|
(1) Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural Biological Materials: Critical Mechanics-Materials Connections. Science 2013, 339, 773–779. (2) Weaver, J. C.; Milliron, G. W.; Miserez, A.; Evans-Lutterodt, K.; Herrera, S.; Gallana, I.; Mershon, W. J.; Swanson, B.; Zavattieri, P.; DiMasi, E.; Kisailus, D. The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer. Science 2012, 336, 1275–1280. (3) Huang, W.; Shishehbor, M.; Guarín-Zapata, N.; Kirchhofer, N. D.; Li, J.; Cruz, L.; Wang, T.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; Bozhilov, K. N.; Caldwell, R.; Zavattieri, P.; Kisailus, D. A Natural Impact-Resistant Bicontinuous Composite Nanoparticle Coating. Nat. Mater. 2020, 19, 1236–1243. (4) Yang, T.; Jia, Z.; Chen, H.; Deng, Z.; Liu, W.; Chen, L.; Li, L. Mechanical Design of the Highly Porous Cuttlebone: A Bioceramic Hard Buoyancy Tank for Cuttlefish. Proc. Natl. Acad. Sci. 2020, 117, 23450–23459. (5) Amini, S.; Tadayon, M.; Idapalapati, S.; Miserez, A. The Role of Quasi-Plasticity in the Extreme Contact Damage Tolerance of the Stomatopod Dactyl Club. Nat. Mater. 2015, 14 (9), 943–950. (6) Yang, T.; Chen, H.; Jia, Z.; Deng, Z.; Chen, L.; Peterman, E. M.; Weaver, J. C.; Li, L. A Damage-Tolerant, Dual-Scale, Single-Crystalline Microlattice in the Knobby Starfish, Protoreaster Nodosus. Science 2022, 375 (6581), 647–652. (7) Yang, T.; Wu, Z.; Chen, H.; Zhu, Y.; Li, L. Quantitative 3D Structural Analysis of the Cellular Microstructure of Sea Urchin Spines (I): Methodology. Acta Biomater. 2020, 107, 204–217. (8) Deshpande, V. S.; Fleck, N. A.; Ashby, M. F. Effective Properties of the Octet-Truss Lattice Material. J. Mech. Phys. Solids 2001, 49, 1747–1769. (9) Wang, J.; Evans, A. G.; Dharmasena, K.; Wadley, H. N. G. On the Performance of Truss Panels with Kagomé Cores. Int. J. Solids Struct. 2003, 40, 6981–6988. (10) Sullivan, R. M.; Ghosn, L. J.; Lerch, B. A. A General Tetrakaidecahedron Model for Open-Celled Foams. Int. J. Solids Struct. 2008, 45, 1754–1765. (11) Deshpande, V. S.; Ashby, M. F.; Fleck, N. A. Foam Topology: Bending versus Stretching Dominated Architectures. Acta Mater. 2001, 49 (6), 1035–1040. (12) Zhang, X.; Wang, Y.; Ding, B.; Li, X. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices. Small. John Wiley & Sons, Ltd April 1, 2020, p 1902842. (13) Meza, L. R.; Das, S.; Greer, J. R. Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices. Science 2014, 345, 1322–1326. (14) Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight Metallic Microlattices. Science 2011, 334, 962–965. (15) Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A.; Kucheyev, S. O.; Fang, N. X.; Spadaccini, C. M. Ultralight, Ultrastiff Mechanical Metamaterials. Science 2014, 344 (6190), 1373–1377. (16) Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M. Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness. Nature 2017, 543, 533–537. (17) Tancogne-Dejean, T.; Diamantopoulou, M.; Gorji, M. B.; Bonatti, C.; Mohr, D. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness. Adv. Mater. 2018, 30 (45), 1803334. (18) Meza, L. R.; Das, S.; Greer, J. R. Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices. Science 2014, 345 (6202), 1322–1326. (19) Lee, S. W.; Jafary-Zadeh, M.; Chen, D. Z.; Zhang, Y. W.; Greer, J. R. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures. Nano Lett. 2015, 15, 5673–5681. (20) Lee, J. H.; Wang, L.; Kooi, S.; Boyce, M. C.; Thomas, E. L. Enhanced Energy Dissipation in Periodic Epoxy Nanoframes. Nano Lett. 2010, 10, 2592–2597. (21) Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, New York, 1999. (22) Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic Area-Minimizing Surfaces in Block Copolymers. Nature 1988, 334, 598–601. (23) Zhang, X. F.; Harley, G.; De Jonghe, L. C. Co-Continuous Metal-Ceramic Nanocomposites. Nano Lett. 2005, 5, 1035–1037. (24) Hofmann, D. C.; Suh, J. Y.; Wiest, A.; Duan, G.; Lind, M. L.; Demetriou, M. D.; Johnson, W. L. Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility. Nature 2008, 451 (7182), 1085–1089. (25) Wang, L.; Lau, J.; Thomas, E. L.; Boyce, M. C.; Wang, L. F.; Lau, J.; Boyce, M. C.; Thomas, E. L. Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation. Adv. Mater. 2011, 23 (13), 1524–1529. (26) Lee, J. H.; Wang, L.; Boyce, M. C.; Thomas, E. L. Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Lett. 2012, 12 (8), 4392–4396. (27) Bauer, J.; Sala-Casanovas, M.; Amiri, M.; Valdevit, L. Nanoarchitected Metal/Ceramic Interpenetrating Phase Composites. Sci. Adv. 2022, 8, 3080. (28) Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O. Approaching Theoretical Strength in Glassy Carbon Nanolattices. Nat. Mater. 2016, 15 (4), 438–443. (29) Mateos, A. J.; Huang, W.; Zhang, Y.-W.; Greer, J. R.; Mateos, A. J.; Greer, R.; Huang, W.; Zhang, Y.-W. Discrete-Continuum Duality of Architected Materials: Failure, Flaws, and Fracture. Adv. Funct. Mater. 2019, 29, 1806772. (30) Tancogne-Dejean, T.; Spierings, A. B.; Mohr, D. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption under Static and Dynamic Loading. Acta Mater. 2016, 116, 14–28. (31) Krödel, S.; Daraio, C. Microlattice Metamaterials for Tailoring Ultrasonic Transmission with Elastoacoustic Hybridization. Phys. Rev. Appl. 2016, 6, 064005. (32) Meza, L. R.; Phlipot, G. P.; Portela, C. M.; Maggi, A.; Montemayor, L. C.; Comella, A.; Kochmann, D. M.; Greer, J. R. Reexamining the Mechanical Property Space of Three-Dimensional Lattice Architectures. Acta Mater. 2017, 140, 424–432. (33) Portela, C. M.; Greer, J. R.; Kochmann, D. M. Impact of Node Geometry on the Effective Stiffness of Non-Slender Three-Dimensional Truss Lattice Architectures. Extrem. Mech. Lett. 2018, 22, 138–148. (34) Tang, X.; Prakash, V.; Lewandowski, J. J.; Kooistra, G. W.; Wadley, H. N. G. Inertial Stabilization of Buckling at High Rates of Loading and Low Test Temperatures: Implications for Dynamic Crush Resistance of Aluminum-Alloy-Based Sandwich Plates with Lattice Core. Acta Mater. 2007, 55, 2829–2840. (35) Bell, J. R.; Chang, K.; López-Barrón, C. R.; MacOsko, C. W.; Morse, D. C. Annealing of Cocontinuous Polymer Blends: Effect of Block Copolymer Molecular Weight and Architecture. Macromolecules 2010, 43, 5024–5032. (36) Khaderi, S. N.; Scherer, M. R. J.; Hall, C. E.; Steiner, U.; Ramamurty, U.; Fleck, N. A.; Deshpande, V. S. The Indentation Response of Nickel Nano Double Gyroid Lattices. Extrem. Mech. Lett. 2017, 10, 15–23. (37) Vidil, T.; Hampu, N.; Hillmyer, M. A. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order-Disorder Transition. ACS Cent. Sci. 2017, 3, 1114–1120. (38) Hsieh, M. T.; Endo, B.; Zhang, Y.; Bauer, J.; Valdevit, L. The Mechanical Response of Cellular Materials with Spinodal Topologies. J. Mech. Phys. Solids 2019, 125, 401–419. (39) Portela, C. M.; Vidyasagar, A.; Krödel, S.; Weissenbach, T.; Yee, D. W.; Greer, J. R.; Kochmann, D. M. Extreme Mechanical Resilience of Self-Assembled Nanolabyrinthine Materials. Proc. Natl. Acad. Sci. 2020, 117, 5686–5693. (40) Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science. American Association for the Advancement of Science March 29, 2002, pp 2418–2421. (41) Simon, P. F. W.; Ulrich, R.; Spiess, H. W.; Wiesner, U. Block Copolymer-Ceramic Hybrid Materials from Organically Modified Ceramic Precursors. Chemistry of Materials. American Chemical Society 2001, pp 3464–3486. (42) Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41 (1), 525–557. (43) Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer 2003, 44 (22), 6725–6760. (44) Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Effect of Arm Number and Arm Molecular Weight on the Solid-State Morphology of Poly(Styrene-Isoprene) Star Block Copolymers. Macromolecules 1986, 19 (1), 215–224. (45) Grubbs, R. B.; Dean, J. M.; Broz, M. E.; Bates, F. S. Reactive Block Copolymers for Modification of Thermosetting Epoxy. Macromolecules 2000, 33 (26), 9522–9534. (46) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46, 7513–7524. (47) Jung, Y. S.; Chang, J. B.; Verploegen, E.; Berggren, K. K.; Ross, C. A. A Path to Ultranarrow Patterns Using Self-Assembled Lithography. Nano Lett. 2010, 10 (3), 1000–1005. (48) Georgopanos, P.; Lo, T. Y.; Ho, R. M.; Avgeropoulos, A. Synthesis, Molecular Characterization and Self-Assembly of (PS- b -PDMS) n Type Linear ( n = 1, 2) and Star ( n = 3, 4) Block Copolymers. Polym. Chem. 2017, 8, 843–850. (49) Chang, C. Y.; Manesi, G. M.; Yang, C. Y.; Hung, Y. C.; Yang, K. C.; Chiu, P. T.; Avgeropoulos, A.; Ho, R. M. Mesoscale Networks and Corresponding Transitions from Self-Assembly of Block Copolymers. Proc. Natl. Acad. Sci. 2021, 118 (11). (50) Marletta, A.; Gonçalves, D.; Oliveira, O. N.; Faria, R. M.; Guimarães, F. E. G. Rapid Conversion of Poly(p-Phenylenevinylene) Films at Low Temperatures. Adv. Mater. 2000, 12, 69–74. (51) Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates. Science 2000, 290, 2126–2129. (52) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 2002, 124, 12761–12773. (53) Lo, T. Y.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Hashimoto, T. Direct Visualization of Order-Order Transitions in Silicon-Containing Block Copolymers by Electron Tomography. ACS Macro Lett. 2013, 2, 190–194. (54) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513–7524. (55) Lin, T. C.; Yang, K. C.; Georgopanos, P.; Avgeropoulos, A.; Ho, R. M. Gyroid-Structured Nanoporous Polymer Monolith from PDMS-Containing Block Copolymers for Templated Synthesis. Polymer 2017, 126, 360–367. (56) Hsueh, H. Y.; Yao, C. T.; Ho, R. M. Well-Ordered Nanohybrids and Nanoporous Materials from Gyroid Block Copolymer Templates. Chem. Soc. Rev. 2015, 44, 1974–2018. (57) Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L. Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Lett. 2010, 10, 4994–5000. (58) Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S. V.; Steiner, U. Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. Adv. Funct. Mater. 2014, 24 (6), 863–872. (59) Hsueh, H. Y.; Ho, R. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28 (22), 8518–8529. (60) Wang, X.-B.; Lin, T.-C.; Hsueh, H.-Y.; Lin, S.-C.; He, X.-D.; Ho, R.-M. Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability. Langmuir 2016, 32 (25), 6419–6428. (61) Siddique, S. K.; Lin, T. C.; Chang, C. Y.; Chang, Y. H.; Lee, C. C.; Chang, S. Y.; Tsai, P. C.; Jeng, Y. R.; Thomas, E. L.; Ho, R. M. Nanonetwork Thermosets from Templated Polymerization for Enhanced Energy Dissipation. Nano Lett. 2021, 21, 3355–3363. (62) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46, 7513–7524. (63) Georgopanos, P.; Lo, T. Y.; Ho, R. M.; Avgeropoulos, A. Synthesis, Molecular Characterization and Self-Assembly of (PS-b-PDMS)n Type Linear (n = 1, 2) and Star (n = 3, 4) Block Copolymers. Polym. Chem. 2017, 8, 843–850. (64) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46, 7513–7524. (65) Sadek, H.; K. Siddique, S.; Wang, C. W.; Lee, C. C.; Chang, S. Y.; Ho, R. M. Bioinspired Nanonetwork Hydroxyapatite from Block Copolymer Templated Synthesis for Mechanical Metamaterials. ACS Nano 2022, 16 (11), 18298–18306. (66) Zhang, Y.; Lu, J. A Mild and Efficient Biomimetic Synthesis of Rodlike Hydroxyapatite Particles with a High Aspect Ratio Using Polyvinylpyrrolidone as Capping Agent. Cryst. Growth Des. 2008, 8, 2101–2107. (67) Chen, Z.; Chang, J. W.; Balasanthiran, C.; Milner, S. T.; Rioux, R. M. Anisotropic Growth of Silver Nanoparticles Is Kinetically Controlled by Polyvinylpyrrolidone Binding. J. Am. Chem. Soc. 2019, 141, 4328–4337. (68) Hsieh, M. F.; Perng, L. H.; Chin, T. S.; Perng, H. G. Phase Purity of Sol-Gel-Derived Hydroxyapatite Ceramic. Biomaterials 2001, 22, 2601–2607. (69) Robbins, S. W.; Beaucage, P. A.; Sai, H.; Tan, K. W.; Werner, J. G.; Sethna, J. P.; DiSalvo, F. J.; Gruner, S. M.; Van Dover, R. B.; Wiesner, U. Block Copolymer Self-Assembly-Directed Synthesis of Mesoporous Gyroidal Superconductors. Sci. Adv. 2016, 2, e1501119. (70) Yee, D. W.; Lifson, M. L.; Edwards, B. W.; Greer, J. R. Additive Manufacturing of 3D-Architected Multifunctional Metal Oxides. Adv. Mater. 2019, 31, 1901345. (71) Lee, J.; Christopher Orilall, M.; Warren, S. C.; Kamperman, M.; Disalvo, F. J.; Wiesner, U. Direct Access to Thermally Stable and Highly Crystalline Mesoporous Transition-Metal Oxides with Uniform Pores. Nat. Mater. 2008, 7, 222–228. (72) Hsueh, H. Y.; Ling, Y. C.; Wang, H. F.; Chien, L. Y. C.; Hung, Y. C.; Thomas, E. L.; Ho, R. M. Shifting Networks to Achieve Subgroup Symmetry Properties. Adv. Mater. 2014, 26, 3225–3229. (73) Chai, C. S.; Gross, K. A.; Ben-Nissan, B. Critical Ageing of Hydroxyapatite Sol-Gel Solutions. Biomaterials 1998, 19, 2291–2296. (74) Wang, J.; Shaw, L. L. Synthesis of High Purity Hydroxyapatite Nanopowder via Sol-Gel Combustion Process. J. Mater. Sci. Mater. Med. 2009, 20 (6), 1223–1227. (75) Kim, H. W.; Kim, H. E.; Kim, H. W.; Knowles, J. C. Improvement of Hydroxyapatite Sol-Gel Coating on Titanium with Ammonium Hydroxide Addition. J. Am. Ceram. Soc. 2005, 88 (1), 154–159. (76) Amini, S.; Tadayon, M.; Idapalapati, S.; Miserez, A. The Role of Quasi-Plasticity in the Extreme Contact Damage Tolerance of the Stomatopod Dactyl Club. Nat. Mater. 2015, 14, 943–950. (77) Hou, J.; Xiao, Z.; Liu, Z.; Zhao, H.; Zhu, Y.; Guo, L.; Zhang, Z.; Ritchie, R. O.; Wei, Y.; Deng, X. An Amorphous Peri-Implant Ligament with Combined Osteointegration and Energy-Dissipation. Adv. Mater. 2021, 33, 2103727. (78) He, L. H.; Standard, O. C.; Huang, T. T. Y.; Latella, B. A.; Swain, M. V. Mechanical Behaviour of Porous Hydroxyapatite. Acta Biomater. 2008, 4, 577–586. (79) Jang, D.; Meza, L. R.; Greer, F.; Greer, J. R. Fabrication and Deformation of Three-Dimensional Hollow Ceramic Nanostructures. Nat. Mater. 2013, 12, 893–898. (80) Gao, H.; Ji, B.; Jäger, I. L.; Arzt, E.; Fratzl, P. Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature. Proc. Natl. Acad. Sci. 2003, 100, 5597–5600. (81) Jang, D.; Greer, J. R. Transition from a Strong-yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses. Nat. Mater. 2010, 9, 215–219. (82) Salari-Sharif, L.; Valdevit, L.; Schaedler, T. A. Energy Dissipation Mechanisms in Hollow Metallic Microlattices. J. Mater. Res. 2014, 29, 1755–1770. (83) Wang, H.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C.; Liu, Z.; Fang, M.; Ou, G.; Gao, H.; Li, X.; Wu, H. Ultralight, Scalable, and High-Temperature–Resilient Ceramic Nanofiber Sponges. Sci. Adv. 2017, 3, e1603170. (84) Mieszala, M.; Hasegawa, M.; Guillonneau, G.; Bauer, J.; Raghavan, R.; Frantz, C.; Kraft, O.; Mischler, S.; Michler, J.; Philippe, L. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small 2017, 13, 1602514. (85) Al-Ketan, O.; Rezgui, R.; Rowshan, R.; Du, H.; Fang, N. X.; Abu Al-Rub, R. K. Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies. Adv. Eng. Mater. 2018, 20, 1800029. (86) Zhang, X.; Yao, J.; Liu, B.; Yan, J.; Lu, L.; Li, Y.; Gao, H.; Li, X. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-Off. Nano Lett. 2018, 18, 4247–4256. (87) Yuan, S.; Chua, C. K.; Zhou, K. 3D-Printed Mechanical Metamaterials with High Energy Absorption. Adv. Mater. Technol. 2019, 4, 1800419. (88) Zhang, W.; Chen, J.; Li, X.; Lu, Y. Liquid Metal-Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability. Small 2020, 16, 2004190. (89) Almog, E.; Sharma, A.; Qi, Y.; Zimmerman, J.; Rabkin, E. Hybrid Hierarchical Nanolattices with Porous Platinum Coating. Acta Mater. 2022, 225, 117552. (90) Lee, J. H.; Wang, L.; Boyce, M. C.; Thomas, E. L. Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Lett. 2012, 12, 4392–4396. (91) Ahn, C.; Kim, S. M.; Jung, J. W.; Park, J.; Kim, T.; Lee, S. E.; Jang, D.; Hong, J. W.; Han, S. M.; Jeon, S. Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers. ACS Nano 2018, 12, 9126–9133. (92) Lee, J. H.; Singer, J. P.; Thomas, E. L. Micro-/Nanostructured Mechanical Metamaterials. Adv. Mater. 2012, 24, 4782–4810. (93) Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive Manufacturing of 3D Nano-Architected Metals. Nat. Commun. 2018, 9, 1–8. (94) Guell Izard, A.; Bauer, J.; Crook, C.; Turlo, V.; Valdevit, L. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures. Small 2019, 15, 1903834. (95) Portela, C. M.; Edwards, B. W.; Veysset, D.; Sun, Y.; Nelson, K. A.; Kochmann, D. M.; Greer, J. R. Supersonic Impact Resilience of Nanoarchitected Carbon. Nat. Mater. 2021, 20, 1491–1497. (96) Yang, T.; Chen, H.; Jia, Z.; Deng, Z.; Chen, L.; Peterman, E. M.; Weaver, J. C.; Li, L. A Damage-Tolerant, Dual-Scale, Single-Crystalline Microlattice in the Knobby Starfish, Protoreaster Nodosus. Science 2022, 375, 647–652. (97) Sadek, H.; Siddique, S. K.; Wang, C.-W.; Chiu, P.-T.; Lee, C.-C.; Ho, R.-M. Starfish-Inspired Diamond-Structured Calcite Single Crystals from a Bottom-up Approach as Mechanical Metamaterials. ACS Nano 2023, 17, 15678–15686. (98) Schuh, C. A. Nanoindentation Studies of Materials. Mater. Today 2006, 9 (5), 32–40. (99) Oliver, W. C.; Pharr, G. M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7 (6), 1564–1583. (100) Oliver, W. C.; Pharr, G. M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19 (1), 3–20. (101) Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly Compressible 3D Periodic Graphene Aerogel Microlattices. Nat. Commun. 2015, 6 (1), 1–8. (102) Zhang, X.; Vyatskikh, A.; Gao, H.; Greer, J. R.; Li, X. Lightweight, Flaw-Tolerant, and Ultrastrong Nanoarchitected Carbon. Proc. Natl. Acad. Sci. 2019, 116 (14), 6665–6672. (103) Yan, C.; Hao, L.; Hussein, A.; Bubb, S. L.; Young, P.; Raymont, D. Evaluation of Light-Weight AlSi10Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering. J. Mater. Process. Technol. 2014, 214, 856–864. (104) Challis, V. J.; Xu, X.; Zhang, L. C.; Roberts, A. P.; Grotowski, J. F.; Sercombe, T. B. High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting. Mater. Des. 2014, 63, 783–788. (105) Wendy Gu, X.; Greer, J. R. Ultra-Strong Architected Cu Meso-Lattices. Extrem. Mech. Lett. 2015, 2, 7–14. (106) Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive Manufacturing of 3D Nano-Architected Metals. Nat. Commun. 2018, 9, 1–8. (107) Tertuliano, O. A.; Greer, J. R. The Nanocomposite Nature of Bone Drives Its Strength and Damage Resistance. Nat. Mater. 2016, 15, 1195–1202. (108) Salari-Sharif, L.; Valdevit, L.; Schaedler, T. A. Energy Dissipation Mechanisms in Hollow Metallic Microlattices. J. Mater. Res. 2014, 29, 1755–1770. (109) Meza, L. R.; Greer, J. R. Mechanical Characterization of Hollow Ceramic Nanolattices. J. Mater. Sci. 2014, 49 (6), 2496–2508. (110) Bauer, J.; Hengsbach, S.; Tesari, I.; Schwaiger, R.; Kraft, O. High-Strength Cellular Ceramic Composites with 3D Microarchitecture. Proc. Natl. Acad. Sci. 2014, 111 (7), 2453–2458. (111) Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T.; Spadaccini, C. M. Multiscale Metallic Metamaterials. Nat. Mater. 2016, 15 (10), 1100–1106. (112) Salari-Sharif, L.; Schaedler, T. A.; Valdevit, L. Hybrid Hollow Microlattices with Unique Combination of Stiffness and Damping. J. Eng. Mater. Technol. 2018, 140, 031003. (113) Surjadi, J. U.; Feng, X.; Fan, R.; Lin, W.; Li, X.; Lu, Y. Hollow Medium-Entropy Alloy Nanolattices with Ultrahigh Energy Absorption and Resilience. NPG Asia Mater. 2021, 13, 1–7. (114) Bonderer, L. J.; Studart, A. R.; Gauckler, L. J. Bioinspired Design and Assembly of Platelet Reinforced Polymer Films. Science 2008, 319, 1069–1073. (115) Jia, Z.; Deng, Z.; Li, L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Advanced Materials. John Wiley & Sons, Ltd May 1, 2022, p 2106259. (116) Kuo, W. S.; Ko, T. H.; Chen, C. P. Effect of Weaving Processes on Compressive Behavior of 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2007, 38 (2), 555–565. (117) Wang, K.; Weissmüller, J. Composites of Nanoporous Gold and Polymer. Adv. Mater. 2013, 25, 1280–1284. (118) Okulov, I. V.; Weissmüller, J.; Markmann, J. Dealloying-Based Interpenetrating-Phase Nanocomposites Matching the Elastic Behavior of Human Bone. Sci. Rep. 2017, 7, 1–7.
|