帳號:guest(3.147.72.52)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游翰思
作者(外文):Hutabalian, Yohanes
論文名稱(中文):Ag-Cu-Se-Te 四元系統的相平衡、相生成與相轉變
論文名稱(外文):Phase formation, phase equilibria, and phase transformation of the Ag-Cu-Se-Te quaternary system
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-Wen
口試委員(中文):汪上曉
高振宏
紀渥德
吳欣潔
口試委員(外文):Wong, Shang-Hsiao
Kao, C. Robert
Gierlotka, Wojciech
Wu, Hsin-Jay
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032858
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:186
中文關鍵詞:Ag-Cu-Se-Te相圖相圖計算四元系統熱電
外文關鍵詞:Ag-Cu-Se-TePhase DiagramCalphadQuaternaryThermoelectric
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
相圖對於了解相的生成以及相變是不可或缺的資訊,對於設計新的合金以適用新型應用和優化材料的製備過程更是如此。Ag-Cu-Se-Te四元系統為重要的熱電材料應用系統,研究Ag-Cu-Se-Te四元系統相圖,對於獲得材料的基礎知識至關重要,而進一步地深入探討,對於提升Ag-Cu-Se-Te四元作為熱電材料的應用價值有著一定程度的影響力。Ag-Cu-Te-Se四元系統包含六個二元子系統及四個三元子系統。六個二元子系統分別是Ag-Cu、Ag-Te、Ag-Se、Cu-Te、Cu-Se和Se-Te;四個三元子系統則是Ag-Cu-Te,Ag-Se-Te,Ag-Cu-Se和Cu-Se-Te。本研究的目的為利用實驗與Calphad計算方法建構Ag-Cu-Te-Se四元系統之相平衡。例如,利用等溫橫截面、液相線投影圖及擴散偶的界面反應等實驗數據建立相圖,同時,使用Calphad方法進行二元、三元子系統的相圖計算。
本研究藉由實驗方式探討了Ag-Cu-Te、Ag-Se-Te、Ag-Cu-Se與Cu-Se-Te三元子系統之等溫橫截面圖。實驗技術包含使用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、電子微探儀分析(EPMA)和差熱分析(DTA)以研究250℃至600℃的相平衡以及相變資訊。不僅如此,本研究也提出了Ag-Se-Te、Ag-Cu-Se和Cu-Se-Te系統的液相線投影圖。另一方面,一些與相圖相關的擴散反應偶也於本研究中進行探討,並利用相圖解釋其反應機制與主要擴散元素,包含350°C之Ag / Se界面反應,350°C之Ag / Se-30at%Te界面反應,350°C之Ag2Te / Se界面反應以及300°C之Cu2Te / Se界面反.
應以Calphad方法計算Ag-Se、Cu-Te、和Ag-Te二元子系統以及Ag-Se-Te和Cu-Se-Te三元子系統相圖之結果與實驗結果有良好的一致性。然而,由於實驗數據的缺乏,本研究並未包含Ag-Cu-Se與Ag-Cu-Te三元子系統之計算結果。其中,在進行Ag-Cu-Se與Ag-Cu-Te三元合金於300°C至600°C之相平衡實驗的過程中,觀察到銀鬚晶及銅鬚晶的生長現象,此結果顯示壓力釋放造成鬚晶的生長。
根據Ag-Cu-Se-Te四元系統相圖所提供的資訊,本研究也測量了Ag2Te摻雜Cu2Se之熱電性質,並於Ag2Te基底相 (matrix phase) 觀察到AgCuTe析出。Cu2Se的摻雜並未顯示良好的電性質,因此導致ZT值降低。
Phase diagram is indispensable to understanding the phase formation or transformation, designing new alloys for advanced application and optimizing the material processing. The Ag-Cu-Se-Te materials are crucial for thermoelectric applications. Therefore, studying the phase diagrams of the Ag-Cu-Se-Te quaternary system is critical for gaining a fundamental understanding of these materials. Addressing the resulting challenges will be pivotal in unlocking the full potential of Ag-Cu-Se-Te alloys for thermoelectric application. Six binaries and four ternaries are needed to construct the quaternary system. The six binaries are Ag-Cu, Ag-Te, Ag-Se, Cu-Te, Cu-Se and Se-Te, while the four ternaries are Ag-Cu-Te, Ag-Se-Te, Ag-Cu-Se and Cu-Se-Te. This study aims to determine the phase equilibria of the Ag-Cu-Te-Se system using experimental and calculation Calphad-approach. Experimental data such as isothermal sections and liquidus projections, and reactions on the diffusion couples were studied to construct the phase diagrams. Meanwhile, the Calphad-method was used to calculate the phase equilibria of the binary and ternary systems.
The isothermal sections of Ag-Cu-Te, Ag-Se-Te, Ag-Cu-Se, Cu-Se-Te systems were experimentally measured. Various experimental techniques, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and differential thermal analysis (DTA) were employed to study the phase equilibria and phase transformation between 250oC and 600°C. Further, the liquidus projection in the Ag-Se-Te, Ag-Cu-Se and Cu-Se-Te systems are proposed. In addition, some reaction couples that are related to the phase diagrams are also studied. Those reaction couples were studied as follows: Ag/Se at 350oC, Ag/Se-30at%Te at 350oC, Ag2Te/Se at 350oC, and Cu2Te/Se at 300oC. The determined phase diagrams are used to explain the reaction mechanisms and the fastest diffusion element.
The binary systems of Ag-Se, Cu-Te, and Ag-Te, as well as the ternary systems of Ag-Se-Te and Cu-Se-Te, were modeled using the Calphad-method. The calculated results demonstrated good agreement with experimental data. However, the study did not include calculations for the Ag-Cu-Se and Ag-Cu-Te ternary systems due to a lack of experimental data. In addition, during the equilibration of the alloys in the Ag-Cu-Se and Ag-Cu-Te ternary systems at temperatures ranging from 300°C to 600°C, the growth of silver and copper whiskers was observed. The results suggest that the whisker’s growth is due to stress relief.
Based on the phase diagram information of the Ag-Cu-Se-Te quaternary system. The thermoelectric properties of Ag2Te doped with Cu2Se were measured. The AgCuTe precipitates were observed in the Ag2Te matrix phase, and the Cu2Se doping did not show a good electrical property, thus, resulting in a decrease in the ZT values.
Content

Abstract i
摘要 iii
Acknowledgement iv
Content v
List of Figures ix
List of Tables xv
1. Introduction 1
1.1. Motivation 1
1.2. Objective of the thesis 2
1.3. Present contribution 2
2. Fundamentals 4
2.1. Phase rule and phase equilibrium 4
2.2. Diffusion couple and phase diagram 4
2.3. Literature review phase equilibria of Ag-Cu-Se-Te system 5
2.3.1. Ag-Cu binary system 5
2.3.2. Ag-Se binary system 5
2.3.3. Ag-Te binary system 5
2.3.4. Cu-Se binary system 6
2.3.5. Cu-Te binary system 6
2.3.6. Se-Te binary system 6
2.3.7. Ag-Cu-Se ternary system 6
2.3.8. Ag-Cu-Te ternary system 6
2.3.9. Ag-Se-Te ternary system 7
2.3.10. Cu-Se-Te ternary system 7
2.3.11. Ag-Cu-Se-Te quaternary system 7
3. Methods 11
3.1. Preparation samples for phase equilibria 11
3.2. Preparation the diffusion couples 11
3.3. Characterization samples 11
3.4. Calphad-type 12
4. Results and discussion 14
4.1. Phase equilibria of the Ag-Cu-Se ternary system 14
4.1.1. Introduction 15
4.1.2. Experimental procedure 16
4.1.3. Results and discussion 16
a. Isothermal section at 300oC 16
b. Isothermal section at 500oC 17
c. Liquidus projection 18
4.1.4. Conclusions 18
4.2. Phase equilibria of the Ag-Cu-Te ternary system 32
4.2.1. Introduction 33
4.2.2. Results and discussion 33
a. Isothermal section of the Ag-Cu-Te system at 600oC 33
b. Isothermal section of the Ag-Cu-Te system at 400oC 40
4.2.3. Conclusions 42
4.3. Thermodynamic modeling of the Ag-Se binary system 46
4.3.1. Introduction 47
4.3.2. Calphad-method modeling 47
4.3.3. Ab initio calculation 48
4.3.4. Results and discussion 48
4.3.5. Conclusions 54
4.4. Interfacial reactions in Ag/Se, Ag/Se-30at.%Te, Ag2Te/Se couples and phase equilibria of the Ag-Se-Te ternary system 55
4.4.1. Introduction 56
4.4.2. Results and discussion 56
a. Isothermal section at 350oC 56
b. Ag/Se reaction couple 60
c. Ag/Se-30at.%Te 63
d. Ag2Te/Se 67
4.4.3. Conclusion 71
4.5. Phase equilibria of the Ag-Se-Te ternary systems 73
4.5.1. Introduction 74
4.5.2. Experimental procedure 74
4.5.3. Thermodynamic models 75
a. Pure elements 75
b. Solution phase 76
c. Intermetallic compound 76
d. Sublattice model 76
4.5.4. Results and discussion 76
a. Isothermal section at 400oC 76
b. Isothermal section at 250oC 78
c. Liquidus projection 79
d. Calphad-approach of the Ag-Se-Te ternary system 79
4.5.5. Conclusions 80
4.6. Phase equilibria of the Cu-Se-Te ternary system at 300 oC and interfacial reaction in Cu2Te/Se couples at 300oC 104
4.6.1. Introduction 105
4.6.2. Results and discussion 106
a. Isothermal section of the Cu-Se-Te system at 300oC 106
b. Interfacial reaction of Cu2Te/Se couple at 300oC 116
4.6.3. Conclusions 119
4.7. Phase equilibria of the Cu-Se-Te ternary systems 121
4.7.1 Introduction 122
4.7.2 Results and discussion 122
4.7.3 Liquidus projection 124
a. Cu2(Se,Te) primary phase 125
b. 1 primary phase 125
c. 2 primary phase 125
d. (Se,Te) primary phase 126
4.7.4 Thermodynamic modeling and phase diagram calculation 126
a. Solid solution phase 127
b. Intermetallic phase 127
c. Liquid phase 128
4.7.5 The binary systems 128
4.7.6 The ternary system 129
4.7.7 Conclusions 130
4.8. Thermoelectric properties of Ag2Te - y%Cu2Se crystals 155
4.8.1 Introduction 156
4.8.2 Experimental procedure 156
4.8.3 Results and discussion 157
4.8.4 Conclusions 158
5. Summary 163
References 167
Author’s Publications 177
Appendix 179

Reference

[1] Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, W.A. Oates, Phase diagram calculation: Past, present and future, Prog. Mater. Sci. 49 (2004) 313–345. doi:10.1016/S0079-6425(03)00025-2.
[2] Y.A. Chang, Phase diagram calculations in teaching, research, and industry, Metall. Mater. Trans. A. 37 (2006) 273–305.
[3] R. Schmid-Fetzer, Phase Diagrams: The Beginning of Wisdom, J. Phase Equilibria Diffus. 35 (2014) 735–760. doi:10.1007/s11669-014-0343-5.
[4] A.A. Kodentsov, G.F. Bastin, F.J.J. van Loo, Application of Diffusion Couples in Phase Diagram Determination, Elsevier Ltd, 2007. doi:10.1016/b978-008044629-5/50006-9.
[5] J.S. Kirkaldy, L.C. Brown, Diffusion behaviour in ternary, multiphase systems, Can. Metall. Q. 2 (1963) 89–115. doi:10.1179/cmq.1963.2.1.89.
[6] F.J.J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid State Chem. 20 (1990) 47–99. doi:10.1016/0079-6786(90)90007-3.
[7] W. Zhu, Z. Huang, M. Chu, S. Li, Y. Zhang, W. Ao, R. Wang, J. Luo, F. Liu, Y. Xiao, F. Pan, Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials, Chem. Eng. J. 386 (2020) 123917. doi:10.1016/j.cej.2019.123917.
[8] S. Roychowdhury, M.K. Jana, J. Pan, S.N. Guin, D. Sanyal, U. V. Waghmare, K. Biswas, Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe, Angew. Chemie - Int. Ed. 57 (2018) 4043–4047. doi:10.1002/anie.201801491.
[9] R. Wu, Z. Li, Y. Li, L. You, P. Luo, J. Yang, J. Luo, Synergistic optimization of thermoelectric performance in p-type Ag 2 Te through Cu substitution, J. Mater. (2019) 1–7. doi:10.1016/j.jmat.2019.01.008.
[10] W. Zhu, Z. Huang, M. Chu, S. Li, Y. Zhang, W. Ao, R. Wang, J. Luo, F. Liu, Y. Xiao, F. Pan, Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials, Chem. Eng. J. 386 (2020) 123917. doi:10.1016/j.cej.2019.123917.
[11] D.R. Brown, T. Day, T. Caillat, G.J. Snyder, Chemical Stability of (Ag,Cu)2Se: A historical overview, J. Electron. Mater. 42 (2013) 2014–2019. doi:10.1007/s11664-013-2506-2.
[12] K. Zhao, P. Qiu, X. Shi, L. Chen, Recent Advances in Liquid-Like Thermoelectric Materials, Adv. Funct. Mater. 30 (2020). doi:10.1002/adfm.201903867.
[13] J. Liang, P. Qiu, Y. Zhu, H. Huang, Z. Gao, Z. Zhang, X. Shi, L. Chen, Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1‐xSx System, Research. (2020).
[14] X.J. Liu, F. Gao, C.P. Wang, K. Ishida, Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems, J. Electron. Mater. 37 (2008) 210–217. doi:10.1007/s11664-007-0315-1.
[15] P.R. Subramanian, J.H. Perepezko, The ag-cu (silver-copper) system, J. Phase Equilibria. 14 (1993) 62–75. doi:10.1007/BF02652162.
[16] Y.W. Yen, S.W. Chen, Phase equilibria of the Ag-Sn-Cu ternary system, J. Mater. Res. 19 (2004) 2298–2305. doi:10.1557/JMR.2004.0296.
[17] J.L. Murray, T.B. Maasalski, Ag-Cu (silver-copper), in: Bin. Alloy Phase Diagrams, 2nd ed., 1990: pp. 28–29.
[18] F.H. Hayes, H.L. Lukas, G. Effenberg, G. Petzow, A Thermodynamic Optimisation of the Cu-Ag-Pb System, Zhurnal Neorg. Khimii Met. 77 (1986) 749–754.
[19] I. Karakaya, W.T. Thompson, The Ag-Se (Silver-Selenium) system, Bull. Alloy Phase Diagrams. 11 (1990) 266–271. doi:10.1007/BF03029297.
[20] V.B. Rajkumar, S.W. Chen, Ag-Se phase diagram calculation associating ab−initio molecular dynamics simulation, Calphad Comput. Coupling Phase Diagrams Thermochem. 63 (2018) 51–60. doi:10.1016/j.calphad.2018.08.004.
[21] W. Gierlotka, J. Łapsa, K. Fitzner, Thermodynamic description of the Ag-Pb-Te ternary system, J. Phase Equilibria Diffus. 31 (2010) 509–517. doi:10.1007/s11669-010-9791-8.
[22] W. Gierlotka, "Thermodynamic assessment of the Ag–Te binary system, J. Alloys Compd. 485 (2009) 231–235. doi:https://doi.org/10.1016/j.jallcom.2009.06.028.
[23] I. Karakaya, W.T. Thompson, The Ag-Te (Silver-Tellurium) System, J. Phase Equilibria. 12 (1991) 56–63. doi:10.1007/BF02663676.
[24] Z. Du, C. Guo, M. Tao, C. Li, Thermodynamic modeling of the Cu–Se system, Int. J. Mater. Res. 99 (2008) 294–300.
[25] D.J. Chakrabarti, D.E. Laughlin, The Cu-Se (Copper-Selenium) system, Bull. Alloy Phase Diagrams. 2 (1981) 305–315. doi:10.1007/BF02868284.
[26] P.R. Subramanian, Cu-Te (copper-tellerium), 2nd ed., ASM International, Ohio, 1990.
[27] A.S. Pashinkin, V.A. Fedorov, Phase Equilibria in the Cu–Te System, Inorg. Mater. 39 (2003) 647–663.
[28] D. Huang, R. Han, Y. Wang, T. Ye, The Cu–Te system: Phase relations determination and thermodynamic assessment, J. Alloys Compd. 855 (2021) 157373. doi:10.1016/j.jallcom.2020.157373.
[29] G. Ghosh, R.C. Sharma, D.T. Li, Y.A. Chang, The Se-Te (Selenium-Tellurium) system, J. Phase Equilibria. 15 (1994) 213–224. doi:10.1007/BF02646370.
[30] W. Gierlotka, W.-H. Wu, The reoptimization of the binary Se–Te system, Int. J. Mater. Res. 103 (2012) 698–701. doi:https://doi.org/10.3139/146.110677.
[31] M.I. Agaev, S.M. Alekperova, M.I. Zargarova, Physicochemical Study of the Systems Ag2X–Cu2X (X= S, Se), Dokl. Akad. Nauk Az. SSR. 27 (1971) 20–23.
[32] Y.A. Chang, D. Goldberg, J.P. Neumann, Phase diagrams and thermodynamic properties of ternary copper-silver systems, J. Phys. Chem. Ref. Data. 6 (1977) 621–674. doi:10.1063/1.555555.
[33] K. Chrissafis, N. Vouroutzis, K.M. Paraskevopoulos, N. Frangis, C. Manolikas, Phase transformation in CuAgSe: A DSC and electron diffraction examination, J. Alloys Compd. 385 (2004) 169–172. doi:10.1016/j.jallcom.2004.04.119.
[34] Y.G. Asadov, Y.I. Aliyev, A.G. Babaev, Polymorphic transformations in Cu2Se, Ag2Se, AgCuSe and the role of partial cation-cation and anion-anion replacement in stabilizing their modifications, Phys. Part. Nucl. 46 (2015) 452–474. doi:10.1134/s106377961503003x.
[35] N. Valverde, Untersuchungen zur Thermodynamik des Systems Kupfer—Silber—Selen, Zeitschrift Für Phys. Chemie. 61 (1968) 92–107. doi:https://doi.org/10.1524/zpch.1968.61.1_4.092.
[36] E. Schafer, Experimental investigations in the Cu-Ag-S-Se system, Neues Jahrb. Fur Mineral. 169 (1995) 301–304.
[37] A.Y. Mendelevich, A.N. Krestovnikov, V.. Glazov, Phase equilibria of pseudobinary group I chalcogenide system in regular solution approximation, Russ. J. Phys. Chem. 43 (1969) 1723–1724.
[38] Y.I. Dutchak, N.M. Korenchuk, Vapour pressure and intermolecular interaction in copper telluride-silver telluride system, Zhurnal Neorg. Khimii. 51 (1977) 455–458.
[39] B. Legendre, C. Souleau, C. Hangcheng, Phase diagram of the ternary system Cu-Ag-Te. 1. The subternary Cu-Cu2Te-Ag2Te-Ag, Bull. La Soc. Chim. 9–10 (1984) 273–280.
[40] M.N. Agaev, S.M. Alekperova, M.I. Zargarova, Physico-chemical studying of the system Ag2Te-Cu2Te, Dokl. Akad. Nauk Azerb. 27 (1971) 15–18.
[41] I.R. Nuriev, E.Y. Salaev, R.N. Nabiev, Investigation of phases in the Ag2Te-Cu2Te system, Izv. Akad. Nauk SSSR, Neorg. Mater. 19 (1983) 1074–1076.
[42] F.M. Mustafaev, I.Y. Aliyev, T.K. Azizov, A.S. Abbasov, N.A. Aliyeva, Thermodynamics study of Cu2Te-Ag2Te system, Dokl. Akad. Nauk Azerb. SSR. 36 (1980) 22–24.
[43] A.S. Avilov, R. V. Baranova, Synthesis of the mixed telluride, copper silver ditelluride, and determination of its structure by electron diffraction., Kristallografiya. 17 (1972) 219-220.
[44] N. Aramov, I. Odin, Z. Boncheva-Mladenova, Study of the silver selenide-silver telluride system, Thermochim. Acta. 20 (1977) 107–113.
[45] K. Zhao, M. Guan, P. Qiu, A.B. Blichfeld, E. Eikeland, C. Zhu, D. Ren, F. Xu, B.B. Iversen, X. Shi, L. Chen, Thermoelectric properties of Cu2Se1-: XTex solid solutions, J. Mater. Chem. A. 6 (2018) 6977–6986. doi:10.1039/c8ta01313f.
[46] S. Kavirajan, J. Archana, S. Harish, M. Omprakash, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Y. Inatomi, M. Shimomura, Y. Hayakawa, Enhanced seebeck coefficient and low thermal conductivity of Cu2SexTe1-x solid solutions via minority carrier blocking and interfacial effects, J. Alloys Compd. 835 (2020) 155188. doi:10.1016/j.jallcom.2020.155188.
[47] N.M. Glazov, V. M., Burkhanov, A. S., & Saleeva, Phase Equilibria in the Quasi-Binary Systems Formed by Cu Chalcogenides, Zhurnal Fiz. Khimii. 49 (1975) 1658–1661.
[48] D.C. Harris, E.W. Nuffield, Bambollaite, a new copper telluro-selenide, Can. Mineral. 11 (1972) 738–742.
[49] I. Karakaya, W.T. Thompson, Binary Alloy Phase Diagrams, 2nd ed., ASM international, Materials Park., Ohio, 1990.
[50] H.Z. Duan, Y.L. Li, K.P. Zhao, P.F. Qiu, X. Shi, L.D. Chen, Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials, Jom. 68 (2016) 2659–2665. doi:10.1007/s11837-016-1980-4.
[51] X. Wang, P. Qiu, T. Zhang, D. Ren, L. Wu, X. Shi, J. Yang, L. Chen, Compound defects and thermoelectric properties in ternary CuAgSe-based materials, J. Mater. Chem. A. 3 (2015) 13662–13670. doi:10.1039/c5ta02721g.
[52] P.F. Qiu, X.B. Wang, T.S. Zhang, X. Shi, L.D. Chen, Thermoelectric properties of Te-doped ternary CuAgSe compounds, J. Mater. Chem. A. 3 (2015) 22454–22461. doi:10.1039/c5ta06780d.
[53] W. Di Liu, L. Yang, Z.G. Chen, Cu2Se thermoelectrics: property, methodology, and device, Nano Today. 35 (2020). doi:10.1016/j.nantod.2020.100938.
[54] J.J. Hauser, Electrical and structural properties of Ag-X diffusion couples (X = Te, Se, S, and I), J. Appl. Phys. 53 (1982) 3634–3638. doi:10.1063/1.331145.
[55] Y. Lu, Y. Qiu, K. Cai, Y. Ding, M. Wang, C. Jiang, Q. Yao, C. Huang, L. Chen, J. He, Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices, Energy Environ. Sci. 13 (2020) 1240–1249. doi:10.1039/c9ee01609k.
[56] S. Huang, T.R. Wei, H. Chen, J. Xiao, M. Zhu, K. Zhao, X. Shi, Thermoelectric Ag2Se: Imperfection, Homogeneity, and Reproducibility, ACS Appl. Mater. Interfaces. 13 (2021) 60192–60199. doi:10.1021/acsami.1c18483.
[57] P. Wang, J.L. Chen, Q. Zhou, Y.T. Liao, Y. Peng, J.S. Liang, L. Miao, Enhancing the thermoelectric performance of Ag2Se by non-stoichiometric defects, Appl. Phys. Lett. 120 (2022). doi:10.1063/5.0085550.
[58] Y. Hutabalian, S.W. Chen, W. Gierlotka, Phase equilibria of binary Ag-Se and ternary Ag-Pb-Se systems, 2023.
[59] H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method, New York: Cambridge University Press, 2007.
[60] Y.I. Aliyev, Y.G. Asadov, R.D. Aliyeva, S.H. Jabarov, Polymorphic transformations and thermal expansion in AgCuSe0.5(S,Te)0.5 crystals, Semiconductors. 51 (2017) 732–739. doi:10.1134/s1063782617060045.
[61] N. Asano, K. Wase, T. Nomura, Equilibrium Diagram of the System Copper-Silver-Selenium and the Microscopic Structure of Copper Containing Silver and Selenium, J. Min. Inst. Japan. 87 (1971) 485–490. doi:10.2473/shigentosozai1953.87.1000_485.
[62] Z. Li, J. Shen, C. Muzzilo, S.L. Shang, P.H. Liao, Z.K. Liu, T.J. Anderson, Thermodynamic assessment of Ag-Cu-Se system, in: Calphad XLV Conf., 2016.
[63] Z. Li, Thermodynamic assessments and atomic layer deposition for CIGS-based thin film solar cell, University of FLorida, 2016.
[64] S. Chen, P.-S. Huang, Y. Hutabalian, J.-Y. Lin, Ag and Cu whisker formation in Ag-Cu-Te alloys, 2023.
[65] S.W. Chen, J.Y. Lin, C.M. Hsu, J.S. Chang, J.G. Duh, C.H. Wang, Ag whisker formation in Ag-In-Se alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 5281–5283. doi:10.1007/s11661-013-2030-2.
[66] W. Cao, S. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-fetzer, W.A. Oates, CALPHAD : Computer Coupling of Phase Diagrams and Thermochemistry PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad. 33 (2009) 328–342. doi:10.1016/j.calphad.2008.08.004.
[67] A.S. Pashinkin, L.M. Pavlova, Standard functions of formation and thermodynamic stability of compounds in the Cu-Te system, Inorg. Mater. 41 (2005) 1050–1054. doi:10.1007/s10789-005-0259-x.
[68] R. Blachnik, M. Lasocka, U. Walbrecht, The system copper-tellurium, J. Solid State Chem. 48 (1983) 431–438. doi:10.1016/0022-4596(83)90102-0.
[69] A.S. Pashinkin, L.M. Pavlova, Standard functions of formation and thermodynamic stability of compounds in the Cu-Te system, Inorg. Mater. 41 (2005) 1050–1054. doi:10.1007/s10789-005-0259-x.
[70] S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, I. Yanada, Microstructure development of mechanical-deformation-induced Sn whiskers, J. Electron. Mater. 36 (2007) 1732–1734. doi:10.1007/s11664-007-0284-4.
[71] V.B. Rajkumar, S.W. Chen, Ag-Se phase diagram calculation associating ab−initio molecular dynamics simulation, Calphad. 63 (2018) 51–60. doi:10.1016/j.calphad.2018.08.004.
[72] Z. Li, S.L. Shang, J. Shen, P.H. Liao, Z.K. Liu, T.J. Anderson, Thermodynamic Assessment of the Ag-Se System Aided by First-Principles Calculations, J. Phase Equilibria Diffus. 39 (2018) 870–881. doi:10.1007/s11669-018-0683-7.
[73] C. Chang, Processing and characterization of copper indium selenide for photovoltaic applications, University of Florida PP - United States -- Florida, 1999.
[74] A. Dinsdale, SGTE Pure Element Database (UNARY). Version 5.0, (2009). www.sgte.net.
[75] http://www.thermocalc.com/, (n.d.).
[76] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558–561. doi:10.1103/PhysRevB.47.558.
[77] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter. 21 (2009). doi:10.1088/0953-8984/21/39/395502.
[78] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. doi:10.1103/PhysRevLett.77.3865.
[79] R. Blachnik, G. Bolte, Aktivitäten von Se in geschmolzenen CuSe und AgSe Mischungen, J. Less-Common Met. 57 (1978) 21–28. doi:10.1016/0022-5088(78)90159-5.
[80] D. Feng, P. Taskinen, F. Tesfaye, Thermodynamic stability of Ag2Se from 350 to 500 K by a solid state galvanic cell, Solid State Ionics. 231 (2013) 1–4. doi:10.1016/j.ssi.2012.10.013.
[81] M. V. Voronin, E.G. Osadchii, Determination of thermodynamic properties of silver selenide by the galvanic cell method with solid and liquid electrolytes, Russ. J. Electrochem. 47 (2011) 420–426. doi:10.1134/S1023193511040203.
[82] E.G. Osadchii, E.A. Echmaeva, The system Ag-Au-Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique, Am. Mineral. 92 (2007) 640–647. doi:10.2138/am.2007.2209.
[83] F. Grønvold, S. Stølen, Y. Semenov, Heat capacity and thermodynamic properties of silver(I) selenide, oP-Ag2Se from 300 to 406 K and of cI-Ag2Se from 406 to 900 K: Transitional behavior and formation properties, Thermochim. Acta. 399 (2003) 213–224. doi:10.1016/S0040-6031(02)00470-7.
[84] Materials Project, (n.d.). https://materialsproject.org/.
[85] The Open Quantum Materials Database, (n.d.). https://oqmd.org/.
[86] NIST-JARVIS DFT, (n.d.). https://jarvis.nist.gov/.
[87] AFLOW Automatic FLow for Materials Design, (n.d.). http://aflowlib.org.
[88] Crystallography Open Database, (n.d.). http://www.crystallography.net/cod/.
[89] S.M. Wiggett, D.R. Swinbourne, R.H. Eric, G.G. Barbante, Thermodynamics of the miscibility gap in the Ag-Se system, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 30 (1999) 589–595. doi:10.1007/s11663-999-0019-4.
[90] Y. Tsuchiya, Velocity of sound and high-energy γ-ray attenuation in liquid Ag-Se alloys, J. Phys. Condens. Matter. 8 (1996) 1897–1908. doi:10.1088/0953-8984/8/12/005.
[91] S. Ohno, A.C. Barnes, J.E. Enderby, The electronic properties of liquid Ag/sub 1-x/Se/sub x/, J. Phys. Condens. Matter. 6 (1994) 5335–5350.
[92] G. Pellini, Compound of selenium with silver, Gazz. Chim. Ital. 45 (1915) 533–539.
[93] K. Friedrich, A. Leroux, The Fusion Diagram of Binary Systems Cu-Cu2Se, Ag-Ag2Se and Pb-PbSe, Metallurgie. 5 (1908) 355–358.
[94] M.C. Santhosh Kumar, B. Pradeep, Structural, electrical and optical properties of silver selenide thin films, Semicond. Sci. Technol. 17 (2002) 261–265. doi:10.1088/0268-1242/17/3/314.
[95] C.N. Zhu, P. Jiang, Z.L. Zhang, D.L. Zhu, Z.Q. Tian, D.W. Pang, Ag2Se quantum dots with tunable emission in the second near-infrared window, ACS Appl. Mater. Interfaces. 5 (2013) 1186–1189. doi:10.1021/am303110x.
[96] B.M. Mikolaichuk, A. G. Romanishin, M. V. Timchishin, X-ray investigation of system Ag2TexSe1-x, Inorg. Mater. 13 (1977) 1689–1690.
[97] D.B. Johnson, L.C. Brown, Lateral Diffusion in Ag–Te Thin‐Film Couples, J. Appl. Phys. 40 (2004) 1711–1714. doi:10.1063/1.1657836.
[98] B.C. Mohanty, P. Malar, T. Osipowicz, B.S. Murty, S. Varma, S. Kasiviswanathan, Characterization of silver selenide thin films grown on Cr-covered Si substrates, Surf. Interface Anal. 41 (2009) 170–178. doi:10.1002/sia.2985.
[99] M. Pandiaraman, N. Soundararajan, Micro-Raman studies on thermally evaporated Ag2Se thin films, J. Theor. Appl. Phys. 6 (2012) 7. doi:10.1186/2251-7235-6-7.
[100] C. Wagner, Investigations on silver sulfide, J. Chem. Phys. 21 (1953) 1819–1827. doi:10.1063/1.1698670.
[101] S.W. Chen, Y. Hutabalian, S.T. Lu, Y.S. Peng, Y.C. Lin, Interfacial reactions in In/Bi2Se3, In/Bi2Te3 and In/Bi2(Se0.2Te0.8)3 couples, J. Alloys Compd. 779 (2019) 347–359. doi:10.1016/j.jallcom.2018.11.098.
[102] L.H. Su, Y.W. Yen, C.C. Lin, S.W. Chen, Interfacial reactions in molten Sn/Cu and molten In/Cu couples, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 28 (1997) 927–934. doi:10.1007/s11663-997-0020-8.
[103] N. Mehta, M. Zulfequar, A. Kumar, Crystallization kinetics of some Se - Te - Ag chalcogenide glasses, J. Optoelectron. Adv. Mater. 6 (2004) 441–448.
[104] N. Mehta, A. Kumar, Observation of phase separation in some Se-Te-Ag chalcogenide glasses, Mater. Chem. Phys. 96 (2006) 73–78. doi:10.1016/j.matchemphys.2005.06.044.
[105] M. Ferhat, J. Nagao, Thermoelectric properties of ternary compounds thermoelectric properties of Ag2TexSex ternary compounds, in: AIP Conf. Proc., 2000: pp. 1513–1517.
[106] X. Zhang, Z. Chen, S. Lin, B. Zhou, B. Gao, Y. Pei, Promising Thermoelectric Ag5-δTe3 with Intrinsic Low Lattice Thermal Conductivity, ACS Energy Lett. 2 (2017) 2470–2477. doi:10.1021/acsenergylett.7b00813.
[107] J. Capps, F. Drymiotis, S. Lindsey, T.M. Tritt, Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te, Philos. Mag. Lett. 90 (2010) 677–681. doi:10.1080/09500839.2010.495355.
[108] F. Drymiotis, T.W. Day, D.R. Brown, N.A. Heinz, G. Jeffrey Snyder, Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5, Appl. Phys. Lett. 103 (2013) 1–5. doi:10.1063/1.4824353.
[109] O. Fikar, J. Vřešťál, A. Kroupa, S.W. Chen, The study of the Pb–Se–Te phase diagram: Part 2 – The thermodynamic assessment of the Se–Te and Pb–Se–Te systems, Calphad. 74 (2021) 102309. doi:10.1016/j.calphad.2021.102309.
[110] Y. Hutabalian, S.W. Chen, Interfacial reactions in Ag/Se, Ag/Se-30at.%Te and Ag2Te/Se couples and the phase equilibria of the Ag-Se-Te ternary system, J. Alloys Compd. 889 (2021) 161580. doi:10.1016/j.jallcom.2021.161580.
[111] F.C. Kracek, L.J. Cabri, Phase relations in the Silver-Tellurium system, Am. Mineral. 51 (1966) 14–28.
[112] O. Fikar, J. Vrestal, A. Kroupa, S. Chen, Calphad The study of the Pb – Se – Te phase diagram : Part 2 – The thermodynamic assessment of the Se – Te and Pb – Se – Te systems, 74 (2021) 1–9. doi:10.1016/j.calphad.2021.102309.
[113] SGTE Unary Database, ver. 5.0, www.sgte.net/en/free-pure-substance-database, (n.d.).
[114] O. Redlich, A.T. Kister, Thermodynamics of Nonelectrolyte Solutions - x-y-t relations in a Binary System, Ind. Eng. Chem. 40 (1948) 341–345. doi:10.1021/ie50458a035.
[115] H. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: The Calphad method, Cambridge University Press, New York, 2007.
[116] V.M. Glazov, A.S. Pashinkin, V.A. Fedorov, Phase equilibria in the Cu-Se system, Inorg. Mater. 36 (2000) 641–652. doi:https://doi.org/10.1007/BF02758413.
[117] S. wen Chen, Y. Hutabalian, S. ting Lu, Y. shuo Peng, Y. cheng Lin, Interfacial reactions in In/Bi2Se3, In/Bi2Te3 and In/Bi2(Se0.2Te0.8)3 couples, J. Alloys Compd. 779 (2019) 347–359. doi:10.1016/j.jallcom.2018.11.098.
[118] D. Minić, Y. Du, M. Premović, D. Manasijević, N. Talijan, D. Milisavljević, A. Marković, A. Đorđević, M. Tomović, Experimental and thermodynamic description of ternary Bi-Cu-Ga system, J. Min. Metall. B Metall. 53 (2017) 189–201.
[119] H. jay Wu, Z. jin Dong, Phase diagram of ternary Cu-Ga-Te system and thermoelectric properties of chalcopyrite CuGaTe2 materials, Acta Mater. 118 (2016) 331–341. doi:10.1016/j.actamat.2016.07.060.
[120] N.A. Alieva, G.G. Guseinov, V.A. Gasymov, Y.I. Alyev, T.R. Mekhtiev, Structural phase transitions of polycrystalline Cu4SeTe, Inorg. Mater. 51 (2015) 661–664. doi:10.1134/S0020168515070018.
[121] I.R. Amiraslanov, K.K. Azizova, Y.R. Aliyeva, Crystal structure of Сu4SeTe, Crystallogr. Reports. 62 (2017) 215–218. doi:10.1134/S1063774517020043.
[122] B. Yang, H. Jiang, J. Zhang, B.X. Liu, H. Wang, Interfacial reaction in Cu–Se diffusion couples at low temperatures, Powder Metall. Met. Ceram. 54 (2015) 115–118. doi:10.1007/s11106-015-9687-6.
[123] W. Di Liu, L. Yang, Z.G. Chen, J. Zou, Promising and Eco-Friendly Cu2X-Based Thermoelectric Materials: Progress and Applications, Adv. Mater. 32 (2020) 87–92. doi:10.1002/adma.201905703.
[124] K. Zhao, H. Duan, N. Raghavendra, P. Qiu, Y. Zeng, W. Zhang, J. Yang, X. Shi, L. Chen, Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials, Adv. Mater. 29 (2017) 1–7. doi:10.1002/adma.201701148.
[125] M. Li, Y. Luo, G. Cai, X. Li, X. Li, Z. Han, X. Lin, D. Sarker, J. Cui, Realizing high thermoelectric performance in Cu 2 Te alloyed Cu 1.15 In 2.29 Te 4, J. Mater. Chem. A. 7 (2019) 2360–2367. doi:10.1039/c8ta10741f.
[126] J.Y. Du, A. Zemanová, Y. Hutabalian, A. Kroupa, S.W. Chen, Phase diagram of Ag–Pb–Sn system, Calphad. 71 (2020). doi:10.1016/j.calphad.2020.101997.
[127] Z.Y. Aydın, S. Malekghasemi, S. Abaci, Underpotential co-deposition of ternary Cu-Te-Se semiconductor nanofilm on both flexible and rigid substrates, Appl. Surf. Sci. Surf. Sci. 470 (2019) 658–667.
[128] F.N. Rhines, Phase diagrams in metallurgy, their development and application, McGraw-Hill, New York, 1956.
[129] S.W. Chen, Y. Hutabalian, W. Gierlotka, C.H. Wang, S.T. Lu, Phase diagram of Bi–In–Se ternary system, Calphad. 68 (2020) 101744. doi:10.1016/j.calphad.2020.101744.
[130] K.C. Hari Kumar, P. Wollants, Some guidelines for thermodynamic optimisation of phase diagrams, J. Alloys Compd. 320 (2001) 189–198. doi:10.1016/S0925-8388(00)01491-2.
[131] M. Hillert, The compound energy formalism, J. Alloys Compd. 320 (2001) 161–176.
[132] R. Schmid, Y.A. Chang, A thermodynamic study on an associated solution model for liquid alloys, Calphad. 9 (1985) 363–382. doi:10.1016/0364-5916(85)90004-5.
[133] Y. Hutabalian, S.W. Chen, Phase relationships in the Cu-Se-Te ternary system, preparation for submission, 2023.
[134] T. Zhu, H. Bai, J. Zhang, G. Tan, Y. Yan, W. Liu, X. Su, J. Wu, Q. Zhang, X. Tang, Realizing High Thermoelectric Performance in Sb-Doped Ag 2 Te Compounds with a Low-Temperature Monoclinic Structure, ACS Appl. Mater. Interfaces. 12 (2020) 39425–39433. doi:10.1021/acsami.0c10932.
[135] Y. Pei, N.A. Heinz, G.J. Snyder, Alloying to increase the band gap for improving thermoelectric properties of Ag2Te, J. Mater. Chem. 21 (2011) 18256–18260. doi:10.1039/c1jm13888j.
[136] D. Jung, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, Effect of Phase Transition on the Thermoelectric Properties of Ag2Te, Mater. Trans. 53 (2012) 1216–1219.
[137] Y. Chang, J. Guo, Y.Q. Tang, Y.X. Zhang, J. Feng, Z.H. Ge, Facile synthesis of Ag2Te nanowires and thermoelectric properties of Ag2Te polycrystals sintered by spark plasma sintering, CrystEngComm. 21 (2019) 1718–1727. doi:10.1039/c8ce01863d.
[138] P. Taylor, J. Capps, F. Drymiotis, S. Lindsey, T.M. Tritt, Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te, Philos. Mag. Lett. 90 (210AD) 677–681. doi:10.1080/09500839.2010.495355.
[139] L. Li, W. Zhai, C. Wang, Y. Chen, S. Li, P. Fan, Z. Cheng, G. Yang, J. Wang, Y. Mao, Maximizing phonon scattering efficiency by Cu2Se alloying in AgCuTe thermoelectric materials, J. Mater. Chem. A. 10 (2022) 6701–6712. doi:10.1039/d1ta10692a.
[140] M. Wu, H.H. Cui, S. Cai, S. Hao, Y. Liu, T.P. Bailey, Y. Zhang, Z. Chen, Y. Luo, C. Uher, C. Wolverton, V.P. Dravid, Y. Yu, Z.Z. Luo, Z. Zou, Q. Yan, M.G. Kanatzidis, Weak Electron–Phonon Coupling and Enhanced Thermoelectric Performance in n-type PbTe–Cu2Se via Dynamic Phase Conversion, Adv. Energy Mater. 13 (2023) 1–9. doi:10.1002/aenm.202203325.
[141] G. Wu, Z. Yan, X. Wang, X. Tan, K. Song, L. Chen, Z. Guo, G.Q. Liu, Q. Zhang, H. Hu, J. Jiang, Optimized Thermoelectric Properties of Bi0.48Sb1.52Te3through AgCuTe Doping for Low-Grade Heat Harvesting, ACS Appl. Mater. Interfaces. 13 (2021) 57514–57520. doi:10.1021/acsami.1c19893.
[142] Z. Ma, T. Xu, W. Li, Y. Cheng, J. Li, Y. Wei, Q. Jiang, Y. Luo, J. Yang, High Thermoelectric Performance SnTe with a Segregated and Percolated Structure, ACS Appl. Mater. Interfaces. 14 (2022) 9192–9202. doi:10.1021/acsami.1c24075.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *