帳號:guest(18.224.73.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):哈 桑
作者(外文):Hassan Ahmed Sadek
論文名稱(中文):生物啟發製備高有序奈米網狀陶瓷材料於機械超穎材料之應用
論文名稱(外文):Bioinspired Well-Ordered Nanonetwork Ceramic-Based Materials as Mechanical Metamaterials
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):張守一
許千樹
蔡敬誠
薛涵宇
李昌駿
口試委員(外文):Chang, Shou-Yi
Hsu, Chain-Shu
Tsai, Jing-Cherng
Hsueh, Han-Yu
Lee, Chang-Chun
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032892
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:163
中文關鍵詞:嵌段共聚物
外文關鍵詞:Block copolymer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於設計和製造機械變材料,特別是在納米尺度上,越來越感興趣,主要是因為它們具有卓越的機械性能,例如高模數、強度和能量耗散能力,同時又輕巧,這是受自然界啟發的有意結構,例如螳螂蝦抗衝擊表面、多刺海星柔韌的骨架結構,以及海膽棘刺的高強度。請注意,自然材料由陶瓷基材和有機基材結構精心設計,具有卓越的機械性能。受自然啟發,這項研究旨在通過使用自組裝的嵌段共聚物作為模板(自下而上的方法)來製造有序的納米網結構材料作為機械變材料。通過利用自組裝的層狀形成的嵌段共聚物,特別是聚苯乙烯-聚二甲基矽氧烷(PS-b-PDMS),可以通過選擇性溶劑對PS進行溶液鑄造來獲得鑽石結構。隨後,通過使用氫氟酸(HF)蝕刻PDMS可以獲得帶有明確納米通道的納米多孔PS,然後將其用作模板進行模板合。受到螳螂蝦的啟發,這項工作旨在製造有序的納米網狀羥基磷灰石(HAp)以展示結構設計對能量吸收能力的影響。通過將PS模板背填充以硝酸鈣四水合物和三乙基磷酸酯的前體,進行模板溶膠反應,然後在焙燒後可以去除PS模板,製造有序的納米網狀羥基磷灰(HAp)。通過納米壓痕和單軸微壓縮測試的證據,製造的納米網狀HAp能夠吸收比固有對應物更多的機械能量,這是由於拓撲效應,使得等向性納米尺度支撐上的載荷應力均勻分布,可以防止可能導致災難性損壞的微裂紋傳播。
使用相似的方法,受到多刺海星柔韌骨架的啟發,可以通過模板結晶反應製造鑽石結構的方解石單晶(CSC),以研究納米尺度對機械性能的影響。與自上而下的方法相比,自下而上的方法超越了納米尺度製造的限制,使得檢驗“小而強大”的概念成為可能。像多刺海星一樣,鑽石結構的CSC由於網絡紋理的效應,呈現出脆弱到韌性的轉變。最有趣的是,所製造的鑽石結構CSC由於網絡結構的納米尺度效應,表現出優越的能量吸收和強度,優於多刺海星和自上而下方法的人造對應物。
製造結構材料的目標是獲得具有出色機械性能的材料,包括高模量、高強度和高韌性,但對於這種網絡材料仍然存在挑戰。請注意,有序的納米網絡增強了能量吸收效率,但由於多孔性而犧牲了模量和強度。瓢蟲採用了一種卓越的策略來克服這個問題,即將HAp與幾丁質和/或蛋白質混合。因此,通過使用製造的納米網絡HAp作為模板對甲基丙烯酸甲酯(PMMA)進行模板聚合,可以解決機械性能上的多孔性問題。通過3-(三甲氧基矽烷)丙基甲基丙烯酸酯(γ-MPS)嫁接到納米網絡HAp上,可以完全填充PMMA前驅體以進行聚合,同時增強了混合物的界面強度。通過納米壓痕和微壓縮測試的證據表明,製造的雙連續PMMA/HAp納米混合物具有高彈性模量和壓縮強度的卓越組合,還具有卓越的韌性。因此,將硬HAp作為高模量和強度的網絡與軟PMMA基體相結合,以實現形狀、尺寸和強界面強度的聯合效應,實現高能量吸收。
與瓢蟲相比,仍然有一個謎團,即瓢蟲受到衝擊後的彈性恢復。換句話說,如何承受並恢復應力,而不會遭受重大損害,應該是下一個目標。目前有幾種情景,例如在分子級別上製造有序的納米網絡混合物和具有礦化幾丁質的特定基質,就像瓢蟲一樣。最有趣的是製造具有管狀框架而不是實心支柱的網絡材料。將有序的納米網絡材料製造成管狀網絡結構,將是結構材料的最終目標。
The increased interest in designing and fabricating mechanical metamaterials, especially at the nanoscale, is driven by their remarkable mechanical properties such as high modulus, strength, and energy dissipation capabilities with lightweight due to the deliberate structuring inspired by nature such as the impact-resistant surface of mantis shrimp, the flexible skeleton structure of knobby starfish, and the high strength of sea urchin spines. Note that natural materials are composed of ceramic-based and organic-based materials with deliberate structuring, giving superior mechanical properties. Inspired by nature, this study aims to fabricate well-ordered nanonetwork materials as mechanical metamaterials by templated synthesis using a self-assembled block copolymer as a template (bottom-up approach). By utilizing self-assembled lamellae-forming BCP, specifically polystyrene-b-polydimethylsiloxane (PS-b-PDMS), a diamond structure can be obtained through solution casting using a selective solvent for PS. Subsequently, by etching the PDMS with hydrofluoric acid (HF), nanoporous PS with well-defined nanochannels can be obtained and then utilized as a template for templated syntheses.
Inspired by mantis shrimp, this work aims to fabricate well-ordered nanonetwork hydroxyapatite (HAp) for demonstration of the effect of deliberate structuring on energy absorption capability. By back-filling the PS template with precursors of calcium nitrate tetrahydrate and triethyl phosphite for templated sol-gel reaction, well-ordered nanonetwork hydroxyapatite (HAp) can be fabricated after removal of the PS template through calcination. As evidenced by the nanoindentation and uniaxial micro-compression tests, the nanonetwork HAp fabricated can absorb a large amount of mechanical energy as compared to the intrinsic counterpart due to the topological effect, giving a homogeneous distribution of loading stress along the isotropic nanosized struts, which can prevent the microcracks propagation that might cause catastrophic failure.
With a similar methodology, inspired by the flexible skeleton of knobby starfish, diamond-structured calcite single-crystal (CSC) can be fabricated by templated crystallization reaction to investigate the nanosized effect on mechanical performance. In contrast to the top-down approach, the bottom-up approach surpasses the limitation of nanoscale fabrication, giving the feasibility to examine the concept of “smaller is stronger and tougher”. Like the mechanical behaviors of knobby starfish, the diamond-structured CSC gives a brittle to ductile transition due to the effect of network texture. Most interestingly, the diamond-structured CSC fabricated exhibits exceptional energy absorption and strength superior to knobby starfish and artificial counterparts from a top-down approach due to the nanosized effect of network structure.
The goal for the fabrication of structural materials is to attain materials with outstanding mechanical properties including high modulus, high strength, and high toughness, yet remaining challenge for such network materials. Note that the well-ordered nanonetwork enhances energy absorption efficiency but with a sacrifice in modulus and strength due to porosity. Mantis shrimp adopts a superior strategy to overcome this problem by hybridization of the HAp with chitin and/or protein. Accordingly, by templated polymerization of poly(methyl methacrylate) (PMMA) using the fabricated nanonetwork HAp as a template, it is possible to solve the porosity problem on mechanical performance. With the nanonetwork HAp grafted by 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), it is possible to completely pore-fill the MMA precursors for polymerization and also strengthen the interfacial strength of the hybrids. As evidenced by nanoindentation and micro-compression tests, the bicontinuous PMMA/HAp nanohybrids fabricated exhibit an outstanding combination of high elastic modulus and compression strength in addition to superior toughness. As a result, it is feasible to combine the hard HAp as a network for high modulus and strength in the soft PMMA matrix to have high energy absorption resulting from the combined effects of shape, size, and hybridization with strong interfacial strength.
In contrast to the mantis shrimp, there is still a mystery; the resilience after the impact of the mantis shrimp. Namely, how to withstand and recover from applied stress without experiencing significant damage should be the next goal. Currently, there are a couple of scenarios such as fabricating well-ordered nanonetwork hybrids at the molecular level and specific substrates like the mantis shrimp with mineralized chitin. The most interesting one is to fabricate network materials with tubular frames instead of solid struts. It will be promising to fabricate well-ordered nanonetwork materials with tubular network texture as the ultimate goal for structural materials.
Abstract I
Acknowledgements VI
Contents XI
List of Figures XIII
List of Tables XXVI
Abbreviations XXVII
Chapter 1 1
Introduction 1
1.1. Cellular Materials in Nature 1
1.1.1. Impact Surface for Dactyl Club of Mantis Shrimp 2
1.1.2. Skeleton of Knobby Starfish 2
1.1.3. Spines of Sea Urchins 4
1.2. Mechanical Metamaterials 5
1.2.1. Topological Design 6
1.2.2. Size Effect in Micro/Nanolattice 8
1.2.3. Mechanical Metamaterials with Bicontinuous Hybrids 12
1.2.4. Mechanical Metamaterials with Resilience Properties 18
1.3. Self-assembly of Block Copolymers 23
1.3.1. Self-assembly of Silicon-containing BCPs. 25
1.3.2. Nanoporous Templates from Degradable Block Copolymers 31
1.4. Block Copolymer Templated Synthesis 35
1.4.1. Templated Sol-Gel Reaction 38
1.4.2. Templated Polymerization 40
Chapter 2 46
Objectives 46
Chapter 3 49
Experimental Section 49
3.1. Materials and Methods 49
3.1.1. Materials 49
3.1.2. Fabrication of PS-b-PDMS 49
3.1.3. Solution Casting of PS-b-PDMS 50
3.1.4. Self-assembly of PS-b-PDMS Thin-film with Diamond Structure 51
3.1.5. Fabrication of Nanoporous PS with Diamond Structure 52
3.1.6. Templated Sol-Gel Synthesis of Nanonetwork HAp 52
3.1.7. Fabrication of Diamond-Structured CSC 54
3.1.8. Fabrication of Bicontinuous PMMA/HAp Nanohybrids 55
3.2. Characterization and Instrumentation 56
3.2.1. Transmission Electron Microscopy (TEM) 56
3.2.2. Field-Emission Scanning Electron Microscopy (FESEM) 56
3.2.3. Energy-dispersive X-ray Spectroscopy (EDS) 56
3.2.4. Small-angle X-ray Scattering (SAXS) 57
3.2.5. Wide-angle X-ray Diffraction (WAXD) 57
3.2.6. Thermogravimetric Analysis (TGA) 57
3.2.7. Nanoindentation Test 58
3.2.8. Focused Ion Beam (FIB) 58
3.2.9. Uniaxial Micro-Compression Test 58
3.2.10. Finite Element Analysis (FEA) 59
Chapter 4 60
Results and Discussion 60
4.1. Bioinspired Nanonetwork HAp from Templated Sol-Gel Reaction 60
4.1.1. Design and Fabrication Strategy 60
4.1.2. Effect of PVP on the Templated Sol-Gel Reaction of HAp 64
4.1.3. Effect of Thermal Treatment on Diamond Morphology 67
4.1.4. Characterization of Nanonetwork HAp 72
4.1.5. Mechanical Performance of Nanonetwork HAp 77
4.1.6. Investigation of Energy Dissipation Mechanism 85
4.2. Starfish-Inspired Diamond-Structured Calcite Single Crystal from Templated Crystallization Reaction 87
4.2.1. Hierarchical Structure of Knobby Starfish 88
4.2.2. Fabrication of Diamond-Structured CSC 89
4.2.3. Effect of Deliberate Structuring on the Mechanical Properties 99
4.2.5. Finite Elemental Analysis 111
4.3. Bioinspired Well-Ordered PMMA/HAp nanohybrids for Mechanical Metamaterials 115
4.3.1. Fabrication of PMMA/HAp Nanohybrids 116
4.3.2. Characterization of HAp/PMMA Nanohybrids 118
4.3.3. Mechanical Performance of PMMA/HAp Fabricated 123
Chapter 5 139
Conclusions and Perspective 139
Chapter 6 144
References 144
Publications 161
(1) Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural Biological Materials: Critical Mechanics-Materials Connections. Science 2013, 339, 773–779.
(2) Weaver, J. C.; Milliron, G. W.; Miserez, A.; Evans-Lutterodt, K.; Herrera, S.; Gallana, I.; Mershon, W. J.; Swanson, B.; Zavattieri, P.; DiMasi, E.; Kisailus, D. The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer. Science 2012, 336, 1275–1280.
(3) Huang, W.; Shishehbor, M.; Guarín-Zapata, N.; Kirchhofer, N. D.; Li, J.; Cruz, L.; Wang, T.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; Bozhilov, K. N.; Caldwell, R.; Zavattieri, P.; Kisailus, D. A Natural Impact-Resistant Bicontinuous Composite Nanoparticle Coating. Nat. Mater. 2020, 19, 1236–1243.
(4) Yang, T.; Jia, Z.; Chen, H.; Deng, Z.; Liu, W.; Chen, L.; Li, L. Mechanical Design of the Highly Porous Cuttlebone: A Bioceramic Hard Buoyancy Tank for Cuttlefish. Proc. Natl. Acad. Sci. 2020, 117, 23450–23459.
(5) Amini, S.; Tadayon, M.; Idapalapati, S.; Miserez, A. The Role of Quasi-Plasticity in the Extreme Contact Damage Tolerance of the Stomatopod Dactyl Club. Nat. Mater. 2015, 14 (9), 943–950.
(6) Yang, T.; Chen, H.; Jia, Z.; Deng, Z.; Chen, L.; Peterman, E. M.; Weaver, J. C.; Li, L. A Damage-Tolerant, Dual-Scale, Single-Crystalline Microlattice in the Knobby Starfish, Protoreaster Nodosus. Science 2022, 375 (6581), 647–652.
(7) Yang, T.; Wu, Z.; Chen, H.; Zhu, Y.; Li, L. Quantitative 3D Structural Analysis of the Cellular Microstructure of Sea Urchin Spines (I): Methodology. Acta Biomater. 2020, 107, 204–217.
(8) Deshpande, V. S.; Fleck, N. A.; Ashby, M. F. Effective Properties of the Octet-Truss Lattice Material. J. Mech. Phys. Solids 2001, 49, 1747–1769.
(9) Wang, J.; Evans, A. G.; Dharmasena, K.; Wadley, H. N. G. On the Performance of Truss Panels with Kagomé Cores. Int. J. Solids Struct. 2003, 40, 6981–6988.
(10) Sullivan, R. M.; Ghosn, L. J.; Lerch, B. A. A General Tetrakaidecahedron Model for Open-Celled Foams. Int. J. Solids Struct. 2008, 45, 1754–1765.
(11) Deshpande, V. S.; Ashby, M. F.; Fleck, N. A. Foam Topology: Bending versus Stretching Dominated Architectures. Acta Mater. 2001, 49 (6), 1035–1040.
(12) Zhang, X.; Wang, Y.; Ding, B.; Li, X. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices. Small. John Wiley & Sons, Ltd April 1, 2020, p 1902842.
(13) Meza, L. R.; Das, S.; Greer, J. R. Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices. Science 2014, 345, 1322–1326.
(14) Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight Metallic Microlattices. Science 2011, 334, 962–965.
(15) Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A.; Kucheyev, S. O.; Fang, N. X.; Spadaccini, C. M. Ultralight, Ultrastiff Mechanical Metamaterials. Science 2014, 344 (6190), 1373–1377.
(16) Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M. Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness. Nature 2017, 543, 533–537.
(17) Tancogne-Dejean, T.; Diamantopoulou, M.; Gorji, M. B.; Bonatti, C.; Mohr, D. 3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness. Adv. Mater. 2018, 30 (45), 1803334.
(18) Meza, L. R.; Das, S.; Greer, J. R. Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices. Science 2014, 345 (6202), 1322–1326.
(19) Lee, S. W.; Jafary-Zadeh, M.; Chen, D. Z.; Zhang, Y. W.; Greer, J. R. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures. Nano Lett. 2015, 15, 5673–5681.
(20) Lee, J. H.; Wang, L.; Kooi, S.; Boyce, M. C.; Thomas, E. L. Enhanced Energy Dissipation in Periodic Epoxy Nanoframes. Nano Lett. 2010, 10, 2592–2597.
(21) Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, New York, 1999.
(22) Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic Area-Minimizing Surfaces in Block Copolymers. Nature 1988, 334, 598–601.
(23) Zhang, X. F.; Harley, G.; De Jonghe, L. C. Co-Continuous Metal-Ceramic Nanocomposites. Nano Lett. 2005, 5, 1035–1037.
(24) Hofmann, D. C.; Suh, J. Y.; Wiest, A.; Duan, G.; Lind, M. L.; Demetriou, M. D.; Johnson, W. L. Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility. Nature 2008, 451 (7182), 1085–1089.
(25) Wang, L.; Lau, J.; Thomas, E. L.; Boyce, M. C.; Wang, L. F.; Lau, J.; Boyce, M. C.; Thomas, E. L. Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation. Adv. Mater. 2011, 23 (13), 1524–1529.
(26) Lee, J. H.; Wang, L.; Boyce, M. C.; Thomas, E. L. Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Lett. 2012, 12 (8), 4392–4396.
(27) Bauer, J.; Sala-Casanovas, M.; Amiri, M.; Valdevit, L. Nanoarchitected Metal/Ceramic Interpenetrating Phase Composites. Sci. Adv. 2022, 8, 3080.
(28) Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O. Approaching Theoretical Strength in Glassy Carbon Nanolattices. Nat. Mater. 2016, 15 (4), 438–443.
(29) Mateos, A. J.; Huang, W.; Zhang, Y.-W.; Greer, J. R.; Mateos, A. J.; Greer, R.; Huang, W.; Zhang, Y.-W. Discrete-Continuum Duality of Architected Materials: Failure, Flaws, and Fracture. Adv. Funct. Mater. 2019, 29, 1806772.
(30) Tancogne-Dejean, T.; Spierings, A. B.; Mohr, D. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption under Static and Dynamic Loading. Acta Mater. 2016, 116, 14–28.
(31) Krödel, S.; Daraio, C. Microlattice Metamaterials for Tailoring Ultrasonic Transmission with Elastoacoustic Hybridization. Phys. Rev. Appl. 2016, 6, 064005.
(32) Meza, L. R.; Phlipot, G. P.; Portela, C. M.; Maggi, A.; Montemayor, L. C.; Comella, A.; Kochmann, D. M.; Greer, J. R. Reexamining the Mechanical Property Space of Three-Dimensional Lattice Architectures. Acta Mater. 2017, 140, 424–432.
(33) Portela, C. M.; Greer, J. R.; Kochmann, D. M. Impact of Node Geometry on the Effective Stiffness of Non-Slender Three-Dimensional Truss Lattice Architectures. Extrem. Mech. Lett. 2018, 22, 138–148.
(34) Tang, X.; Prakash, V.; Lewandowski, J. J.; Kooistra, G. W.; Wadley, H. N. G. Inertial Stabilization of Buckling at High Rates of Loading and Low Test Temperatures: Implications for Dynamic Crush Resistance of Aluminum-Alloy-Based Sandwich Plates with Lattice Core. Acta Mater. 2007, 55, 2829–2840.
(35) Bell, J. R.; Chang, K.; López-Barrón, C. R.; MacOsko, C. W.; Morse, D. C. Annealing of Cocontinuous Polymer Blends: Effect of Block Copolymer Molecular Weight and Architecture. Macromolecules 2010, 43, 5024–5032.
(36) Khaderi, S. N.; Scherer, M. R. J.; Hall, C. E.; Steiner, U.; Ramamurty, U.; Fleck, N. A.; Deshpande, V. S. The Indentation Response of Nickel Nano Double Gyroid Lattices. Extrem. Mech. Lett. 2017, 10, 15–23.
(37) Vidil, T.; Hampu, N.; Hillmyer, M. A. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order-Disorder Transition. ACS Cent. Sci. 2017, 3, 1114–1120.
(38) Hsieh, M. T.; Endo, B.; Zhang, Y.; Bauer, J.; Valdevit, L. The Mechanical Response of Cellular Materials with Spinodal Topologies. J. Mech. Phys. Solids 2019, 125, 401–419.
(39) Portela, C. M.; Vidyasagar, A.; Krödel, S.; Weissenbach, T.; Yee, D. W.; Greer, J. R.; Kochmann, D. M. Extreme Mechanical Resilience of Self-Assembled Nanolabyrinthine Materials. Proc. Natl. Acad. Sci. 2020, 117, 5686–5693.
(40) Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science. American Association for the Advancement of Science March 29, 2002, pp 2418–2421.
(41) Simon, P. F. W.; Ulrich, R.; Spiess, H. W.; Wiesner, U. Block Copolymer-Ceramic Hybrid Materials from Organically Modified Ceramic Precursors. Chemistry of Materials. American Chemical Society 2001, pp 3464–3486.
(42) Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41 (1), 525–557.
(43) Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer 2003, 44 (22), 6725–6760.
(44) Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Effect of Arm Number and Arm Molecular Weight on the Solid-State Morphology of Poly(Styrene-Isoprene) Star Block Copolymers. Macromolecules 1986, 19 (1), 215–224.
(45) Grubbs, R. B.; Dean, J. M.; Broz, M. E.; Bates, F. S. Reactive Block Copolymers for Modification of Thermosetting Epoxy. Macromolecules 2000, 33 (26), 9522–9534.
(46) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46, 7513–7524.
(47) Jung, Y. S.; Chang, J. B.; Verploegen, E.; Berggren, K. K.; Ross, C. A. A Path to Ultranarrow Patterns Using Self-Assembled Lithography. Nano Lett. 2010, 10 (3), 1000–1005.
(48) Georgopanos, P.; Lo, T. Y.; Ho, R. M.; Avgeropoulos, A. Synthesis, Molecular Characterization and Self-Assembly of (PS- b -PDMS) n Type Linear ( n = 1, 2) and Star ( n = 3, 4) Block Copolymers. Polym. Chem. 2017, 8, 843–850.
(49) Chang, C. Y.; Manesi, G. M.; Yang, C. Y.; Hung, Y. C.; Yang, K. C.; Chiu, P. T.; Avgeropoulos, A.; Ho, R. M. Mesoscale Networks and Corresponding Transitions from Self-Assembly of Block Copolymers. Proc. Natl. Acad. Sci. 2021, 118 (11).
(50) Marletta, A.; Gonçalves, D.; Oliveira, O. N.; Faria, R. M.; Guimarães, F. E. G. Rapid Conversion of Poly(p-Phenylenevinylene) Films at Low Temperatures. Adv. Mater. 2000, 12, 69–74.
(51) Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates. Science 2000, 290, 2126–2129.
(52) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 2002, 124, 12761–12773.
(53) Lo, T. Y.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Hashimoto, T. Direct Visualization of Order-Order Transitions in Silicon-Containing Block Copolymers by Electron Tomography. ACS Macro Lett. 2013, 2, 190–194.
(54) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513–7524.
(55) Lin, T. C.; Yang, K. C.; Georgopanos, P.; Avgeropoulos, A.; Ho, R. M. Gyroid-Structured Nanoporous Polymer Monolith from PDMS-Containing Block Copolymers for Templated Synthesis. Polymer 2017, 126, 360–367.
(56) Hsueh, H. Y.; Yao, C. T.; Ho, R. M. Well-Ordered Nanohybrids and Nanoporous Materials from Gyroid Block Copolymer Templates. Chem. Soc. Rev. 2015, 44, 1974–2018.
(57) Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L. Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Lett. 2010, 10, 4994–5000.
(58) Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S. V.; Steiner, U. Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. Adv. Funct. Mater. 2014, 24 (6), 863–872.
(59) Hsueh, H. Y.; Ho, R. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28 (22), 8518–8529.
(60) Wang, X.-B.; Lin, T.-C.; Hsueh, H.-Y.; Lin, S.-C.; He, X.-D.; Ho, R.-M. Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability. Langmuir 2016, 32 (25), 6419–6428.
(61) Siddique, S. K.; Lin, T. C.; Chang, C. Y.; Chang, Y. H.; Lee, C. C.; Chang, S. Y.; Tsai, P. C.; Jeng, Y. R.; Thomas, E. L.; Ho, R. M. Nanonetwork Thermosets from Templated Polymerization for Enhanced Energy Dissipation. Nano Lett. 2021, 21, 3355–3363.
(62) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46, 7513–7524.
(63) Georgopanos, P.; Lo, T. Y.; Ho, R. M.; Avgeropoulos, A. Synthesis, Molecular Characterization and Self-Assembly of (PS-b-PDMS)n Type Linear (n = 1, 2) and Star (n = 3, 4) Block Copolymers. Polym. Chem. 2017, 8, 843–850.
(64) Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L. Phase Transitions of Polystyrene-b-Poly(Dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46, 7513–7524.
(65) Sadek, H.; K. Siddique, S.; Wang, C. W.; Lee, C. C.; Chang, S. Y.; Ho, R. M. Bioinspired Nanonetwork Hydroxyapatite from Block Copolymer Templated Synthesis for Mechanical Metamaterials. ACS Nano 2022, 16 (11), 18298–18306.
(66) Zhang, Y.; Lu, J. A Mild and Efficient Biomimetic Synthesis of Rodlike Hydroxyapatite Particles with a High Aspect Ratio Using Polyvinylpyrrolidone as Capping Agent. Cryst. Growth Des. 2008, 8, 2101–2107.
(67) Chen, Z.; Chang, J. W.; Balasanthiran, C.; Milner, S. T.; Rioux, R. M. Anisotropic Growth of Silver Nanoparticles Is Kinetically Controlled by Polyvinylpyrrolidone Binding. J. Am. Chem. Soc. 2019, 141, 4328–4337.
(68) Hsieh, M. F.; Perng, L. H.; Chin, T. S.; Perng, H. G. Phase Purity of Sol-Gel-Derived Hydroxyapatite Ceramic. Biomaterials 2001, 22, 2601–2607.
(69) Robbins, S. W.; Beaucage, P. A.; Sai, H.; Tan, K. W.; Werner, J. G.; Sethna, J. P.; DiSalvo, F. J.; Gruner, S. M.; Van Dover, R. B.; Wiesner, U. Block Copolymer Self-Assembly-Directed Synthesis of Mesoporous Gyroidal Superconductors. Sci. Adv. 2016, 2, e1501119.
(70) Yee, D. W.; Lifson, M. L.; Edwards, B. W.; Greer, J. R. Additive Manufacturing of 3D-Architected Multifunctional Metal Oxides. Adv. Mater. 2019, 31, 1901345.
(71) Lee, J.; Christopher Orilall, M.; Warren, S. C.; Kamperman, M.; Disalvo, F. J.; Wiesner, U. Direct Access to Thermally Stable and Highly Crystalline Mesoporous Transition-Metal Oxides with Uniform Pores. Nat. Mater. 2008, 7, 222–228.
(72) Hsueh, H. Y.; Ling, Y. C.; Wang, H. F.; Chien, L. Y. C.; Hung, Y. C.; Thomas, E. L.; Ho, R. M. Shifting Networks to Achieve Subgroup Symmetry Properties. Adv. Mater. 2014, 26, 3225–3229.
(73) Chai, C. S.; Gross, K. A.; Ben-Nissan, B. Critical Ageing of Hydroxyapatite Sol-Gel Solutions. Biomaterials 1998, 19, 2291–2296.
(74) Wang, J.; Shaw, L. L. Synthesis of High Purity Hydroxyapatite Nanopowder via Sol-Gel Combustion Process. J. Mater. Sci. Mater. Med. 2009, 20 (6), 1223–1227.
(75) Kim, H. W.; Kim, H. E.; Kim, H. W.; Knowles, J. C. Improvement of Hydroxyapatite Sol-Gel Coating on Titanium with Ammonium Hydroxide Addition. J. Am. Ceram. Soc. 2005, 88 (1), 154–159.
(76) Amini, S.; Tadayon, M.; Idapalapati, S.; Miserez, A. The Role of Quasi-Plasticity in the Extreme Contact Damage Tolerance of the Stomatopod Dactyl Club. Nat. Mater. 2015, 14, 943–950.
(77) Hou, J.; Xiao, Z.; Liu, Z.; Zhao, H.; Zhu, Y.; Guo, L.; Zhang, Z.; Ritchie, R. O.; Wei, Y.; Deng, X. An Amorphous Peri-Implant Ligament with Combined Osteointegration and Energy-Dissipation. Adv. Mater. 2021, 33, 2103727.
(78) He, L. H.; Standard, O. C.; Huang, T. T. Y.; Latella, B. A.; Swain, M. V. Mechanical Behaviour of Porous Hydroxyapatite. Acta Biomater. 2008, 4, 577–586.
(79) Jang, D.; Meza, L. R.; Greer, F.; Greer, J. R. Fabrication and Deformation of Three-Dimensional Hollow Ceramic Nanostructures. Nat. Mater. 2013, 12, 893–898.
(80) Gao, H.; Ji, B.; Jäger, I. L.; Arzt, E.; Fratzl, P. Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature. Proc. Natl. Acad. Sci. 2003, 100, 5597–5600.
(81) Jang, D.; Greer, J. R. Transition from a Strong-yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses. Nat. Mater. 2010, 9, 215–219.
(82) Salari-Sharif, L.; Valdevit, L.; Schaedler, T. A. Energy Dissipation Mechanisms in Hollow Metallic Microlattices. J. Mater. Res. 2014, 29, 1755–1770.
(83) Wang, H.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C.; Liu, Z.; Fang, M.; Ou, G.; Gao, H.; Li, X.; Wu, H. Ultralight, Scalable, and High-Temperature–Resilient Ceramic Nanofiber Sponges. Sci. Adv. 2017, 3, e1603170.
(84) Mieszala, M.; Hasegawa, M.; Guillonneau, G.; Bauer, J.; Raghavan, R.; Frantz, C.; Kraft, O.; Mischler, S.; Michler, J.; Philippe, L. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small 2017, 13, 1602514.
(85) Al-Ketan, O.; Rezgui, R.; Rowshan, R.; Du, H.; Fang, N. X.; Abu Al-Rub, R. K. Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies. Adv. Eng. Mater. 2018, 20, 1800029.
(86) Zhang, X.; Yao, J.; Liu, B.; Yan, J.; Lu, L.; Li, Y.; Gao, H.; Li, X. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-Off. Nano Lett. 2018, 18, 4247–4256.
(87) Yuan, S.; Chua, C. K.; Zhou, K. 3D-Printed Mechanical Metamaterials with High Energy Absorption. Adv. Mater. Technol. 2019, 4, 1800419.
(88) Zhang, W.; Chen, J.; Li, X.; Lu, Y. Liquid Metal-Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability. Small 2020, 16, 2004190.
(89) Almog, E.; Sharma, A.; Qi, Y.; Zimmerman, J.; Rabkin, E. Hybrid Hierarchical Nanolattices with Porous Platinum Coating. Acta Mater. 2022, 225, 117552.
(90) Lee, J. H.; Wang, L.; Boyce, M. C.; Thomas, E. L. Periodic Bicontinuous Composites for High Specific Energy Absorption. Nano Lett. 2012, 12, 4392–4396.
(91) Ahn, C.; Kim, S. M.; Jung, J. W.; Park, J.; Kim, T.; Lee, S. E.; Jang, D.; Hong, J. W.; Han, S. M.; Jeon, S. Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers. ACS Nano 2018, 12, 9126–9133.
(92) Lee, J. H.; Singer, J. P.; Thomas, E. L. Micro-/Nanostructured Mechanical Metamaterials. Adv. Mater. 2012, 24, 4782–4810.
(93) Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive Manufacturing of 3D Nano-Architected Metals. Nat. Commun. 2018, 9, 1–8.
(94) Guell Izard, A.; Bauer, J.; Crook, C.; Turlo, V.; Valdevit, L. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures. Small 2019, 15, 1903834.
(95) Portela, C. M.; Edwards, B. W.; Veysset, D.; Sun, Y.; Nelson, K. A.; Kochmann, D. M.; Greer, J. R. Supersonic Impact Resilience of Nanoarchitected Carbon. Nat. Mater. 2021, 20, 1491–1497.
(96) Yang, T.; Chen, H.; Jia, Z.; Deng, Z.; Chen, L.; Peterman, E. M.; Weaver, J. C.; Li, L. A Damage-Tolerant, Dual-Scale, Single-Crystalline Microlattice in the Knobby Starfish, Protoreaster Nodosus. Science 2022, 375, 647–652.
(97) Sadek, H.; Siddique, S. K.; Wang, C.-W.; Chiu, P.-T.; Lee, C.-C.; Ho, R.-M. Starfish-Inspired Diamond-Structured Calcite Single Crystals from a Bottom-up Approach as Mechanical Metamaterials. ACS Nano 2023, 17, 15678–15686.
(98) Schuh, C. A. Nanoindentation Studies of Materials. Mater. Today 2006, 9 (5), 32–40.
(99) Oliver, W. C.; Pharr, G. M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7 (6), 1564–1583.
(100) Oliver, W. C.; Pharr, G. M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19 (1), 3–20.
(101) Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly Compressible 3D Periodic Graphene Aerogel Microlattices. Nat. Commun. 2015, 6 (1), 1–8.
(102) Zhang, X.; Vyatskikh, A.; Gao, H.; Greer, J. R.; Li, X. Lightweight, Flaw-Tolerant, and Ultrastrong Nanoarchitected Carbon. Proc. Natl. Acad. Sci. 2019, 116 (14), 6665–6672.
(103) Yan, C.; Hao, L.; Hussein, A.; Bubb, S. L.; Young, P.; Raymont, D. Evaluation of Light-Weight AlSi10Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering. J. Mater. Process. Technol. 2014, 214, 856–864.
(104) Challis, V. J.; Xu, X.; Zhang, L. C.; Roberts, A. P.; Grotowski, J. F.; Sercombe, T. B. High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting. Mater. Des. 2014, 63, 783–788.
(105) Wendy Gu, X.; Greer, J. R. Ultra-Strong Architected Cu Meso-Lattices. Extrem. Mech. Lett. 2015, 2, 7–14.
(106) Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive Manufacturing of 3D Nano-Architected Metals. Nat. Commun. 2018, 9, 1–8.
(107) Tertuliano, O. A.; Greer, J. R. The Nanocomposite Nature of Bone Drives Its Strength and Damage Resistance. Nat. Mater. 2016, 15, 1195–1202.
(108) Salari-Sharif, L.; Valdevit, L.; Schaedler, T. A. Energy Dissipation Mechanisms in Hollow Metallic Microlattices. J. Mater. Res. 2014, 29, 1755–1770.
(109) Meza, L. R.; Greer, J. R. Mechanical Characterization of Hollow Ceramic Nanolattices. J. Mater. Sci. 2014, 49 (6), 2496–2508.
(110) Bauer, J.; Hengsbach, S.; Tesari, I.; Schwaiger, R.; Kraft, O. High-Strength Cellular Ceramic Composites with 3D Microarchitecture. Proc. Natl. Acad. Sci. 2014, 111 (7), 2453–2458.
(111) Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T.; Spadaccini, C. M. Multiscale Metallic Metamaterials. Nat. Mater. 2016, 15 (10), 1100–1106.
(112) Salari-Sharif, L.; Schaedler, T. A.; Valdevit, L. Hybrid Hollow Microlattices with Unique Combination of Stiffness and Damping. J. Eng. Mater. Technol. 2018, 140, 031003.
(113) Surjadi, J. U.; Feng, X.; Fan, R.; Lin, W.; Li, X.; Lu, Y. Hollow Medium-Entropy Alloy Nanolattices with Ultrahigh Energy Absorption and Resilience. NPG Asia Mater. 2021, 13, 1–7.
(114) Bonderer, L. J.; Studart, A. R.; Gauckler, L. J. Bioinspired Design and Assembly of Platelet Reinforced Polymer Films. Science 2008, 319, 1069–1073.
(115) Jia, Z.; Deng, Z.; Li, L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Advanced Materials. John Wiley & Sons, Ltd May 1, 2022, p 2106259.
(116) Kuo, W. S.; Ko, T. H.; Chen, C. P. Effect of Weaving Processes on Compressive Behavior of 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2007, 38 (2), 555–565.
(117) Wang, K.; Weissmüller, J. Composites of Nanoporous Gold and Polymer. Adv. Mater. 2013, 25, 1280–1284.
(118) Okulov, I. V.; Weissmüller, J.; Markmann, J. Dealloying-Based Interpenetrating-Phase Nanocomposites Matching the Elastic Behavior of Human Bone. Sci. Rep. 2017, 7, 1–7.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *