帳號:guest(18.224.68.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮黃清竹
作者(外文):Nguyen Hoang Thanh Truc
論文名稱(中文):探討以甲醇生成作為二氧化碳再利用途徑:銅混成式奈米結構觸媒之開發與應用
論文名稱(外文):Understanding Methanol Synthesis via CO2 Utilization and Using Copper-based Hybrid Nanostructured Catalysts
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):呂世源
潘詠庭
李岱洲
陳炳宏
口試委員(外文):Lu, Shih-Yuan
Pan, Yung-Tin
Lee, Tai-Chou
Chen, Bing-Hung
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032894
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:156
中文關鍵詞:一氧化碳二氧化碳甲醇觸媒奈米粒子
外文關鍵詞:COCO2MethanolCatalystNanoparticlesCopper
相關次數:
  • 推薦推薦:0
  • 點閱點閱:408
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二氧化碳作為排放量最大的溫室氣體,如何抑止二氧化碳的排放在現今引起人們廣泛的注意,也因此發展出了許多策略來減緩二氧化碳排放至大氣中所引發的相關問題。其中將二氧化碳氫化轉換成碳氫化合物被認為是一個十分有效的方式,對於能源與化學品提供了有效的循環利用。本研究選用以銅金屬作為基底之混成式奈米材料作為觸媒,探討二氧化碳氫化反應合成化學品之應用。
第一部分的研究為探討以溶膠-凝膠法製備而成的Cu-ZnO混成式奈米材料催化二氧化碳氫化產甲醇之反應。在此方法中,以透過膠體穩定化之Al2O3奈米粒子作為載體,使用共沉澱合成方法將Cu (活性金屬)與ZnO (促進劑)擔載在載體上,形成分散良好的Cu-ZnO@Al2O3奈米粒子團簇。透過分析發現添加Al2O3奈米粒子作為載體,會增進樣品之金屬的分散度以及Cu-ZnO界面形成的鹼性點位數量,且透過胺基矽烷將Al2O3奈米粒子的表面官能化也有助於提升此混成結構的活性金屬表面積。透過使用Cu-ZnO@Al2O3奈米粒子團簇催化二氧化碳氫化產甲醇之反應,可以觀察到二氧化碳之轉化率與活性金屬表面積具有正相關的關係;當Al2O3於觸媒內的擔載量達到35-36 %時,具有最佳的選擇率 (47-49 %),此結果與在該組成下觸媒材料具有最高的中等鹼性位點相符合。此部分研究顯示出基於對材料特性的理解所合成之混成式奈米材料針對二氧化碳氫化產甲醇之反應具有優異的催化表現。
在本研究的第二部分中,發展出能夠提高二氧化碳之平衡轉化率及甲醇選擇率之二氧化碳之氫化反應系統。在實驗上,透過加入一氧化碳與二氧化碳共同進行氫化反應來達成,並以擔載於Al2O3載體上的銅基底混成式觸媒作為催化劑。結果顯示出一氧化碳/二氧化碳之加氫甲醇化在低溫(220 °C)、高壓(30 bar)的反應條件下其甲醇空間產率(STYMeOH)最高可以達到6.1 mmolgcat-1h-1,約為原來的3.2倍。此部分的研究顯示出開發之混成式奈米觸媒材料在對催化一氧化碳/二氧化碳之加氫甲醇化反應具有相當優異的表現,並且對於Cu-ZnO界面在催化反應上的機制具有更深入的了解。
此研究為混成式奈米觸媒材料之合成開闢了新的視野,有助於對二氧化碳氫化反應於觸媒上的協同催化提供了更深入的了解與探討,期望可以再達成減少溫室氣體排放的同時也將其轉換為具有附加價值之化學品的目標。
Carbon dioxide (CO2) is by far the most emitted greenhouse gas; and the restraint of CO2 emission is yielding a great interest. There are several methods to mitigate the issue of CO2 emission to the atmosphere. CO2 hydrogenation to hydrocarbons, which in the past has showed great promise among these methods. It also offers an opportunity to build a sustainable strategy for energy and chemical production. A systematic study is carried out based on the development of facile approaches for fabricating Cu-based hybrid nanostructures as catalysts for the hydrogenation of CO2 to produce useful chemicals.
In the first stage of our research work, a facile sol-gel approach is demonstrated for the fabrication of Cu-ZnO-based hybrid nanostructures for the catalytic CO2 hydrogenation to methanol. The method combines colloid stabilization of Al2O3 nanoparticles (as support material) and controlled co-precipitation of Cu (active metal) and ZnO (promoter) onto the Al2O3 nanoparticles. The results show a successful synthesis of ultrafine Cu-ZnO nanocrystallites deposited on the Al2O3 nanoparticle clusters (Cu-ZnO@Al2O3). Hybridization with Al2O3 nanoparticles enhances metal dispersion and number of basic sites of the Cu-ZnO-based nanocatalyst. Aminosilane-based surface functionalization on the Al2O3 nanoparticle increases metal surface area in the hybrid nanostructure. The CO2 conversion catalyzed by the synthesized Cu-ZnO@Al2O3 is shown to be proportional to active surface area of the hybrid nanostructure. An optimum selectivity of the synthesized catalyst is identified (47-49 %) when the mass fraction of Al2O3 is 35-36 %, in correspondence to the highest moderate basicity of the synthesized hybrid nanostructures. The work demonstrates a prototype study of fabricating high-performance hybrid nanocatalyst with the support of mechanistic understanding in material synthesis for the synergistic catalysis of CO2 hydrogenation to methanol.
In the second stage, a catalytic reaction system is developed for the study of the CO2 hydrogenation with improved both equilibrium conversion ratio of CO2 and selectivity to methanol. Experimentally, a combined (CO2 + CO) hydrogenation process is proposed as an alternative two-stage route for methanol production. Cu-based hybrid catalysts supported on alumina nanoparticle clusters were developed for promoting methanol production. The results show an increase of 3.2 times in methanol space-time yield (STYMeOH) at 220 C by incorporating CO to the CO2 hydrogenation process, and the maximum STYMeOH, 6.1 mmolgcat-1h-1, was achievable under a low-temperature (220 C), moderate high-pressure operation (30 bar). The work demonstrates a rational design of hybrid nanostructured material to achieve superior catalytic performance in the combined (CO2 + CO) hydrogenation. The mechanistic understanding gives insights into the interfacial catalysis by Cu-ZnO hybrid nanostructured materials for methanol production.
In summary, we demonstrate a facile route for the fabrication of hybrid nanostructured catalyst material. The mechanistic understanding presented in this study gives insight into the study of synergistic catalysis for the CO2 conversion, achieving the goal of simultaneous production of value chemical production and reduction of greenhouse gas.
摘要 I
Abstract III
Table of contents V
List of figures VIII
List of tables XI
List of abbreviations XII
Chapter 1: Introduction 1
1.1. CO2 utilization 1
1.1.1. Sources of CO2 1
1.1.2. Carbon capture, utilization and storage 2
1.1.3. CO2-based C1 chemistry 5
1.2. Methanol synthesis from CO2 hydrogenation 6
1.2.1. Methanol 6
1.2.2. CO2 hydrogenation to methanol 9
1.2.3. Combined (CO2 + CO) hydrogenation to methanol 10
1.3. Catalysts for the CO2 hydrogenation 15
1.3.1. Hybrid nanostructure design 15
1.3.2. Heterogeneous catalytic hydrogenation of CO2 to methanol 17
1.3.3. Synthesis methods of hybrid nanostructure 21
1.4. Research objective 24
Chapter 2: Experimental methods 26
2.1. Material 26
2.2. Synthesis of the catalyst 27
2.2.1. Cu-ZnO@Al2O3-based hybrid nanostructures for CO2 hydrogenation to methanol 27
2.2.2. Cu-ZnO/Al2O3 hybrid nanostructures for combined (CO2 + CO) hydrogenation to methanol 30
2.3. Material characterization 34
2.3.1. Field emission high-resolution transmission electron microscope (HR-TEM) coupled with energy dispersive spectrometer (EDS) 34
2.3.2. Field emission scanning electron microscope (FE-SEM) coupled with energy dispersive spectrometer (EDS) 34
2.3.3. X-ray diffraction (XRD) 34
2.3.4. X-ray photoelectron spectroscopy (XPS) 35
2.3.5. Zeta potential measurement 35
2.3.6. Thermogravimetric analysis (TGA) 36
2.3.7. Inductively coupled plasma optical emission spectrometry (ICP-OES) 36
2.3.8. The Brunauer-Emmett-Teller (BET) surface area analyzer 36
2.3.9. Electrospray-Differential Mobility Analyzer (ES-DMA) 36
2.3.10. Chemisorption analyses 37
2.4. High-pressure fixed-bed reaction system 40
2.4.1. Cu-ZnO@Al2O3-based hybrid nanoparticle for catalytic CO2 hydrogenation to methanol 40
2.4.2. Cu-ZnO/Al2O3 hybrid nanostructures for combined (CO2 + CO) hydrogenation to methanol 43
2.5. Calculation of equilibrium conversions of CO2 and CO hydrogenation to methanol over various feedstock conditions 47
Chapter 3: Results and discussion 51
3.1. Cu-ZnO@Al2O3 hybrid nanoparticle for catalytic CO2 conversion to methanol 51
3.1.1. Morphology and composition of the Cu-ZnO@Al2O3 synthesized catalysts 51
3.1.2. Surface area and metal dispersion of the Cu-ZnO@Al2O3 synthesized catalysts 67
3.1.3. Basicity of the Cu-ZnO@Al2O3 synthesized nanocatalyst 71
3.1.4. Redox ability of the Cu-ZnO@Al2O3 synthesized catalyst 75
3.1.5. Activity test of the Cu-ZnO@Al2O3 synthesized catalyst 77
3.2. Low-Temperature Methanol Synthesis via (CO2 + CO) Combined Hydrogenation using Cu-ZnO/Al2O3 Hybrid Nanoparticle Cluster [42] 89
3.2.1. Morphology and Composition of the Cu-ZnO/Al2O3 synthesized catalysts 89
3.2.2. Surface area and metal dispersion of the Cu-ZnO/Al2O3 synthesized catalysts 96
3.2.3. Basicity of the Cu-ZnO/Al2O3 synthesized nanocatalyst 98
3.2.4. Redox ability of the Cu-ZnO/Al2O3 synthesized catalyst 101
3.2.5. Study of H2, CO and CO2 pulse chemisorptions of the Cu-ZnO/Al2O3 synthesized catalyst 108
3.2.6. Activity test of the Cu-ZnO/Al2O3 synthesized catalyst 110
Chapter 4: Conclusions 137
Chapter 5: Future work 139
References 145
Appendix 156

[1] E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci., 6 (2013) 3112-3135.
[2] J. Hansson, R. Hackl, M. Taljegard, S. Brynolf, M. Grahn, The potential for electrofuels production in Sweden utilizing fossil and biogenic CO2 point sources, Frontiers in Energy Research, 5 (2017) 4.
[3] K. Ahmed Ali, M.I. Ahmad, Y. Yusup, Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector, Sustainability, 12 (2020) 7427.
[4] H. Al Baroudi, A. Awoyomi, K. Patchigolla, K. Jonnalagadda, E.J. Anthony, A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage, Applied Energy, 287 (2021) 116510.
[5] C. Growth, The UK Carbon Capture Usage and Storage Deployment Pathway-an Action Plan, (2018).
[6] P. Styring, D. Jansen, H. De Coninick, H. Reith, K. Armstrong, Carbon Capture and Utilisation in the green economy, Centre for Low Carbon Futures New York, NY, USA, 2011.
[7] H. Khoo, J. Bu, R. Wong, S. Kuan, P. Sharratt, Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation, Energy Procedia, 4 (2011) 2494-2501.
[8] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chemical Society Reviews, 49 (2020) 1385-1413.
[9] H.M. Polat, S. Kavak, H. Kulak, A. Uzun, S. Keskin, CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: Linking high-throughput computational screening with experiments, Chemical Engineering Journal, (2020) 124916.
[10] H. Kulak, H.M. Polat, S. Kavak, S. Keskin, A. Uzun, Improving CO2 Separation Performance of MIL‐53 (Al) by Incorporating 1‐n‐Butyl‐3‐Methylimidazolium Methyl Sulfate, Energy Technology, 7 (2019) 1900157.
[11] L. Lin, S. Yao, Z. Liu, F. Zhang, N. Li, D. Vovchok, A. Martínez-Arias, R. Castañeda, J. Lin, S.D. Senanayake, In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity, The Journal of Physical Chemistry C, 122 (2018) 12934-12943.
[12] H.-L. Wang, C.-Y. Hsu, K.C. Wu, Y.-F. Lin, D.-H. Tsai, Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications, Advanced Powder Technology, 31 (2020) 104-120.
[13] S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis, Science, 352 (2016) 969-974.
[14] M.M.-J. Li, C. Chen, T.c.e. Ayvalı, H. Suo, J. Zheng, I.F. Teixeira, L. Ye, H. Zou, D. O’Hare, S.C.E. Tsang, CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors, ACS Catalysis, 8 (2018) 4390-4401.
[15] E. Alper, O.Y. Orhan, CO2 utilization: Developments in conversion processes, Petroleum, 3 (2017) 109-126.
[16] S. Moret, P.J. Dyson, G. Laurenczy, Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media, Nature Communications, 5 (2014) 1-7.
[17] C.M. Jens, K. Nowakowski, J. Scheffczyk, K. Leonhard, A. Bardow, CO from CO2 and fluctuating renewable energy via formic-acid derivatives, Green Chemistry, 18 (2016) 5621-5629.
[18] J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry, Angewandte Chemie International Edition, 55 (2016) 7296-7343.
[19] D.H. König, N. Baucks, R.-U. Dietrich, A. Wörner, Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2, Energy, 91 (2015) 833-841.
[20] A.A. Kiss, J. Pragt, H. Vos, G. Bargeman, M. De Groot, Novel efficient process for methanol synthesis by CO2 hydrogenation, Chemical Engineering Journal, 284 (2016) 260-269.
[21] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation-From fundamentals to current projects, Fuel, 166 (2016) 276-296.
[22] S. Roy, A. Cherevotan, S.C. Peter, Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges, ACS Energy Letters, 3 (2018) 1938-1966.
[23] G.A. Olah, Beyond oil and gas: the methanol economy, Angewandte Chemie International Edition, 44 (2005) 2636-2639.
[24] E. Ortelli, J. Wambach, A. Wokaun, Methanol synthesis reactions over a CuZr based catalyst investigated using periodic variations of reactant concentrations, Applied Catalysis A: General, 216 (2001) 227-241.
[25] F. Dalena, A. Senatore, M. Basile, S. Knani, A. Basile, A. Iulianelli, Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology, Membranes, 8 (2018) 98.
[26] V.R. Surisetty, A.K. Dalai, J. Kozinski, Alcohols as alternative fuels: An overview, Applied Catalysis A: General, 404 (2011) 1-11.
[27] S. Saeidi, N.A.S. Amin, M.R. Rahimpour, Hydrogenation of CO2 to value-added products-A review and potential future developments, Journal of CO2 Utilization, 5 (2014) 66-81.
[28] S.A. Al-Saydeh, S.J. Zaidi, Carbon dioxide conversion to methanol: opportunities and fundamental challenges, Carbon dioxide chemistry, Capture and Oil Recovery, 41 (2018).
[29] M. Pérez-Fortes, J.C. Schöneberger, A. Boulamanti, E. Tzimas, Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment, Applied Energy, 161 (2016) 718-732.
[30] C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catalysis Today, 115 (2006) 2-32.
[31] M. Aresta, A. Dibenedetto, E. Quaranta, State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology, Journal of Catalysis, 343 (2016) 2-45.
[32] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40 (2011) 3703-3727.
[33] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, A short review of catalysis for CO2 conversion, Catalysis Today, 148 (2009) 221-231.
[34] M.M.J. Li, H. Zou, J. Zheng, T.S. Wu, T.S. Chan, Y.L. Soo, X.P. Wu, X.Q. Gong, T. Chen, K. Roy, Methanol synthesis at a wide range of H2/CO2 ratios over a Rh‐In bimetallic catalyst, Angewandte Chemie, 132 (2020) 16173-16180.
[35] J. Skrzypek, M. Lachowska, D. Serafin, Methanol synthesis from CO2 and H2: dependence of equilibrium conversions and exit equilibrium concentrations of components on the main process variables, Chem. Eng. Sci., 45 (1990) 89-96.
[36] R. Gaikwad, A. Bansode, A. Urakawa, High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol, Journal of Catalysis, 343 (2016) 127-132.
[37] V.D. Dasireddy, S.Š. Neja, L. Blaž, Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol, Journal of CO2 Utilization, 28 (2018) 189-199.
[38] M.M.-J. Li, Z. Zeng, F. Liao, X. Hong, S.C.E. Tsang, Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts, Journal of Catalysis, 343 (2016) 157-167.
[39] L. Zhang, Y. Zhang, S. Chen, Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation, Applied Catalysis A: General, 415 (2012) 118-123.
[40] Q. Sun, C.-W. Liu, W. Pan, Q.-M. Zhu, J.-F. Deng, In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst, Applied Catalysis A: General, 171 (1998) 301-308.
[41] Y. Zhang, Q. Sun, J. Deng, D. Wu, S. Chen, A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties, Applied Catalysis A: General, 158 (1997) 105-120.
[42] T.T.Nguyen Hoang, D.-H. Tsai, Low-temperature methanol synthesis via (CO2 + CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster, Applied Catalysis A: General, 645 (2022) 118844.
[43] O.-S. Joo, K.-D. Jung, I. Moon, A.Y. Rozovskii, G.I. Lin, S.-H. Han, S.-J. Uhm, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process), Ind. Eng. Chem. Res., 38 (1999) 1808-1812.
[44] J.S. Lee, K.H. Lee, S.Y. Lee, Y.G. Kim, A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst, Journal of Catalysis, 144 (1993) 414-424.
[45] L. Grabow, M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation, ACS Catalysis, 1 (2011) 365-384.
[46] C.J. Cramer, D.G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Phys. Chem. Chem. Phys., 11 (2009) 10757-10816.
[47] J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts, Nat. Chem., 1 (2009) 37-46.
[48] M. Behrens, Promoting the synthesis of methanol: understanding the requirements for an industrial catalyst for the conversion of CO2, Angewandte Chemie International Edition, 55 (2016) 14906-14908.
[49] D. Theleritis, M. Makri, S. Souentie, A. Caravaca, A. Katsaounis, C.G. Vayenas, Comparative Study of the Electrochemical Promotion of CO2 Hydrogenation over Ru‐Supported Catalysts using Electronegative and Electropositive Promoters, ChemElectroChem, 1 (2014) 254-262.
[50] K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels, ACS Catalysis, 6 (2016) 7485-7527.
[51] K. Ahmad, S. Upadhyayula, Greenhouse gas CO2 hydrogenation to fuels: A thermodynamic analysis, Environmental Progress & Sustainable Energy, 38 (2019) 98-111.
[52] A. Álvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes, Chemical Reviews, 117 (2017) 9804-9838.
[53] Y. Li, S.H. Chan, Q. Sun, Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review, Nanoscale, 7 (2015) 8663-8683.
[54] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, Y. Sun, Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol, Journal of Catalysis, 298 (2013) 51-60.
[55] M.K. Koh, Y.J. Wong, S.P. Chai, A.R. Mohamed, Carbon dioxide hydrogenation to methanol over multi-functional catalyst: Effects of reactants adsorption and metal-oxide(s) interfacial area, Journal of Industrial and Engineering Chemistry, 62 (2018) 156-165.
[56] G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteri, The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol, Applied Catalysis B: Environmental, 152 (2014) 152-161.
[57] U.J. Etim, Y. Song, Z. Zhong, Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol As a Renewable Energy Storage Media, Frontiers in Energy Research, (2020) 239.
[58] O.A. Ojelade, S.F. Zaman, A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study, Catalysis Surveys from Asia, 24 (2020) 11-37.
[59] C. Huang, S. Chen, X. Fei, D. Liu, Y. Zhang, Catalytic hydrogenation of CO2 to methanol: study of synergistic effect on adsorption properties of CO2 and H2 in CuO/ZnO/ZrO2 system, Catalysts, 5 (2015) 1846-1861.
[60] A.e. Prašnikar, A. Pavlišič, F. Ruiz-Zepeda, J. Kovač, B. Likozar, Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol, Industrial & Engineering Chemistry Research, 58 (2019) 13021-13029.
[61] S. Natesakhawat, J.W. Lekse, J.P. Baltrus, P.R. Ohodnicki Jr, B.H. Howard, X. Deng, C. Matranga, Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol, ACS Catalysis, 2 (2012) 1667-1676.
[62] Y. Wang, S. Kattel, W. Gao, K. Li, P. Liu, J.G. Chen, H. Wang, Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol, Nature Communications, 10 (2019) 1-10.
[63] A. Goeppert, M. Czaun, J.-P. Jones, G.S. Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products-closing the loop, Chemical Society Reviews, 43 (2014) 7995-8048.
[64] G.H. Gunasekar, J. Shin, K.-D. Jung, K. Park, S. Yoon, Design strategy toward recyclable and highly efficient heterogeneous catalysts for the hydrogenation of CO2 to formate, ACS Catalysis, 8 (2018) 4346-4353.
[65] R.-P. Ye, J. Ding, W. Gong, M.D. Argyle, Q. Zhong, Y. Wang, C.K. Russell, Z. Xu, A.G. Russell, Q. Li, CO2 hydrogenation to high-value products via heterogeneous catalysis, Nature Communications, 10 (2019) 1-15.
[66] H.-Y. Chang, G.-H. Lai, D.-H. Tsai, Aerosol route synthesis of Ni-CeO2-Al2O3 hybrid nanoparticle cluster for catalysis of reductive amination of polypropylene glycol, Advanced Powder Technology, 30 (2019) 2293-2298.
[67] Y.-S. Chen, C.-M. Yang, T.T. Nguyen Hoang, D.-H. Tsai, Porous magnesia-alumina composite nanoparticle for biodiesel production, Fuel, 285 (2021) 119203.
[68] Z. Zhong, U.J. Etim, Y. Song, Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media, Frontiers in Energy Research, (2020) 239.
[69] M. Zabilskiy, V.L. Sushkevich, D. Palagin, M.A. Newton, F. Krumeich, J.A. Van Bokhoven, The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol, Nature Communications, 11 (2020) 1-8.
[70] F.C. Marcos, L. Lin, L.E. Betancourt, S.D. Senanayake, J.A. Rodriguez, J.M. Assaf, R. Giudici, E.M. Assaf, Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio, Journal of CO2 Utilization, 41 (2020) 101215.
[71] M.M.-J. Li, S.C.E. Tsang, Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: a mini-review and prospects, Catalysis Science & Technology, 8 (2018) 3450-3464.
[72] T. Liu, X. Hong, G. Liu, In Situ Generation of the Cu@3D-ZrOx Framework Catalyst for Selective Methanol Synthesis from CO2/H2, ACS Catalysis, 10 (2019) 93-102.
[73] K. Deng, L. Lin, N. Rui, D. Vovchok, F. Zhang, S. Zhang, S.D. Senanayake, T. Kim, J.A. Rodriguez, Studies of CO2 hydrogenation over cobalt/ceria catalysts with in situ characterization: the effect of cobalt loading and metal-support interactions on the catalytic activity, Catalysis Science & Technology, 10 (2020) 6468-6482.
[74] T.-Y. Liang, P.Y. Low, Y.-S. Lin, D.-H. Tsai, Spherical Porous Nanoclusters of NiO and CeO2 Nanoparticles as Catalysts for Syngas Production, ACS Applied Nano Materials, 3 (2020) 9035-9045.
[75] T.-Y. Liang, H.-H. Chen, D.-H. Tsai, Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming, Fuel Processing Technology, 201 (2020) 106335.
[76] Y. Sun, C. Huang, L. Chen, Y. Zhang, M. Fu, J. Wu, D. Ye, Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions, Journal of CO2 Utilization, 37 (2020) 55-64.
[77] Z. Zhong, U.J. Etim, Y. Song, Improving the Cu/ZnO-based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol as a Renewable Energy Storage Media, Frontiers in Energy Research, 8 (2020) 239.
[78] Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu (111), Cu clusters, and Cu/ZnO (000 ), Phys. Chem. Chem. Phys., 12 (2010) 9909-9917.
[79] S. Dang, H. Yang, P. Gao, H. Wang, X. Li, W. Wei, Y. Sun, A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation, Catalysis Today, 330 (2019) 61-75.
[80] C. Tisseraud, C. Comminges, S. Pronier, Y. Pouilloux, A. Le Valant, The Cu-ZnO synergy in methanol synthesis Part 3: Impact of the composition of a selective Cu@ZnOx core-shell catalyst on methanol rate explained by experimental studies and a concentric spheres model, Journal of Catalysis, 343 (2016) 106-114.
[81] F. Chen, P.P. Zhang, L.W. Xiao, J. Liang, B. Zhang, H. Zhao, R. Kosol, Q. Ma, J. Chen, X.B. Peng, Structure-Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2, ACS Applied Materials & Interfaces, 13 (2021) 8191-8205.
[82] X. Fang, L. Xia, S. Li, Z. Hong, M. Yang, X. Xu, J. Xu, X. Wang, Superior 3DOM Y2Zr2O7 supports for Ni to fabricate highly active and selective catalysts for CO2 methanation, Fuel, 293 (2021) 120460.
[83] J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlögl, M. Behrens, Synthesis and characterisation of a highly active Cu/ZnO: Al catalyst, ChemCatChem, 6 (2014) 2889-2897.
[84] N. Mota, R. Guil-Lopez, B. Pawelec, J. Fierro, R. Navarro, Highly active Cu/ZnO–Al catalyst for methanol synthesis: effect of aging on its structure and activity, RSC Advances, 8 (2018) 20619-20629.
[85] D.-B. Cao, Y.-W. Li, J. Wang, H. Jiao, Mechanism of γ-Al2O3 Support in CO2 Reforming of CH4-A Density Functional Theory Study, The Journal of Physical Chemistry C, 115 (2011) 225-233.
[86] Y.-F. Zhao, Y. Yang, C. Mims, C.H. Peden, J. Li, D. Mei, Insight into methanol synthesis from CO2 hydrogenation on Cu (1 1 1): complex reaction network and the effects of H2O, Journal of Catalysis, 281 (2011) 199-211.
[87] M.D. Porosoff, B. Yan, J.G. Chen, Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities, Energy & Environmental Science, 9 (2016) 62-73.
[88] I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, Recent developments on heterogeneous catalytic CO2 reduction to methanol, Journal of CO2 Utilization, 34 (2019) 20-33.
[89] Y. Yang, M.G. White, P. Liu, Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu (111) surfaces, The Journal of Physical Chemistry C, 116 (2012) 248-256.
[90] G. Dutta, A.A. Sokol, C.R.A. Catlow, T.W. Keal, P. Sherwood, Activation of carbon dioxide over zinc oxide by localised electrons, ChemPhysChem, 13 (2012) 3453-3456.
[91] J. Toyir, P.R.r. de la Piscina, J.L.G. Fierro, N.s. Homs, Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors, Applied Catalysis B: Environmental, 34 (2001) 255-266.
[92] H. Lei, R. Nie, G. Wu, Z. Hou, Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology, Fuel, 154 (2015) 161-166.
[93] C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux, A. Le Valant, The Cu-ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu-ZnO coprecipitate catalysts, Journal of Catalysis, 330 (2015) 533-544.
[94] R. Guil-López, N. Mota, J. Llorente, E. Millán, B. Pawelec, J.L.G. Fierro, R. Navarro, Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis, Materials, 12 (2019) 3902.
[95] A.G. Walton, H. Füredi, P.J. Elving, I.M. Kolthoff, The formation and properties of precipitates, Interscience Publishers New York, 1967.
[96] M.S. Rafique, M. Rafique, M.B. Tahir, S. Hajra, T. Nawaz, F. Shafiq, Synthesis methods of nanostructures, in: Nanotechnology and Photocatalysis for Environmental Applications, Elsevier, (2020) 45-56.
[97] A.V. Rane, K. Kanny, V. Abitha, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites, in: Synthesis of inorganic nanomaterials, Elsevier, (2018) 121-139.
[98] Y.-C. Lai, C.-S. Lai, J.-T. Tai, T.P. Nguyen, H.-L. Wang, C.-Y. Lin, T.-Y. Tsai, H.-C. Ho, P.-H. Wang, Y.-C. Liao, D.-H. Tsai, Understanding ligand-nanoparticle interactions for silica, ceria, and titania nanopowders, Advanced Powder Technology, 26 (2015) 1676-1686.
[99] D.-H. Tsai, T.-J. Huang, Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation, Applied Catalysis A: General, 223 (2002) 1-9.
[100] J.B. Wang, D.-H. Tsai, T.-J. Huang, Synergistic catalysis of carbon monoxide oxidation over copper oxide supported on samaria-doped ceria, Journal of Catalysis, 208 (2002) 370-380.
[101] Y. Wang, S. Kattel, W. Gao, K. Li, P. Liu, J.G. Chen, H. Wang, Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol, Nature Communications, 10 (2019) 1-10.
[102] N.D. Nielsen, J. Thrane, A.D. Jensen, J.M. Christensen, Bifunctional synergy in CO hydrogenation to methanol with supported Cu, Catalysis Letters, 150 (2020) 1427-1433.
[103] S.-Y. Ahn, H.-S. Na, K.-W. Jeon, Y.-L. Lee, K.-J. Kim, J.-O. Shim, H.-S. Roh, Effect of Cu/CeO2 catalyst preparation methods on their characteristics for low temperature water-gas shift reaction: A detailed study, Catalysis Today, 352 (2020) 166-174.
[104] T.T. Nguyen Hoang, Y.-S. Lin, T.N.H. Le, T.K. Le, T.K.X. Huynh, D.-H. Tsai, Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol, Advanced Powder Technology, 32 (2021) 1785-1792.
[105] J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, 11 (1978) 102-113.
[106] J.-T. Tai, C.-S. Lai, H.-C. Ho, Y.-S. Yeh, H.-F. Wang, R.-M. Ho, D.-H. Tsai, Protein-Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments, Langmuir, 30 (2014) 12755-12764.
[107] S.-M. Lee, D.-H. Tsai, V.A. Hackley, M.W. Brechbiel, R.F. Cook, Surface-engineered nanomaterials as X-ray absorbing adjuvant agents for Auger-mediated chemo-radiation, Nanoscale, 5 (2013) 5252-5256.
[108] Q. Ma, M. Geng, J. Zhang, X. Zhang, T.S. Zhao, Enhanced Catalytic Performance for CO2 Hydrogenation to Methanol over N‐doped Graphene Incorporated Cu‐ZnO‐Al2O3 Catalysts, ChemistrySelect, 4 (2019) 78-83.
[109] T. Witoon, J. Chalorngtham, P. Dumrongbunditkul, M. Chareonpanich, J. Limtrakul, CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases, Chemical Engineering Journal, 293 (2016) 327-336.
[110] T.-Y. Liang, D. Senthil Raja, K.C. Chin, C.-L. Huang, S.A.P. Sethupathi, L.K. Leong, D.-H. Tsai, S.-Y. Lu, Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming, ACS Applied Materials & Interfaces, 12 (2020) 15183-15193.
[111] S.M. Lang, T.M. Bernhardt, Gas phase metal cluster model systems for heterogeneous catalysis, Physical Chemistry Chemical Physics, 14 (2012) 9255-9269.
[112] B.E. Goodby, J.E. Pemberton, XPS characterization of a commercial Cu/ZnO/Al2O3 catalyst: effects of oxidation, reduction, and the steam reformation of methanol, Applied Spectroscopy, 42 (1988) 754-760.
[113] A. Sepulveda, C. Marquez, I. Rodríguez‐Ramos, A. Guerrero‐Ruíz, J. Fierro, Spectroscopic studies of surface copper spinels. Influence of pretreatments on chemical state of copper, Surface and Interface Analysis, 20 (1993) 1067-1074.
[114] B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol, Industrial & Engineering Chemistry Research, 58 (2019) 9030-9037.
[115] C.-Y. Lin, F.-C. Chou, D.-H. Tsai, Mechanistic understanding of surface reduction of CuCeO hybrid nanoparticles for catalytic methane combustion, Journal of the Taiwan Institute of Chemical Engineers, 92 (2018) 80-90.
[116] Z. Wang, R. Li, Q. Chen, Enhanced activity of CuCeO catalysts for CO oxidation: influence of Cu2O and the dispersion of Cu2O, CuO, and CeO2, ChemPhysChem, 16 (2015) 2415-2423.
[117] G. Avgouropoulos, T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method, Applied Catalysis A: General, 244 (2003) 155-167.
[118] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87 (2015) 1051-1069.
[119] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Fluorine-modified Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol, Catalysis Communications, 50 (2014) 78-82.
[120] M.M. Günter, T. Ressler, R.E. Jentoft, B. Bems, Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, Journal of Catalysis, 203 (2001) 133-149.
[121] J. Luo, H. Xu, Y. Liu, W. Chu, C. Jiang, X. Zhao, A facile approach for the preparation of biomorphic CuO-ZrO2 catalyst for catalytic combustion of methane, Applied Catalysis A: General, 423 (2012) 121-129.
[122] V.V. Thyssen, T.A. Maia, E.M. Assaf, Cu and Ni catalysts supported on γ-Al2O3 and SiO2 assessed in glycerol steam reforming reaction, Journal of the Brazilian Chemical Society, 26 (2015) 22-31.
[123] L. Ji, J. Lin, H. Zeng, Metal-support interactions in Co/Al2O3 catalysts: a comparative study on reactivity of support, The Journal of Physical Chemistry B, 104 (2000) 1783-1790.
[124] D. Vovchok, C. Zhang, S. Hwang, L. Jiao, F. Zhang, Z. Liu, S.D. Senanayake, J.A. Rodriguez, Deciphering Dynamic Structural and Mechanistic Complexity in Cu/CeO2/ZSM-5 Catalysts for the Reverse Water-Gas Shift Reaction, ACS Catalysis, 10 (2020) 10216-10228.
[125] W. Wang, Z. Qu, L. Song, Q. Fu, Effect of the nature of copper species on methanol synthesis from CO2 hydrogenation reaction over CuO/Ce0.4Zr0.6O2 catalyst, Molecular Catalysis, 493 (2020) 111105.
[126] J. Xiao, D. Mao, X. Guo, J. Yu, Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol, Applied Surface Science, 338 (2015) 146-153.
[127] D. Chen, D. Mao, J. Xiao, X. Guo, J. Yu, CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2: a comparison of catalysts prepared by sol-gel, solid-state reaction and solution-combustion, Journal of Sol-Gel Science and Technology, 86 (2018) 719-730.
[128] D. Chen, D. Mao, G. Wang, X. Guo, J. Yu, CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method, Journal of Sol-Gel Science and Technology, 89 (2019) 686-699.
[129] H. Lei, Z. Hou, J. Xie, Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine, Fuel, 164 (2016) 191-198.
[130] W. Cai, P.R. de la Piscina, J. Toyir, N. Homs, CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods, Catalysis Today, 242 (2015) 193-199.
[131] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic catalysis of methane combustion using Cu-Ce-O hybrid nanoparticles with high activity and operation stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398.
[132] Y.-M. Liu, J.-T. Liu, S.-Z. Liu, J. Li, Z.-H. Gao, Z.-J. Zuo, W. Huang, Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O (111): comparison with Cu (111), Journal of CO2 Utilization, 20 (2017) 59-65.
[133] F. Studt, F. Abild-Pedersen, Q. Wu, A.D. Jensen, B. Temel, J.-D. Grunwaldt, J.K. Nørskov, CO hydrogenation to methanol on Cu-Ni catalysts: theory and experiment, Journal of Catalysis, 293 (2012) 51-60.
[134] M.S. Tameh, A.K. Dearden, C. Huang, Accuracy of density functional theory for predicting kinetics of methanol synthesis from CO and CO2 hydrogenation on copper, The Journal of Physical Chemistry C, 122 (2018) 17942-17953.
[135] R. Yang, Y. Fu, Y. Zhang, N. Tsubaki, In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter, Journal of Catalysis, 228 (2004) 23-35.
[136] E.L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not?, Journal of Catalysis, 328 (2015) 43-48.
[137] F. Jiang, Y. Yang, L. Wang, Y. Li, Z. Fang, Y. Xu, B. Liu, X. Liu, Dependence of copper particle size and interface on methanol and CO formation in CO2 hydrogenation over Cu@ZnO catalysts, Catalysis Science & Technology, 12 (2022) 551-564.
[138] C. Peinado, D. Liuzzi, A. Sanchís, L. Pascual, M.A. Peña, J. Boon, S. Rojas, In Situ Conditioning of CO2-Rich Syngas during the Synthesis of Methanol, Catalysts, 11 (2021) 534.
[139] S. Asthana, K. Tripathi, K.K. Pant, Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu-based catalysts for conversion of CO2 rich syngas to methanol, Catalysis Today, (2022).
[140] S. Ay, M. Ozdemir, M. Melikoglu, Effects of magnesium and chromium addition on stability, activity and structure of copper-based methanol synthesis catalysts, International Journal of Hydrogen Energy, 46 (2021) 12857-12873.
[141] F. Lin, X. Jiang, N. Boreriboon, Z. Wang, C. Song, K. Cen, Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol, Applied Catalysis A: General, 585 (2019) 117210.
[142] E. Dokuchits, T. Larina, E.Y. Gerasimov, A. Pochtar, T. Minyukova, Syngas conversion over perovskite-like LaCuxTi1-xO3/KIT-6 catalysts, Applied Catalysis A: General, 608 (2020) 117834.
[143] K. Tripathi, R. Singh, K.K. Pant, Tailoring the physicochemical properties of Mg promoted catalysts via one pot non-ionic surfactant assisted co-precipitation route for CO2 Co-feeding syngas to methanol, Topics in Catalysis, 64 (2021) 395-413.
[144] B. Xaba, A. Mahomed, H. Friedrich, The effect of CO2 and H2 adsorption strength and capacity on the performance of Ga and Zr modified Cu-Zn catalysts for CO2 hydrogenation to methanol, Journal of Environmental Chemical Engineering, 9 (2021) 104834.
[145] S. Ay, M. Ozdemir, M. Melikoglu, Effects of metal promotion on the performance, catalytic activity, selectivity and deactivation rates of Cu/ZnO/Al2O3 catalysts for methanol synthesis, Chemical Engineering Research and Design, 175 (2021) 146-160.
[146] P. Sharma, J. Sebastian, S. Ghosh, D. Creaser, L. Olsson, Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts, Catalysis Science & Technology, 11 (2021) 1665-1697.
[147] B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, W. Lin, Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2, J. Am. Chem. Soc., 139 (2017) 3834-3840.
[148] Y. Yin, B. Hu, X. Li, X. Zhou, X. Hong, G. Liu, Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol, Applied Catalysis B: Environmental, 234 (2018) 143-152.
[149] X. Li, T. Qi, J. Wang, W. She, G. Mao, P. Yan, W. Li, G. Li, Enhanced catalytic performance of nitrogen-doped carbon supported FeOx-based catalyst derived from electrospun nanofiber crosslinked N, Fe-containing MOFs for efficient hydrogenation of nitroarenes, Molecular Catalysis, 477 (2019) 110544.
[150] J. Wang, T. Qi, Z. Li, W. She, X. Li, J. Li, P. Yan, W. Li, G. Li, A strategy of two-step tandem catalysis towards direct N-alkylation of nitroarenes with ethanol via facile fabricated novel Co-based catalysts derived from coordination polymers, Journal of Catalysis, 376 (2019) 106-118.
[151] R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects, ACS Nano, 11 (2017) 5293-5308.
[152] Z. Li, T.M. Rayder, L. Luo, J.A. Byers, C.-K. Tsung, Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation, J. Am. Chem. Soc., 140 (2018) 8082-8085.
[153] Y. Hu, X. Xu, B. Zheng, S. Hou, P. Wang, W. Chen, C. Gao, Z. Gu, Y. Shen, J. Wu, Functional Macro‐Microporous Metal-Organic Frameworks for Improving the Catalytic Performance, Small Methods, 3 (2019) 1800547.
[154] S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks, Nature Reviews Materials, 3 (2017) 1-14.
[155] X. Li, X. Yang, H. Xue, H. Pang, Q. Xu, Metal-organic frameworks as a platform for clean energy applications, EnergyChem, 2 (2020) 100027.
[156] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J. Am. Chem. Soc., 130 (2008) 5390-5391.
[157] W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy Environ. Sci., 8 (2015) 1837-1866.
[158] Y.-A. Hsueh, Y.C. Chuah, C.-H. Lin, D.-H. Tsai, Aerosol-Assisted Synthesis of Metal-Organic Framework-Derived Hybrid Nanomaterials for Reverse Water-Gas Shift Reaction, ACS Applied Nano Materials, 5 (2022) 8883-8893.
[159] M. Kubo, R. Moriyama, M. Shimada, Facile fabrication of HKUST-1 nanocomposites incorporating Fe3O4 and TiO2 nanoparticles by a spray-assisted synthetic process and their dye adsorption performances, Microporous and Mesoporous Materials, 280 (2019) 227-235.
[160] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures, Nat. Chem., 5 (2013) 203-211.
[161] M. Kubo, T. Saito, M. Shimada, Evaluation of the parameters utilized for the aerosol-assisted synthesis of HKUST-1, Microporous and Mesoporous Materials, 245 (2017) 126-132.
[162] A. Pustovarenko, M.G. Goesten, S. Sachdeva, M. Shan, Z. Amghouz, Y. Belmabkhout, A. Dikhtiarenko, T. Rodenas, D. Keskin, I.K. Voets, Nanosheets of Nonlayered Aluminum Metal-Organic Frameworks through a Surfactant‐Assisted Method, Advanced Materials, 30 (2018) 1707234.
[163] C.S. Lee, J.M. Lim, J.T. Park, J.H. Kim, Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device, Chemical Engineering Journal, 406 (2021) 126810.
[164] P. Cheng, C. Wang, Y.V. Kaneti, M. Eguchi, J. Lin, Y. Yamauchi, J. Na, Practical MOF nanoarchitectonics: new strategies for enhancing the processability of MOFs for practical applications, Langmuir, 36 (2020) 4231-4249.
[165] J. Gao, K. Ye, M. He, W.-W. Xiong, W. Cao, Z.Y. Lee, Y. Wang, T. Wu, F. Huo, X. Liu, Tuning metal-carboxylate coordination in crystalline metal-organic frameworks through surfactant media, J. Solid State Chem., 206 (2013) 27-31.
[166] J. Wei, Q. Yue, Z. Sun, Y. Deng, D. Zhao, Synthesis of Dual‐Mesoporous Silica Using Non‐Ionic Diblock Copolymer and Cationic Surfactant as Co‐Templates, Angewandte Chemie International Edition, 51 (2012) 6149-6153.
[167] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Transactions, 44 (2015) 17883-17905.
[168] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298 (2002) 2176-2179.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *