021;1(1):41. 93. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells. 2005;87(1):117-131. 94. Bisquert J. Influence of the boundaries in the impedance of porous film electrodes. Physical Chemistry Chemical Physics. 2000;2(18):4185-4192. 95. Bisquert J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics. 2003;5(24):5360-5364. 96. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S. Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. The Journal of Physical Chemistry C. 2009;113(40):17278-17290. 97. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials. 2003;2(6):402-407. 98. O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737-740. 99. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society. 1993;115(14):6382-6390. 100. Nazeeruddin MK, Klein C, Liska P, Grätzel M. Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coordination Chemistry Reviews. 2005;249(13):1460-1467. 101. Wadman SH, Kroon JM, Bakker K, Lutz M, Spek AL, van Klink GPM, et al. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications. 2007(19):1907-1909. 102. Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, et al. New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society. 2009;131(16):5930-5934. 103. Wu K-L, Hsu H-C, Chen K, Chi Y, Chung M-W, Liu W-H, et al. Development of thiocyanate-free, charge-neutral Ru(ii) sensitizers for dye-sensitized solar cells. Chemical Communications. 2010;46(28):5124-5126. 104. Chou C-C, Wu K-L, Chi Y, Hu W-P, Yu SJ, Lee G-H, et al. Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition. 2011;50(9):2054-2058. 105. Wu K-L, Li C-H, Chi Y, Clifford JN, Cabau L, Palomares E, et al. Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2012;134(17):7488-7496. 106. Chou C-C, Hu F-C, Yeh H-H, Wu H-P, Chi Y, Clifford JN, et al. Highly Efficient Dye-Sensitized Solar Cells Based on Panchromatic Ruthenium Sensitizers with Quinolinylbipyridine Anchors. Angewandte Chemie International Edition. 2014;53(1):178-183. 107. Liu Y, Cao Y, Zhang W, Stojanovic M, Dar MI, Péchy P, et al. Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells. Angewandte Chemie International Edition. 2018;57(43):14125-14128. 108. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics. 2011;13(20):9083-9118. 109. Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. The Journal of Physical Chemistry B. 1997;101(14):2576-2582. 110. Soedergren S, Hagfeldt A, Olsson J, Lindquist S-E. Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells. The Journal of Physical Chemistry. 1994;98(21):5552-5556. 111. Barendt TA, Ferreira L, Marques I, Félix V, Beer PD. Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane. Journal of the American Chemical Society. 2017;139(26):9026-9037. 112. Reddy KSK, Chen Y-C, Wu C-C, Hsu C-W, Chang Y-C, Chen C-M, et al. Cosensitization of Structurally Simple Porphyrin and Anthracene-Based Dye for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces. 2018;10(3):2391-2399. 113. Justin Thomas KR, Singh P, Baheti A, Hsu Y-C, Ho K-C, Lin JTs. Electro-optical properties of new anthracene based organic dyes for dye-sensitized solar cells. Dyes and Pigments. 2011;91(1):33-43. 114. Teng C, Yang X, Yang C, Li S, Cheng M, Hagfeldt A, et al. Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2010;114(19):9101-9110. 115. Mai C-L, Moehl T, Kim Y, Ho F-Y, Comte P, Su P-C, et al. Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells. RSC Advances. 2014;4(66):35251-35257. 116. Hung W-I, Liao Y-Y, Lee T-H, Ting Y-C, Ni J-S, Kao W-S, et al. Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells. Chemical Communications. 2015;51(11):2152-2155. 117. Bessho T, Zakeeruddin SM, Yeh C-Y, Diau EW-G, Grätzel M. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor–Acceptor-Substituted Porphyrins. Angewandte Chemie International Edition. 2010;49(37):6646-6649. 118. Su T-S, Hsieh T-Y, Hong C-Y, Wei T-C. Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells. Scientific Reports. 2015;5(1):16098. 119. Jiang ML, Wen J-J, Chen Z-M, Tsai W-H, Lin T-C, Chow TJ, et al. High-Performance Organic Dyes with Electron-Deficient Quinoxalinoid Heterocycles for Dye-Sensitized Solar Cells under One Sun and Indoor Light. ChemSusChem. 2019;12(15):3654-3665. 120. Wang X, Wang Y, Zou J, Luo J, Li C, Xie Y. Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. ChemSusChem. 2022;15(16):e202201116. 121. Venkatesan S, Lin W-H, Hsu T-H, Teng H, Lee Y-L. Indoor Dye-Sensitized Solar Cells with Efficiencies Surpassing 26% Using Polymeric Counter Electrodes. ACS Sustainable Chemistry & Engineering. 2022;10(7):2473-2483. 122. Wei T-C, Wan C-C, Wang Y-Y, Chen C-m, Shiu H-s. Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium−Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2007;111(12):4847-4853. 123. Snaith HJ, Schmidt-Mende L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells. Advanced Materials. 2007;19(20):3187-3200. 124. Tian H, Sun L. Iodine-free redox couples for dye-sensitized solar cells. Journal of Materials Chemistry. 2011;21(29):10592-10601. 125. Yu Z, Vlachopoulos N, Gorlov M, Kloo L. Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions. 2011;40(40):10289-10303. 126. Daeneke T, Mozer AJ, Kwon T-H, Duffy NW, Holmes AB, Bach U, et al. Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. Energy & Environmental Science. 2012;5(5):7090-7099. 127. Oskam G, Bergeron BV, Meyer GJ, Searson PC. Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. The Journal of Physical Chemistry B. 2001;105(29):6867-6873. 128. Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA. Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2002;124(37):11215-11222. 129. Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2005;127(26):9648-9654. 130. Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chemical Communications. 2011;47(15):4376-4378. 131. Kim J-Y, Kim JY, Lee D-K, Kim B, Kim H, Ko MJ. Importance of 4-tert-Butylpyridine in Electrolyte for Dye-Sensitized Solar Cells Employing SnO2 Electrode. The Journal of Physical Chemistry C. 2012;116(43):22759-22766. 132. Wang Y, Hamann TW. Improved performance induced by in situ ligand exchange reactions of copper bipyridyl redox couples in dye-sensitized solar cells. Chemical Communications. 2018;54(87):12361-12364. 133. Leandri V, Daniel Q, Chen H, Sun L, Gardner JM, Kloo L. Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex. Inorganic Chemistry. 2018;57(8):4556-4562. 134. Chen C-C, Nguyen VS, Chiu H-C, Chen Y-D, Wei T-C, Yeh C-Y. Anthracene-Bridged Sensitizers for Dye-Sensitized Solar Cells with 37% Efficiency under Dim Light. Advanced Energy Materials. 2022;12(20):2104051. 135. Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, et al. Characteristics of High Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B. 2006;110(50):25210-25221. 136. Magni M, Giannuzzi R, Colombo A, Cipolla MP, Dragonetti C, Caramori S, et al. Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells. Inorganic Chemistry. 2016;55(11):5245-5253. 137. Nelson JJ, Amick TJ, Elliott CM. Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO2 Photoanodes. The Journal of Physical Chemistry C. 2008;112(46):18255-18263. 138. Liu Y-C, Chou H-H, Ho F-Y, Wei H-J, Wei T-C, Yeh C-Y. A feasible scalable porphyrin dye for dye-sensitized solar cells under one sun and dim light environments. Journal of Materials Chemistry A. 2016;4(30):11878-11887. 139. Kannankutty K, Chen C-C, Nguyen VS, Lin Y-C, Chou H-H, Yeh C-Y, et al. tert-Butylpyridine Coordination with [Cu(dmp)2]2+/+ Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces. 2020;12(5):5812-5819. 140. Ferdowsi P, Saygili Y, Zakeeruddin SM, Mokhtari J, Grätzel M, Hagfeldt A, et al. Alternative bases to 4-tert-butylpyridine for dye-sensitized solar cells employing copper redox mediator. Electrochimica Acta. 2018;265:194-201. 141. Michaels H, Rinderle M, Freitag R, Benesperi I, Edvinsson T, Socher R, et al. Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chemical Science. 2020;11(11):2895-2906. 142. Cong J, Kinschel D, Daniel Q, Safdari M, Gabrielsson E, Chen H, et al. Bis(1,1-bis(2-pyridyl)ethane)copper(i/ii) as an efficient redox couple for liquid dye-sensitized solar cells. Journal of Materials Chemistry A. 2016;4(38):14550-14554. 143. Michaels H, Benesperi I, Edvinsson T, Muñoz-Garcia AB, Pavone M, Boschloo G, et al. Copper Complexes with Tetradentate Ligands for Enhanced Charge Transport in Dye-Sensitized Solar Cells. Inorganics [Internet]. 2018; 6(2). 144. Nguyen VS, Su T-S, Chen C-C, Yeh C-Y, Wei T-C. Efficient counter electrode for copper (I)(II)-mediated dye-sensitized solar cells based on polyvinyl alcohol capped platinum nanoclusters. Journal of the Taiwan Institute of Chemical Engineers. 2023;142:104626. 145. Hasin P, Alpuche-Aviles MA, Li Y, Wu Y. Mesoporous Nb-Doped TiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C. 2009;113(17):7456-7460. 146. Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, et al. Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications. 2008;10(9):1299-1302. 147. Pradhan SC, Hagfeldt A, Soman S. Resurgence of DSCs with copper electrolyte: a detailed investigation of interfacial charge dynamics with cobalt and iodine based electrolytes. Journal of Materials Chemistry A. 2018;6(44):22204-22214. 148. Mosconi E, Yum J-H, Kessler F, Gómez García CJ, Zuccaccia C, Cinti A, et al. Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. Journal of the American Chemical Society. 2012;134(47):19438-19453. 149. Wei TC, Wan CC, Wang YY. Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters. 2006;88(10):103122. 150. Zhao Y, Baeza JA, Koteswara Rao N, Calvo L, Gilarranz MA, Li YD, et al. Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase. Journal of Catalysis. 2014;318:162-169. 151. Roy PS, Bhattacharya SK. Size-controlled synthesis and characterization of polyvinyl alcohol-coated platinum nanoparticles: role of particle size and capping polymer on the electrocatalytic activity. Catalysis Science & Technology. 2013;3(5):1314-1323. 152. Wang X, Huang C, Li X, Xie C, Yu S. PVA-encapsulated Palladium Nanoparticles: Eco-friendly and Highly Selective Catalyst for Hydrogenation of Nitrobenzene in Aqueous Medium. Chemistry – An Asian Journal. 2019;14(13):2266-2272. 153. Qiu L, Liu F, Zhao L, Yang W, Yao J. Evidence of a Unique Electron Donor−Acceptor Property for Platinum Nanoparticles as Studied by XPS. Langmuir. 2006;22(10):4480-4482. 154. Louette P, Bodino F, Pireaux J-J. Poly(vinyl alcohol) (PVA) XPS Reference Core Level and Energy Loss Spectra. Surface Science Spectra. 2005;12(1):106-110. 155. Safo IA, Werheid M, Dosche C, Oezaslan M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances. 2019;1(8):3095-3106. 156. Hsieh T-Y, Wei T-C, Zhai P, Feng S-P, Ikegami M, Miyasaka T. A room-temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-sensitized cells. Journal of Power Sources. 2015;283:351-357.
|