帳號:guest(3.135.196.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏志翰
作者(外文):Yen, Chih-Han
論文名稱(中文):具抗腐蝕性與穩定性的電解質應用於鋰電池之開發
論文名稱(外文):Development of corrosion-resistant and stable electrolytes for lithium batteries
指導教授(中文):胡啟章
Hardwick, Laurence J.
指導教授(外文):Hu, Chi-Chang
Hardwick, Laurence J.
口試委員(中文):張家欽
張仍奎
王復民
周鶴修
口試委員(外文):Chang, Chia-Chin
Chang, Jeng-Kuei
Wang, Fu-Ming
Chou, Ho-Hsiu
Bresser, Dominic
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032807
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:166
中文關鍵詞:雙鋰鹽電解質正極鋁箔抗腐蝕膠態電解質改質層臨場電化學光學觀測枝晶鋰抑制鋰金屬電池
外文關鍵詞:Dual-salt electrolytesAluminium current collectors corrosion suppressionGel polymer coated layer on lithium metalIn-situ microscope systemLithium dendrite observation and suppressionLithium metal batteries
相關次數:
  • 推薦推薦:0
  • 點閱點閱:253
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鋰電池電解質可以說是整個鋰電池的心臟,其重要性是可以直接影響電池的充放電效能、工作溫度、循環壽命以及電池的安全性。隨著人類對於更高能量的儲能裝置需求之下,具有高能量密度的鋰金屬電池被認為是極具潛力的研究主題。因此,開發高循環充放電效能且具穩定性的電解質應用於鋰金屬電池可具有相當大的價值與意義。本論文藉由低毒性腈類溶劑、雙鋰鹽電解質以及抑制枝晶鋰生成的膠態高分子來進行抗腐蝕、高效能與高穩定壽命的鋰金屬電池電解質研究開發。
本論文第一章介紹鋰金屬電池、鋰電池電解質以及膠態高分子在鋰電池的應用。第二章詳細介紹本文中電池相關的材料製備、分析儀器、電化學系統以及實驗方法。
在第三章中,本研究使用3-甲氧基丙基腈(3-methoxypropionitrile, MPN)作為含雙(三氟甲基磺醯)氨基鋰鹽(Lithium bis(trifluoromethanesulfonyl)imide, LiTFSI)的電解質溶劑,並在LiNi0.6Mn0.2Co0.2O2) || Li 鋰金屬鈕扣電池進行循環充放電測試後,確認該溶劑可有效的抑制電池正極鋁箔集電材料的腐蝕,並且有效改善鋰電池的循環壽命。藉由線性掃描伏安法來驗證鋁箔在電解質加入3-甲氧基丙基腈溶劑後可增加氧化反應電位以及其安定性。經過X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析後,驗證了鋁箔上具有氮化鋁(aluminium nitride passivation, AlN)鈍化層的生成,可保護鋁箔表面且改善電池容量維持率。
在第四章中,本論文中開發了臨場電化學光學顯微鏡系統來探討鋰金屬表面生成枝晶鋰的機制,並清楚觀察到使用傳統商業化的六氟磷酸鋰碳酸酯電解質下枝晶鋰的生成,以及使用LiTFSI-LiPF6雙鹽電解質下可有效抑制枝晶鋰的現象。除此之外,使用傳統電解質下,鋰金屬電極表面會累積 Dead lithium 產物、出現表面孔蝕及氣體產物生成;然而,本文在臨場電化學光學顯微鏡結果中發現LiTFSI-LiPF6雙鹽電解質可以明顯有效改善這些問題。本研究亦藉由電化學阻抗圖譜分析、離子導電度計的量測、鋰金屬對稱電極電池與鋰金屬半電池循環的測試結果來探討各電解質在鋰金屬電極表面的影響。
在第五章中,本研究藉由拉曼光譜更進一步分析不同濃度單鹽與LiTFSI-LiPF6雙鹽電解質中並探討鋰離子與溶劑分子的作用關係。由電化學阻抗圖譜數據的奈奎斯特圖分析得知,雙鹽電解質使鋰金屬表面具有較低的固態電解質介面阻抗及電荷轉移阻抗,可改善LiNi0.6Mn0.2Co0.2O2) || Li鋰金屬半電池的充放電效率表現。此外,LiTFSI-LiPF6雙鹽電解質在鋰金屬半電池在500次長循環下,具有68 %的電池容量保持率,明顯高於傳統的六氟磷酸鋰碳酸酯電解質。
在第六章中,聚乙二醇二丙烯酸酯高分子搭配醚類或是碳酸酯類電解液組成的膠態高分子電解質,可設計為膠態高分子電解質改質層鋰金屬電極表面。透過臨場電化學光學顯微鏡觀測結果得知,膠態高分子改質層能有效抑制鋰金屬表面產生枝晶鋰、孔蝕、及死鋰堆積的問題。將膠態高分子電解質改質層應用於鋰對稱電池,可增加鋰離子轉移數;並在Li||LiNi0.6Mn0.2Co0.2O2電池循環充放電時,維持充電的起始過電壓,進而提升電池容量保持率與電池循環壽命。
Lithium-metal batteries are considered as a promising candidate to replace the present state of the art lithium-ion technology. Thus, developing high-performance and stable electrolytes for batteries containing lithium metal rather than graphitic carbon is significant. This thesis investigates corrosion-resistant, high-performance, and long-lifetime electrolytes for lithium-metal batteries by developing a novel nitrile solvent, dual-lithium salt electrolytes, and a dendrite-suppression gel polymer layer.
A general background about lithium-metal batteries and electrolytes is provided in Chapter 1. A detailed explanation of battery preparation and experimental methods is presented in Chapter 2.
Chapter 3 of this thesis investigates the use of the nitrile-based solvent (3-methoxypropionitrile) within the lithium electrolyte, thereby effectively suppressing aluminium current collector corrosion during LiNi0.6Mn0.2Co0.2O2 || Li cell cycling. The oxidation stability window expands with the use of nitrile-based electrolyte, as verified through linear sweep voltammetry. The aluminium nitride passivation layer was characterised via X-ray photoelectron analysis, and the addition of 3-methoxypropionitrile was found to improve capacity retention.
Chapter 4 discusses lithium dendrite formation in conventional carbonate electrolytes and demonstrates the dendrite suppression using dual-salt electrolytes via in situ optical microscopy observation. Dead lithium accumulation and gas evolution were observed in the carbonate-based electrolytes; however, LiTFSI-LiPF6 dual-salt electrolytes effectively addressed these problems during cell cycling. Ionic conductivity, electrochemical impedance spectroscopy, symmetric lithium cells cycling and LiNi0.6Mn0.2Co0.2O2||Li half cells performance were compared and analysed for 1–4 M of single and dual electrolytes.
Chapter 5 studies lithium-ion solvation in LiTFSI-LiPF6 dual-salt electrolytes via Raman spectroscopy analysis and compares the results with those of single-salt electrolytes. Nyquist plots indicated that the dual-salt electrolytes exhibited lower SEI-layer resistance and charge transfer resistance, which explains the effect of a lower resistance SEI layer formation on the Li metal surface. In addition, the improved rate capacity performance in LiNi0.6Mn0.2Co0.2O2||Li cells with these dual-salt electrolytes can be attributed to the effect of low RCT and low desolvation energy. An improved capacity retention of 68 % in the 2 M LiTFSI and 1 M LiPF6 dual-salt electrolyte compared to 29% of 1M LiPF6 electrolyte could be obtained after 500 long-cycle at 0.5C in LiNi0.6Mn0.2Co0.2O2||Li cells.
In Chapter 6, the design of a poly(ethylene glycol) diacrylate-derived gel polymer containing ether-based or carbonate-based electrolytes is discussed for use as a gel polymer-modified layer (GPL) to effectively suppress the lithium dendrite formation, pitting holes, and dead lithium accumulation on the lithium metal surface. The GPL increases the lithium-ion transference number (t+) in conventional liquid electrolytes and results in low cell charge voltages in the lithium metal anode of Li||LiNi0.6Mn0.2Co0.2O2, which enhances the capacity retention and prolongs cell lifetime.
摘要 I
Abstract III
致謝 V
Table of Contents VIII
List of Figures XI
List of Tables XVIII
Chapter 1 Introduction 1
1.1. Introduction of Li metal batteries 1
1.2. Challenges of lithium metal batteries 3
1.3. Electrolyte salts for LMBs 4
1.3.1 Lithium hexafluorophosphate (LiPF6) 5
1.3.2 Imide-based lithium salts 7
1.3.3 Other lithium salts 8
1.4. Electrolyte solvents for LMBs 9
1.4.1 Carbonate-based solvents 10
1.4.2 Ether-based electrolytes 12
1.4.3 Nitrile-based electrolyte 14
1.5. Electrochemical cell for in situ optical microscopic observation during electrodeposition and dissolution 15
1.6. Blended lithium salts electrolyte for LMBs 18
1.7. PEO-based gel polymer layer for Li metal anode 19
1.8. Aim of this work 21
Chapter 2 Experimental Methods 23
2.1 Cell preparation 23
2.1.1 LiNi0.6Mn0.2Co0.2O2 cathode preparation 23
2.1.2 Liquid electrolytes preparation 24
2.1.3 Gel polymer electrolytes preparation 25
2.2 Electrochemical characterisation techniques 26
2.2.1 Linear sweep voltammetry (LSV) 26
2.2.2 Coin cell assembly and cycling 28
2.2.3 Electrochemical impedance spectroscopy (EIS) 29
2.2.4 Lithium-ion transference number 33
2.2.5 Synchronised electrochemical/optical microscopy (in situ OM) 34
2.3 Material characterisation 36
2.3.1 Karl-Fisher titration (KFT) 36
2.3.2 Ionic conductivity measurement 37
2.3.3 Scanning electron microscope (SEM) 38
2.3.4 X-ray photoelectron spectroscopy 38
2.3.5 Raman spectroscopy 39
2.3.6 Fourier-transform infrared (FTIR) spectroscopy 40
Chapter 3 Aluminium current collector corrosion suppression in Li-ion cells using 3-Methoxypropionitrile co-solvent 41
3.1. Overview of this chapter 41
3.2. Results and discussion 42
3.2.1. Electrolyte characterisation 42
3.2.2. Surface analysis by X-ray photoelectron spectroscopy 47
3.2.3. Protection mechanism 51
3.2.4. Cycling performance of LiNi0.6Mn0.2Co0.2O2||Li cells 53
3.3. Summary 59
Chapter 4 In situ observation of imide-based dual-salt electrolytes enabling lithium dendrite suppression in lithium-metal batteries 60
4.1. Overview 60
4.2. Results and discussion 61
4.3.1 Lithium dendrite formation and depletion observed by in situ OM 61
4.3.2 In situ OM observation of lithium dendrites in LiPF6 carbonate-based electrolytes 64
4.3.3 In situ OM observation of lithium dendrites in LiTFSI ether-based electrolytes 66
4.3.4 Lithium dendrite suppression in LiTFSI-LiPF6 dual-salt electrolyte 68
4.3.5 Ionic conductivity measurements of the electrolytes 74
4.3.6 Electrochemical impedance spectroscopy analysis 76
4.3.7 Li || Li cell cycling in dual-salt electrolyte 81
4.3.8 Electrochemical performance of Li || LiNi0.6Mn0.2Co0.2O2 cells 83
4.3. Summary 84
Chapter 5 Investigation of lithium-ion solvation in dual-salt electrolytes and rate capability of lithium metal batteries 86
5.1 Overview of this chapter 86
5.2 Results and discussion 87
5.2.1 Raman spectroscopy analysis of dual-salt electrolytes 87
5.2.2 Li-ion transference number of dual-salt electrolytes 92
5.2.3 Rate capability of LiNi0.6Mn0.2Co0.2O2||Li cells with dual-salt electrolytes 99
5.2.4 Long-cycling performance of Li∥LiNi0.6Mn0.2Co0.2O2 cells 101
5.3 Summary 104
Chapter 6 Investigating dendrite suppression gel polymer layer for upgrading conventional electrolytes in lithium metal batteries 105
6.1 Overview of this chapter 105
6.2 Result and discussion 106
6.2.1 Characterisation of the gel polymer layer 106
6.2.2 In situ optical microscopy of GPL-coated lithium 112
6.2.3 Li ion transference number of gel polymer electrolytes 115
6.2.4 Cycling performance of LiNi0.6Mn0.2Co0.2O2 || Li cells 118
6.2.5 GPLs and electrodes compatibility in LMBs 122
6.2.6 Enhanced cycling performance of Lithium Metal Batteries in nitrile-based electrolytes by GPL coating on lithium metal 124
6.3 Summary 126
Chapter 7 Conclusions and furtherwork 127
Chapter 8 References 130
DECLARATION 163
CURRICULUM VITAE 163

1. Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G., Challenges facing lithium batteries and electrical double‐layer capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.
2. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of Materials 2010, 22 (3), 587-603.
3. Scrosati, B.; Hassoun, J.; Sun, Y.-K., Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4 (9), 3287-3295.
4. Armand, M.; Tarascon, J.-M., Building better batteries. Nature 2008, 451 (7179), 652-657.
5. Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T., Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews 2020, 121 (3), 1623-1669.
6. Ma, J.; Li, Y.; Grundish, N. S.; Goodenough, J. B.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L., The 2021 battery technology roadmap. Journal of Physics D: Applied Physics 2021, 54 (18), 183001.
7. Bashir, T.; Ismail, S. A.; Song, Y.; Irfan, R. M.; Yang, S.; Zhou, S.; Zhao, J.; Gao, L., A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Materials 2021, 1 (2), 100019.
8. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M., Li–O2 and Li–S batteries with high energy storage. Nature Materials 2012, 11 (1), 19-29.
9. Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J.; Guo, F.; Wu, Y. A.; Rong, Y.; Kou, R.; Xiao, X.; Aguesse, F.; Bareño, J.; Ren, Y.; Lu, W.; Li, Y., Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nature Energy 2018, 3 (11), 936-943.
10. Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S.-G.; Yamamoto, O., A Highly Reversible Lithium Metal Anode. Scientific Reports 2014, 4 (1), 3815.
11. Ue, M.; Uosaki, K., Recent progress in liquid electrolytes for lithium metal batteries. Current Opinion in Electrochemistry 2019, 17, 106-113.
12. Chen, L.; Fan, X.; Ji, X.; Chen, J.; Hou, S.; Wang, C., High-Energy Li Metal Battery with Lithiated Host. Joule 2019, 3 (3), 732-744.
13. Wang, R.; Cui, W.; Chu, F.; Wu, F., Lithium metal anodes: Present and future. Journal of Energy Chemistry 2020, 48, 145-159.
14. Hu, Z.; Li, J.; Zhang, X.; Zhu, Y., Strategies to improve the performance of Li metal anode for rechargeable batteries. Frontiers in Chemistry 2020, 8, 409.
15. Wang, S.; Rafiz, K.; Liu, J.; Jin, Y.; Lin, J. Y., Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries. Sustainable Energy & Fuels 2020, 4 (5), 2342-2351.
16. Song, B.; Dhiman, I.; Carothers, J. C.; Veith, G. M.; Liu, J.; Bilheux, H. Z.; Huq, A., Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron imaging. ACS Energy Letters 2019, 4 (10), 2402-2408.
17. Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H. M., Key aspects of lithium metal anodes for lithium metal batteries. Small 2019, 15 (32), 1900687.
18. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
19. Wang, T.; Li, Y.; Zhang, J.; Yan, K.; Jaumaux, P.; Yang, J.; Wang, C.; Shanmukaraj, D.; Sun, B.; Armand, M., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nature Communications 2020, 11 (1), 1-9.
20. Zhang, R.; Shen, X.; Zhang, Y.-T.; Zhong, X.-L.; Ju, H.-T.; Huang, T.-X.; Chen, X.; Zhang, J.-D.; Huang, J.-Q., Dead lithium formation in lithium metal batteries: A phase field model. Journal of Energy Chemistry 2022, 71, 29-35.
21. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. ChemSusChem 2015, 8 (13), 2154-2175.
22. Horstmann, B.; Shi, J.; Amine, R.; Werres, M.; He, X.; Jia, H.; Hausen, F.; Cekic-Laskovic, I.; Wiemers-Meyer, S.; Lopez, J., Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy & Environmental Science 2021, 14 (10), 5289-5314.
23. Garche, J.; Dyer, C.; Moseley, P. T.; Ogumi, Z.; Rand, D. A.; Scrosati, B., Encyclopedia of electrochemical power sources. Newnes: 2013.
24. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8 (13), 2154-2175.
25. Xia, L.; Jiang, Y.; Pan, Y.; Li, S.; Wang, J.; He, Y.; Xia, Y.; Liu, Z.; Chen, G. Z., Lithium Bis (fluorosulfony) imide‐Lithium Hexafluorophosphate Binary‐Salt Electrolytes for Lithium‐Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties. ChemistrySelect 2018, 3 (7), 1954-1960.
26. Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A., Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2 (11), 1687-1694.
27. Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K.-M.; Choi, N.-S., An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. Journal of Power Sources 2020, 446, 227366.
28. Tochihara, M.; Nara, H.; Mukoyama, D.; Yokoshima, T.; Momma, T.; Osaka, T., Liquid chromatography-quadruple time of flight mass spectrometry analysis of products in degraded lithium-ion batteries. Journal of The Electrochemical Society 2015, 162 (10), A2008.
29. Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J., Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. Journal of The Electrochemical Society 2016, 163 (6), A1095.
30. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H., A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy & Environmental Science 2020, 13 (4), 1197-1204.
31. Lux, S.; Terborg, L.; Hachmöller, O.; Placke, T.; Meyer, H.-W.; Passerini, S.; Winter, M.; Nowak, S., LiTFSI stability in water and its possible use in aqueous lithium-ion batteries: pH dependency, electrochemical window and temperature stability. Journal of The Electrochemical Society 2013, 160 (10), A1694.
32. Yang, Y.-P.; Huang, A.-C.; Tang, Y.; Liu, Y.-C.; Wu, Z.-H.; Zhou, H.-L.; Li, Z.-P.; Shu, C.-M.; Jiang, J.-C.; Xing, Z.-X., Thermal stability analysis of lithium-ion battery electrolytes based on lithium bis (trifluoromethanesulfonyl) imide-lithium difluoro (oxalato) borate dual-salt. Polymers 2021, 13 (5), 707.
33. Lu, Z.; Yang, L.; Guo, Y., Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. Journal of Power Sources 2006, 156 (2), 555-559.
34. Lesch, V.; Heuer, A.; Rad, B. R.; Winter, M.; Smiatek, J., Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications. Physical Chemistry Chemical Physics 2016, 18 (41), 28403-28408.
35. Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K., Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of power sources 2013, 231, 234-238.
36. Abouimrane, A.; Ding, J.; Davidson, I., Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources 2009, 189 (1), 693-696.
37. Cho, E.; Mun, J.; Chae, O. B.; Kwon, O. M.; Kim, H.-T.; Ryu, J. H.; Kim, Y. G.; Oh, S. M., Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications 2012, 22, 1-3.
38. Di Censo, D.; Exnar, I.; Graetzel, M., Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries. Electrochemistry Communications 2005, 7 (10), 1000-1006.
39. Mauger, A.; Julien, C. M.; Paolella, A.; Armand, M.; Zaghib, K., A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives. Materials Science and Engineering: R: Reports 2018, 134, 1-21.
40. Zhang, X.; Devine, T., Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. Journal of The Electrochemical Society 2006, 153 (9), B375.
41. Miao, R.; Yang, J.; Feng, X.; Jia, H.; Wang, J.; Nuli, Y., Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources 2014, 271, 291-297.
42. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature Communications 2015, 6 (1), 1-9.
43. Qiu, F.; Li, X.; Deng, H.; Wang, D.; Mu, X.; He, P.; Zhou, H., A Concentrated Ternary‐Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li. Advanced Energy Materials 2018, 9 (6).
44. Hu, J. J.; Long, G. K.; Liu, S.; Li, G. R.; Gao, X. P., A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. Chem Commun (Camb) 2014, 50 (93), 14647-50.
45. Li, X.; Zheng, J.; Engelhard, M. H.; Mei, D.; Li, Q.; Jiao, S.; Liu, N.; Zhao, W.; Zhang, J. G.; Xu, W., Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Appl Mater Interfaces 2018, 10 (3), 2469-2479.
46. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy & Environmental Science 2015, 8 (7), 1905-1922.
47. Gnanaraj, J.; Zinigrad, E.; Levi, M.; Aurbach, D.; Schmidt, M., A comparison among LiPF6, LiPF3(CF2CF3)3(LiFAP), and LiN(SO2CF2CF3)2(LiBETI) solutions: electrochemical and thermal studies. Journal of Power Sources 2003, 119, 799-804.
48. Lu, H.; Zeng, S.; Zhao, D.; Wang, J.; Quan, Y.; Xu, F.; Li, F.; Li, S., Optimizing the composition of LiFSI-based electrolytes by a method combining simplex with normalization. RSC advances 2021, 11 (42), 26102-26109.
49. Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R., A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. Electrochemical Energy Reviews 2022, 5 (4), 1-34.
50. Marom, R.; Haik, O.; Aurbach, D.; Halalay, I. C., Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries. Journal of the Electrochemical Society 2010, 157 (8), A972.
51. Tasaki, K.; Kanda, K.; Nakamura, S.; Ue, M., Decomposition of LiPF6 and Stability of PF5 in Li-Ion Battery Electrolytes: Density Functional Theory and Molecular Dynamics Studies. Journal of The Electrochemical Society 2003, 150 (12), A1628.
52. Chen, X.; Zhang, X. Q.; Li, H. R.; Zhang, Q., Cation− solvent, cation− anion, and solvent− solvent interactions with electrolyte solvation in lithium batteries. Batteries & Supercaps 2019, 2 (2), 128-131.
53. Gao, Z.; Lu, Z.; Zhang, Y.; Xia, J.; Zhang, X.; Sun, C.; Yang, Y.; Xu, Y.; Wang, K.; Wang, X., Regulating interfacial desolvation via a weakly coordinating solvent molecule enhances Li-ion storage at subzero temperatures. Chemical Engineering Science 2022, 254, 117633.
54. Li, Q.; Lu, D.; Zheng, J.; Jiao, S.; Luo, L.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W., Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Applied Materials & Interfaces 2017, 9 (49), 42761-42768.
55. Xu, K.; von Wald Cresce, A., Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. Journal of Materials Research 2012, 27 (18), 2327-2341.
56. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
57. Cekic-Laskovic, I.; von Aspern, N.; Imholt, L.; Kaymaksiz, S.; Oldiges, K.; Rad, B. R.; Winter, M., Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries. Topics in Current Chemistry 2017, 375 (2), 37.
58. Rodriguez, J. R.; Seo, B.; Savoie, B. M.; Pol, V. G., Role of the Solvation Shell Structure and Dynamics on K‐Ion and Li‐Ion Transport in Mixed Carbonate Electrolytes. Batteries & Supercaps 2022, 5 (1), e202100223.
59. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89, 206-218.
60. Y. Gofer, M. B.-Z. a. D. A., Solutions of LiAsF, in 1,3-dioxolane for secondary lithium batteries. Journal of Power Sources 1992, 39, 163-178.
61. Aurbach, D.; Ein‐Ely, Y.; Zaban, A., The surface chemistry of lithium electrodes in alkyl carbonate solutions. Journal of the Electrochemical Society 1994, 141 (1), L1.
62. Aurbach, D.; Zaban, A.; Gofer, Y.; Ely, Y. E.; Weissman, I.; Chusid, O.; Abramson, O., Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources 1995, 54 (1), 76-84.
63. Aurbach, D.; Zaban, A.; Ein-Eli, Y.; Weissman, I.; Chusid, O.; Markovsky, B.; Levi, M.; Levi, E.; Schechter, A.; Granot, E., Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. Journal of Power Sources 1997, 68 (1), 91-98.
64. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218.
65. G. H. Newman, R. W. F., L. H. Gaines,* and B. M. L. Rao*, Hazard Investigations of LiClO4 / Dioxolane Electrolyte. J. EZectrochem. Soc.: 1980, 127 (9).
66. Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G., The lithium-oxygen battery with ether-based electrolytes. Angew Chem Int Ed Engl 2011, 50 (37), 8609-13.
67. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L., A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature communications 2013, 4 (1), 1-9.
68. Zheng, J.; Fan, X.; Ji, G.; Wang, H.; Hou, S.; DeMella, K. C.; Raghavan, S. R.; Wang, J.; Xu, K.; Wang, C., Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries. Nano Energy 2018, 50, 431-440.
69. Cekic-Laskovic, I.; von Aspern, N.; Imholt, L.; Kaymaksiz, S.; Oldiges, K.; Rad, B. R.; Winter, M., Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries. Topics in Current Chemistry 2017, 375 (2), 1-64.
70. Logan, E.; Dahn, J., Electrolyte design for fast-charging Li-ion batteries. Trends in Chemistry 2020, 2 (4), 354-366.
71. Krämer, E.; Passerini, S.; Winter, M., Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochemistry Letters 2012, 1 (5), C9.
72. Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M., Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements. Journal of The Electrochemical Society 2015, 162 (2), A3084-A3097.
73. Wang, Q.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M., 3-Methoxypropionitrile-Based Novel Electrolytes for High-Power Li-Ion Batteries with Nanocrystalline Li4Ti5O12 Anode. Journal of The Electrochemical Society 2004, 151 (10), A1598.
74. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A., Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. Journal of the American Chemical Society 2014, 136 (13), 5039-5046.
75. Langevin, S. A.; McGuire, M. M.; Le, N. Q.; Ragasa, E.; Hamann, T.; Ferguson, G.; Chung, C.; Domenico, J.; Ko, J. S., Developing a nitrile-based lithium-conducting electrolyte for low temperature operation. Journal of Materials Chemistry A 2022, 10 (37), 19972-19983.
76. Osaka, T.; Momma, T.; Nishimura, K.; Tajima, T., In situ observation and evaluation of electrodeposited lithium by means of optical microscopy with alternating current impedance spectroscopy. Journal of the Electrochemical Society 1993, 140 (10), 2745.
77. Selim, R.; Bro, P., Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. Journal of The Electrochemical Society 1974, 121 (11), 1457.
78. Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society 1979, 126 (12), 2047.
79. Yoshimatsu, I.; Hirai, T.; Yamaki, J. i., Lithium electrode morphology during cycling in lithium cells. Journal of the Electrochemical Society 1988, 135 (10), 2422.
80. Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S., Dendritic growth mechanisms in lithium/polymer cells. Journal of power sources 1999, 81, 925-929.
81. Xu, G.; Shangguan, X.; Dong, S.; Zhou, X.; Cui, G., Formulation of blended‐lithium‐salt electrolytes for lithium batteries. Angewandte Chemie International Edition 2020, 59 (9), 3400-3415.
82. Jiang, J.; Dahn, J., Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta 2004, 49 (26), 4599-4604.
83. Jiang, J.; Fortier, H.; Reimers, J.; Dahn, J., Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt. Journal of The Electrochemical Society 2004, 151 (4), A609.
84. Shieh, D.-T.; Hsieh, P.-H.; Yang, M.-H., Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries. Journal of Power Sources 2007, 174 (2), 663-667.
85. Chen, Z.; Lu, W.; Liu, J.; Amine, K., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochimica Acta 2006, 51 (16), 3322-3326.
86. Zhang, L.; Chai, L.; Zhang, L.; Shen, M.; Zhang, X.; Battaglia, V. S.; Stephenson, T.; Zheng, H., Synergistic effect between lithium bis (fluorosulfonyl) imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries. Electrochimica Acta 2014, 127, 39-44.
87. Zhang, Z.; Chen, X.; Li, F.; Lai, Y.; Li, J.; Liu, P.; Wang, X., LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells. Journal of Power Sources 2010, 195 (21), 7397-7402.
88. Wang, J.; Yong, T.; Yang, J.; Ouyang, C.; Zhang, L., Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Advances 2015, 5 (23), 17660-17666.
89. Hong, E.-S.; Okada, S.; Sonoda, T.; Gopukumar, S.; Yamaki, J.-i., Thermal stability of electrolytes with mixtures of LiPF6 and LiBF4 used in lithium-ion cells. Journal of the Electrochemical Society 2004, 151 (11), A1836.
90. Wongittharom, N.; Lee, T.-C.; Hung, I.-M.; Lee, S.-W.; Wang, Y.-C.; Chang, J.-K., Ionic liquid electrolytes for high-voltage rechargeable Li/LiNi0.5Mn1.5O4 cells. Journal of Materials Chemistry A 2014, 2 (10), 3613-3620.
91. Wang, D. Y.; Xiao, A.; Wells, L.; Dahn, J., Effect of mixtures of lithium hexafluorophosphate (LiPF6) and lithium bis (fluorosulfonyl) imide (LiFSI) as salts in Li [Ni1/3Mn1/3Co1/3] O2/graphite pouch cells. Journal of The Electrochemical Society 2014, 162 (1), A169.
92. Gnanaraj, J.; Zinigrad, E.; Asraf, L.; Sprecher, M.; Gottlieb, H.; Geissler, W.; Schmidt, M.; Aurbach, D., On the use of LiPF3(CF2CF3)3(LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies. Electrochemistry Communications 2003, 5 (11), 946-951.
93. Song, S.-W.; Richardson, T. J.; Zhuang, G. V.; Devine, T. M.; Evans, J. W., Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochimica Acta 2004, 49 (9-10), 1483-1490.
94. Hao, Z.; Zhao, Q.; Tang, J.; Zhang, Q.; Liu, J.; Jin, Y.; Wang, H., Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Materials Horizons 2021, 8 (1), 12-32.
95. Lv, Q.; Jiang, Y.; Wang, B.; Chen, Y.; Jin, F.; Wu, B.; Ren, H.; Zhang, N.; Xu, R.; Li, Y.; Zhang, T.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S., Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Reports Physical Science 2022, 3 (1), 100706.
96. Yang, X.; Gao, X.; Zhao, C.; Sun, Q.; Zhao, Y.; Adair, K.; Luo, J.; Lin, X.; Liang, J.; Huang, H.; Zhang, L.; Lu, S.; Li, R.; Sun, X., Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries. Energy Storage Materials 2020, 27, 198-204.
97. Luo, J.; Fang, C.-C.; Wu, N.-L., High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Advanced Energy Materials 2018, 8 (2), 1701482.
98. Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature materials 2019, 18 (4), 384-389.
99. Wang, G.; Chen, C.; Chen, Y.; Kang, X.; Yang, C.; Wang, F.; Liu, Y.; Xiong, X., Self‐Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahigh‐Rate and Large‐Capacity Lithium‐Metal Anode. Angewandte Chemie 2020, 132 (5), 2071-2076.
100. Wu, H.; Xu, Y.; Ren, X.; Liu, B.; Engelhard, M. H.; Ding, M. S.; El‐Khoury, P. Z.; Zhang, L.; Li, Q.; Xu, K., Polymer‐in‐“quasi‐ionic liquid” electrolytes for high‐voltage lithium metal batteries. Advanced Energy Materials 2019, 9 (41), 1902108.
101. Liu, Q.; Liu, Y.; Jiao, X.; Song, Z.; Sadd, M.; Xu, X.; Matic, A.; Xiong, S.; Song, J., Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Storage Materials 2019, 23, 105-111.
102. Li, J.; Cai, Y.; Wu, H.; Yu, Z.; Yan, X.; Zhang, Q.; Gao, T. Z.; Liu, K.; Jia, X.; Bao, Z., Polymers in lithium‐ion and lithium metal batteries. Advanced Energy Materials 2021, 11 (15), 2003239.
103. Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy letters 2019, 4 (4), 896-902.
104. Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D., Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Letters 2017, 2 (6), 1321-1326.
105. Zhang, L.; Min, F.; Luo, Y.; Dang, G.; Gu, H.; Dong, Q.; Zhang, M.; Sheng, L.; Shen, Y.; Chen, L.; Xie, J., Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte. Nano Energy 2022, 96, 107122.
106. Li, S.; Wang, X.-S.; Li, Q.-D.; Liu, Q.; Shi, P.-R.; Yu, J.; Lv, W.; Kang, F.; He, Y.-B.; Yang, Q.-H., A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. Journal of Materials Chemistry A 2021, 9 (12), 7667-7674.
107. Zhang, S. S.; Jow, T. R., Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002, 109 (2), 458-464.
108. Kramer, E.; Passerini, S.; Winter, M., Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Electrolyte Solvent. ECS Electrochemistry Letters 2012, 1 (5), C9-C11.
109. Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G., Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage 2021, 43, 103226.
110. Mun, J.; Yim, T.; Choi, C. Y.; Ryu, J. H.; Kim, Y. G.; Oh, S. M., Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochemical and Solid-State Letters 2010, 13 (8), A109.
111. Parker, V. D., Linear sweep and cyclic voltammetry. In Comprehensive Chemical Kinetics, Elsevier: 1986; Vol. 26, pp 145-202.
112. Bontempelli, G.; Dossi, N.; Toniolo, R., Linear Sweep and Cyclic. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier: 2016.
113. Bagotskii, V., Fundamentals of Electrochemistry. М.: Chimiya 1988.
114. Yan, D.; Bazant, M. Z.; Biesheuvel, P.; Pugh, M. C.; Dawson, F. P., Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes. Physical Review E 2017, 95 (3), 033303.
115. Harnisch, F.; Freguia, S., A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chemistry–An Asian Journal 2012, 7 (3), 466-475.
116. Box, G., On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society, Series B 1951, 13 (1), 1-45.
117. Nadjo, L.; Savéant, J., Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 48 (1), 113-145.
118. Ponce-de-Leon, C.; Low, C.; Kear, G.; Walsh, F., Strategies for the determination of the convective-diffusion limiting current from steady state linear sweep voltammetry. Journal of Applied Electrochemistry 2007, 37 (11), 1261-1270.
119. Montella, C.; Tezyk, V.; Effori, E.; Laurencin, J.; Siebert, E., Linear sweep and cyclic voltammetry of porous mixed conducting oxygen electrode: Formal study of insertion, diffusion and chemical reaction model. Solid State Ionics 2021, 359, 115485.
120. Bard, A. J.; Faulkner, L. R.; White, H. S., Electrochemical methods: fundamentals and applications. John Wiley & Sons: 2022.
121. Cesiulis, H.; Tsyntsaru, N.; Ramanavicius, A.; Ragoisha, G., The study of thin films by electrochemical impedance spectroscopy. In Nanostructures and thin films for multifunctional applications, Springer: 2016; pp 3-42.
122. Gao, P.; Zhang, C.; Wen, G., Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries. Journal of Power Sources 2015, 294, 67-74.
123. Zardalidis, G.; Chatzogiannakis, D.; Glynos, E.; Farmakis, F., Electrochemical Impedance Spectroscopy Study of Surface Film Formation on Lithium Anodes and the Role of Chain Termination on Poly (Ethylene Oxide) Electrolytes. ACS Applied Energy Materials 2021, 4 (7), 6815-6823.
124. Croce, F.; Nobili, F.; Deptula, A.; Lada, W.; Tossici, R.; D’epifanio, A.; Scrosati, B.; Marassi, R., An electrochemical impedance spectroscopic study of the transport properties of LiNi0. 75Co0. 25O2. Electrochemistry Communications 1999, 1 (12), 605-608.
125. Wang, L.; Zhao, J.; He, X.; Wan, C., Kinetic investigation of sulfurized polyacrylonitrile cathode material by electrochemical impedance spectroscopy. Electrochimica Acta 2011, 56 (14), 5252-5256.
126. Ng, B.; Duan, X.; Liu, F.; Agar, E.; White, R. E.; Mustain, W. E.; Jin, X., Investigation of transport and kinetic nonideality in solid li-ion electrodes through deconvolution of electrochemical impedance spectra. Journal of The Electrochemical Society 2020, 167 (2), 020523.
127. Instruments, G., Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion 2007, 1-30.
128. Orazem, M. E.; Tribollet, B., Electrochemical impedance spectroscopy. New Jersey 2008, 383-389.
129. Parks, J. E., Ohms Law III Resistors in Series and Parallel. Department of Physics and Anatomy, University of Tennessee 2007.
130. Vadhva, P.; Hu, J.; Johnson, M. J.; Stocker, R.; Braglia, M.; Brett, D. J.; Rettie, A. J., Electrochemical Impedance Spectroscopy for All‐Solid‐State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8 (11), 1930-1947.
131. Sánchez, C.; Dessì, P.; Duffy, M.; Lens, P. N., Microbial electrochemical technologies: Electronic circuitry and characterization tools. Biosensors and Bioelectronics 2020, 150, 111884.
132. Hernández, H. H.; Reynoso, A. M. R.; González, J. C. T.; Morán, C. O. G.; Hernández, J. G. M.; Ruiz, A. M.; Hernández, J. M.; Cruz, R. O., Electrochemical impedance spectroscopy (EIS): A review study of basic aspects of the corrosion mechanism applied to steels. Electrochemical Impedance Spectroscopy 2020, 137-144.
133. Xu, K., “Charge-Transfer” Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes. Journal of The Electrochemical Society 2007, 154 (3), A162.
134. Logan, E.; Hall, D.; Cormier, M. M.; Taskovic, T.; Bauer, M.; Hamam, I.; Hebecker, H.; Molino, L.; Dahn, J., Ester-based electrolytes for fast charging of energy dense lithium-ion batteries. The Journal of Physical Chemistry C 2020, 124 (23), 12269-12280.
135. Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q., Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angewandte Chemie International Edition 2021, 60 (8), 4090-4097.
136. Shigenobu, K.; Sudoh, T.; Tabuchi, M.; Tsuzuki, S.; Shinoda, W.; Dokko, K.; Watanabe, M.; Ueno, K., Effects of Li ion-solvent interaction on ionic transport and electrochemical properties in highly concentrated cyclic carbonate electrolytes. Journal of Non-Crystalline Solids: X 2021, 11, 100071.
137. Yamada, Y.; Iriyama, Y.; Abe, T.; Ogumi, Z., Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 2009, 25 (21), 12766-12770.
138. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.
139. Paste, R.; Abbas, S. A.; Singh, A.; Lin, H.-C.; Chu, C. W., Oxygen-Enriched α-MoO3–x nanobelts suppress lithium dendrite formation in stable lithium-metal batteries. Journal of Power Sources 2021, 507, 230306.
140. Liu, H.; Zhou, H.; Lee, B.-S.; Xing, X.; Gonzalez, M.; Liu, P., Suppressing lithium dendrite growth with a single-component coating. ACS applied materials & interfaces 2017, 9 (36), 30635-30642.
141. Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q., Towards high‐safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Advanced Science 2017, 4 (1), 1600168.
142. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature communications 2015, 6 (1), 1-8.
143. Dai, H.; Xi, K.; Liu, X.; Lai, C.; Zhang, S., Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. Journal of the American Chemical society 2018, 140 (50), 17515-17521.
144. Shi, P.; Zhang, L.; Xiang, H.; Liang, X.; Sun, Y.; Xu, W., Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS applied materials & interfaces 2018, 10 (26), 22201-22209.
145. Wang, G.; Xiong, X.; Xie, D.; Fu, X.; Ma, X.; Li, Y.; Liu, Y.; Lin, Z.; Yang, C.; Liu, M., Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes. Energy Storage Materials 2019, 23, 701-706.
146. Zheng, H.; Xie, Y.; Xiang, H.; Shi, P.; Liang, X.; Xu, W., A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries. Electrochimica Acta 2018, 270, 62-69.
147. Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z., High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS Applied Materials & Interfaces 2018, 10 (21), 17809-17819.
148. Zhu, M.; Wu, J.; Zhong, W. H.; Lan, J.; Sui, G.; Yang, X., A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Advanced Energy Materials 2018, 8 (11), 1702561.
149. Guan, X.; Wu, Q.; Zhang, X.; Guo, X.; Li, C.; Xu, J., In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries. Chemical Engineering Journal 2020, 382, 122935.
150. Li, D.; Luo, L.; Zhu, J.; Qin, H.; Liu, P.; Sun, Z.; Lei, Y.; Jiang, M., A hybrid lithium sulfonated polyoxadiazole derived single-ion conducting gel polymer electrolyte enabled effective suppression of dendritic lithium growth. Chinese Chemical Letters 2022, 33 (2), 1025-1031.
151. Fan, W.; Li, N. W.; Zhang, X.; Zhao, S.; Cao, R.; Yin, Y.; Xing, Y.; Wang, J.; Guo, Y. G.; Li, C., A dual‐salt gel polymer electrolyte with 3D cross‐linked polymer network for dendrite‐free lithium metal batteries. Advanced science 2018, 5 (9), 1800559.
152. Ji, X.; Hou, S.; Wang, P.; He, X.; Piao, N.; Chen, J.; Fan, X.; Wang, C., Solid‐State Electrolyte Design for Lithium Dendrite Suppression. Advanced Materials 2020, 32 (46), 2002741.
153. Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P., Controlling dendrite growth in solid-state electrolytes. ACS Energy Letters 2020, 5 (3), 833-843.
154. Xie, Z.; An, X.; Wu, Z.; Yue, X.; Wang, J.; Hao, X.; Abudula, A.; Guan, G., Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries. Journal of Materials Science & Technology 2021, 74, 119-127.
155. Zhang, G.; Deng, X.; Li, J.; Wang, J.; Shi, G.; Yang, Y.; Chang, J.; Yu, K.; Chi, S.-S.; Wang, H., A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy 2022, 95, 107014.
156. Bruttel, P.; Schlink, R., Water determination by Karl Fischer titration. Metrohm monograph 2003, 8 (5003), 2003-2009.
157. Briggs, D., Surface analysis of polymers by XPS and static SIMS. Cambridge University Press: 1998.
158. Wahadoszamen, M.; Rahaman, A.; Hoque, N. M.; I Talukder, A.; Abedin, K. M.; Haider, A., Laser Raman spectroscopy with different excitation sources and extension to surface enhanced Raman spectroscopy. Journal of Spectroscopy 2015, 2015.
159. Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of instrumental analysis 5th edition. Saunders College Pub. Co.: Philadelphia 1998.
160. Larkin, P., Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier: 2017.
161. Umebayashi, Y.; Mitsugi, T.; Fukuda, S.; Fujimori, T.; Fujii, K.; Kanzaki, R.; Takeuchi, M.; Ishiguro, S.-I., Lithium ion solvation in room-temperature ionic liquids involving bis (trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. The Journal of Physical Chemistry B 2007, 111 (45), 13028-13032.
162. Yamada, Y.; Takazawa, Y.; Miyazaki, K.; Abe, T., Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: effect of solvation structure of lithium ion. The Journal of Physical Chemistry C 2010, 114 (26), 11680-11685.
163. Khan, S. A.; Khan, S. B.; Khan, L. U.; Farooq, A.; Akhtar, K.; Asiri, A. M., Fourier transform infrared spectroscopy: fundamentals and application in functional groups and nanomaterials characterization. In Handbook of materials characterization, Springer: 2018; pp 317-344.
164. Li, X.; Qian, K.; He, Y.-B.; Liu, C.; An, D.; Li, Y.; Zhou, D.; Lin, Z.; Li, B.; Yang, Q.-H., A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A 2017, 5 (35), 18888-18895.
165. Zhu, Y.; Xiao, S.; Shi, Y.; Yang, Y.; Hou, Y.; Wu, Y., A composite gel polymer electrolyte with high performance based on poly (vinylidene fluoride) and polyborate for lithium ion batteries. Advanced Energy Materials 2014, 4 (1), 1300647.
166. Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A.; Scrosati, B., Encyclopedia of Electrochemical Power Sources. Newnes: 2013.
167. Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M., Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. Journal of The Electrochemical Society 2015, 162 (2), A3084.
168. Hilbig, P.; Ibing, L.; Winter, M.; Cekic-Laskovic, I., Butyronitrile-based electrolytes for fast charging of lithium-ion batteries. Energies 2019, 12 (15), 2869.
169. Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.; Kunze, M.; Passerini, S.; Winter, M.; Lex-Balducci, A., High flash point electrolyte for use in lithium-ion batteries. Electrochimica Acta 2011, 56 (22), 7530-7535.
170. Langevin, S. A.; McGuire, M. M.; Le, N. Q.; Ragasa, E.; Hamann, T.; Ferguson, G.; Chung, C.; Domenico, J.; Ko, J. S., Developing a nitrile-based lithium-conducting electrolyte for low temperature operation. Journal of Materials Chemistry A 2022.
171. McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A., Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science 2014, 7 (1), 416-426.
172. Gakis, G. P.; Vahlas, C.; Vergnes, H.; Dourdain, S.; Tison, Y.; Martinez, H.; Bour, J.; Ruch, D.; Boudouvis, A. G.; Caussat, B., Investigation of the initial deposition steps and the interfacial layer of Atomic Layer Deposited (ALD) Al2O3 on Si. Applied Surface Science 2019, 492, 245-254.
173. Caicedo, J.; Pérez, J.; Caicedo, H.; Riascos, H., Determination of physical response in (Mo/AlN) SAW devices. Surface Review and Letters 2013, 20 (02), 1350017.
174. Lawniczak-Jablonska, K.; Zytkiewicz, Z.; Gieraltowska, S.; Sobanska, M.; Kuzmiuk, P.; Klosek, K., Chemical bonding of nitrogen formed by nitridation of crystalline and amorphous aluminum oxide studied by X-ray photoelectron spectroscopy. RSC Advances 2020, 10 (47), 27932-27939.
175. Motamedi, P.; Cadien, K., XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Applied Surface Science 2014, 315, 104-109.
176. Ozgit-Akgun, C.; Goldenberg, E.; Okyay, A. K.; Biyikli, N., Hollow cathode plasma-assisted atomic layer deposition of crystalline AlN, GaN and AlxGa1− xN thin films at low temperatures. Journal of Materials Chemistry C 2014, 2 (12), 2123-2136.
177. Cong, L.; Liu, J.; Armand, M.; Mauger, A.; Julien, C. M.; Xie, H.; Sun, L., Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces. Journal of Power Sources 2018, 380, 115-125.
178. Ensling, D.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.; Thomas, J. O., A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes. Journal of Materials Chemistry 2009, 19 (1), 82-88.
179. Leroy, S.; Martinez, H.; Dedryvère, R.; Lemordant, D.; Gonbeau, D., Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Applied Surface Science 2007, 253 (11), 4895-4905.
180. Sun, H.; Liang, P.; Zhu, G.; Hung, W. H.; Li, Y.-Y.; Tai, H.-C.; Huang, C.-L.; Li, J.; Meng, Y.; Angell, M., A high-performance potassium metal battery using safe ionic liquid electrolyte. Proceedings of the National Academy of Sciences 2020, 117 (45), 27847-27853.
181. Chu, C.-T.; Mondal, A.; Kosova, N. V.; Lin, J.-Y., Improved high-temperature cyclability of AlF3 modified spinel LiNi0. 5Mn1. 5O4 cathode for lithium-ion batteries. Applied Surface Science 2020, 530, 147169.
182. Schäfer, H.; Stock, H. R., Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering. Corrosion Science 2005, 47 (4), 953-964.
183. Booske, J.; Zhang, L.; Wang, W.; Mente, K.; Zjaba, N.; Baum, C.; Shohet, J., Nitrogen plasma source ion implantation for corrosion protection of aluminum 6061-T4. Journal of materials research 1997, 12 (5), 1356-1366.
184. Schäfer, H.; Stock, H.-R., Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering. Corrosion Science 2005, 47 (4), 953-964.
185. Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M., Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta 2002, 47 (17), 2787-2793.
186. Krämer, E.; Schedlbauer, T.; Hoffmann, B.; Terborg, L.; Nowak, S.; Gores, H. J.; Passerini, S.; Winter, M., Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC: DEC 3: 7 in rechargeable lithium batteries. Journal of The Electrochemical Society 2012, 160 (2), A356.
187. Jiang, W.; Dong, L.; Liu, S.; Ai, B.; Zhao, S.; Zhang, W.; Pan, K.; Zhang, L., Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer. Nanomaterials 2022, 12 (12), 2023.
188. Kim, P. J. H.; Pol, V. G., Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward ultrastable and high-rate lithium metal anodes. ACS applied materials & interfaces 2019, 11 (4), 3917-3924.
189. Zheng, N.; Zhang, C.; Fan, R.; Sun, Z., Melamine foam-based shape-stable phase change composites enhanced by aluminum nitride for thermal management of lithium-ion batteries. Journal of Energy Storage 2022, 52, 105052.
190. Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources 2011, 196 (22), 9743-9750.
191. Guan, D.; Hu, G.; Peng, Z.; Cao, Y.; Wu, J.; Huang, M.; Zhang, S.; Dai, Y.; Gong, Y.; Du, K., A nonflammable low-concentration electrolyte for lithium-ion batteries. Journal of Materials Chemistry A 2022.
192. Hogrefe, C.; Waldmann, T.; Molinero, M. B.; Wildner, L.; Axmann, P.; Wohlfahrt-Mehrens, M., Cross-Sectional In Situ Optical Microscopy with Simultaneous Electrochemical Measurements for Lithium-Ion Full Cells. Journal of The Electrochemical Society 2022, 169 (5), 050519.
193. Um, J. H.; Yu, S. H., Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques. Advanced Energy Materials 2021, 11 (27), 2003004.
194. Deng, Z.; Lin, X.; Huang, Z.; Meng, J.; Zhong, Y.; Ma, G.; Zhou, Y.; Shen, Y.; Ding, H.; Huang, Y., Recent progress on advanced imaging techniques for lithium‐ion batteries. Advanced Energy Materials 2021, 11 (2), 2000806.
195. Foroozan, T.; Sharifi-Asl, S.; Shahbazian-Yassar, R., Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques. Journal of Power Sources 2020, 461, 228135.
196. Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P., Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS central science 2016, 2 (11), 790-801.
197. Shi, Y.; Wan, J.; Liu, G. X.; Zuo, T. T.; Song, Y. X.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J., Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi‐Solid‐State Lithium‐Metal Batteries. Angewandte Chemie International Edition 2020, 59 (41), 18120-18125.
198. Wang, Q.; Liu, B.; Shen, Y.; Wu, J.; Zhao, Z.; Zhong, C.; Hu, W., Confronting the challenges in lithium anodes for lithium metal batteries. Advanced Science 2021, 8 (17), 2101111.
199. Rinkel, B. L.; Hall, D. S.; Temprano, I.; Grey, C. P., Electrolyte oxidation pathways in lithium-ion batteries. Journal of the American Chemical Society 2020, 142 (35), 15058-15074.
200. Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R.-A.; Granwehr, J., Operando electron paramagnetic resonance spectroscopy–formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy & environmental science 2015, 8 (4), 1358-1367.
201. Steiger, J.; Kramer, D.; Mönig, R., Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochimica Acta 2014, 136, 529-536.
202. Kong, L.; Xing, Y.; Pecht, M. G., In-situ observations of lithium dendrite growth. IEEE Access 2018, 6, 8387-8393.
203. Gireaud, L.; Grugeon, S.; Laruelle, S.; Yrieix, B.; Tarascon, J.-M., Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochemistry Communications 2006, 8 (10), 1639-1649.
204. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681.
205. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q., A review of solid electrolyte interphases on lithium metal anode. Advanced Science 2016, 3 (3), 1500213.
206. Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H., Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS Applied Materials & Interfaces 2018, 10 (1), 593-601.
207. Yasin, G.; Arif, M.; Mehtab, T.; Lu, X.; Yu, D.; Muhammad, N.; Nazir, M. T.; Song, H., Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials 2020, 25, 644-678.
208. Liu, Q.; Cresce, A.; Schroeder, M.; Xu, K.; Mu, D.; Wu, B.; Shi, L.; Wu, F., Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Materials 2019, 17, 366-373.
209. Wu, B.; Lochala, J.; Taverne, T.; Xiao, J., The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy 2017, 40, 34-41.
210. Aurbach, D.; Daroux, M.; Faguy, P.; Yeager, E., Identification of surface films formed on lithium in propylene carbonate solutions. Journal of The Electrochemical Society 1987, 134 (7), 1611.
211. Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes. Journal of The Electrochemical Society 1995, 142 (9), 2873.
212. Aurbach, D.; Ein‐Eli, Y.; Markovsky, B.; Zaban, A.; Luski, S.; Carmeli, Y.; Yamin, H., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes. Journal of The Electrochemical Society 1995, 142 (9), 2882.
213. Zhuang, G. V.; Xu, K.; Yang, H.; Jow, T. R.; Ross, P. N., Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC: EMC electrolyte. The Journal of Physical Chemistry B 2005, 109 (37), 17567-17573.
214. Li, Y.; Jiao, J.; Bi, J.; Wang, X.; Wang, Z.; Chen, L., Controlled deposition of Li metal. Nano Energy 2017, 32, 241-246.
215. Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G., Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials 2017, 29 (40), 1703729.
216. Liu, M.; Wang, Y.; Li, M.; Li, G.; Li, B.; Zhang, S.; Ming, H.; Qiu, J.; Chen, J.; Zhao, P., A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochimica Acta 2020, 354, 136622.
217. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta 2011, 56 (11), 3926-3933.
218. Pesko, D. M.; Timachova, K.; Bhattacharya, R.; Smith, M. C.; Villaluenga, I.; Newman, J.; Balsara, N. P., Negative transference numbers in poly (ethylene oxide)-based electrolytes. Journal of The Electrochemical Society 2017, 164 (11), E3569.
219. Shigenobu, K.; Dokko, K.; Watanabe, M.; Ueno, K., Solvent effects on Li ion transference number and dynamic ion correlations in glyme-and sulfolane-based molten Li salt solvates. Physical Chemistry Chemical Physics 2020, 22 (27), 15214-15221.
220. Uchida, S.; Kiyobayashi, T., How does the solvent composition influence the transport properties of electrolyte solutions? LiPF6 and LiFSA in EC and DMC binary solvent. Physical Chemistry Chemical Physics 2021, 23 (18), 10875-10887.
221. Giorgini, M. G.; Futamatagawa, K.; Torii, H.; Musso, M.; Cerini, S., Solvation Structure around the Li+ Ion in Mixed Cyclic/Linear Carbonate Solutions Unveiled by the Raman Noncoincidence Effect. The Journal of Physical Chemistry Letters 2015, 6 (16), 3296-3302.
222. Wang, L.; Uosaki, K.; Noguchi, H., Effect of Electrolyte Concentration on the Solvation Structure of Gold/LITFSI–DMSO Solution Interface. The Journal of Physical Chemistry C 2020, 124 (23), 12381-12389.
223. Borodin, O.; Olguin, M.; Ganesh, P.; Kent, P. R.; Allen, J. L.; Henderson, W. A., Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. Physical Chemistry Chemical Physics 2016, 18 (1), 164-175.
224. Carroll, J. In Innovations in Army energy and power materials technologies, Millersville (PA): Materials Research Forum, 2018.
225. Borodin, O.; Smith, G. D., Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. The Journal of Physical Chemistry B 2009, 113 (6), 1763-1776.
226. Apostolova, R.; Markovsky, B.; Aurbach, D.; Shembel, E., Effect of superhalogen anions on the electrochemical behavior of V2O5 electrodes in redox reactions with lithium in EC-DMC/Li-salt solutions. ECS Transactions 2019, 95 (1), 183.
227. Seo, D. M.; Reininger, S.; Kutcher, M.; Redmond, K.; Euler, W. B.; Lucht, B. L., Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes. The Journal of Physical Chemistry C 2015, 119 (25), 14038-14046.
228. Han, S.-D.; Yun, S.-H.; Borodin, O.; Seo, D. M.; Sommer, R. D.; Young Jr, V. G.; Henderson, W. A., Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. The Journal of Physical Chemistry C 2015, 119 (16), 8492-8500.
229. Grundy, L. S.; Shah, D. B.; Nguyen, H. Q.; Diederichsen, K. M.; Celik, H.; DeSimone, J. M.; McCloskey, B. D.; Balsara, N. P., Impact of Frictional Interactions on Conductivity, Diffusion, and Transference Number in Ether- and Perfluoroether-Based Electrolytes. Journal of The Electrochemical Society 2020, 167 (12), 120540.
230. Grundy, L. S.; Shah, D. B.; Nguyen, H. Q.; Diederichsen, K. M.; Celik, H.; DeSimone, J. M.; McCloskey, B. D.; Balsara, N. P., Impact of frictional interactions on conductivity, diffusion, and transference number in ether-and perfluoroether-based electrolytes. Journal of The Electrochemical Society 2020, 167 (12), 120540.
231. Zhang, H.; Qu, W.; Chen, N.; Huang, Y.; Li, L.; Wu, F.; Chen, R., Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochimica Acta 2018, 285, 78-85.
232. Valøen, L. O.; Reimers, J. N., Transport properties of LiPF6-based Li-ion battery electrolytes. Journal of The Electrochemical Society 2005, 152 (5), A882.
233. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
234. Lu, Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A., Stable cycling of lithium metal batteries using high transference number electrolytes. Advanced Energy Materials 2015, 5 (9), 1402073.
235. Zhao, Y.; Zhou, T.; Ashirov, T.; Kazzi, M. E.; Cancellieri, C.; Jeurgens, L. P.; Choi, J. W.; Coskun, A., Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nature Communications 2022, 13 (1), 1-9.
236. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D., Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Letters 2017, 2 (11), 2563-2575.
237. Guo, R.; Han, W., The effects of electrolytes, electrolyte/electrode interphase and binders on lithium-ion batteries at low temperature. Materials Today Sustainability 2022, 100187.
238. Parikh, D.; Christensen, T.; Li, J., Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions. Journal of Power Sources 2020, 474, 228601.
239. Chen, Y.; Key, J.; O'Regan, K.; Song, T.; Han, Y.; Kendrick, E., Revealing the rate-limiting electrode of lithium batteries at high rates and mass loadings. Chemical Engineering Journal 2022, 450, 138275.
240. Wu, X.; Bai, Y.; Li, Z.; Liu, J.; Zhao, K.; Du, Z., Effects of charging rates on LiNi0. 6Mn0. 2Co0. 2O2 (NMC622)/graphite Li-ion cells. Journal of Energy Chemistry 2021, 56, 121-126.
241. Zhu, Y.; Pande, V.; Li, L.; Wen, B.; Pan, M. S.; Wang, D.; Ma, Z.-F.; Viswanathan, V.; Chiang, Y.-M., Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proceedings of the National Academy of Sciences 2020, 117 (44), 27195-27203.
242. Jang, E. K.; Ahn, J.; Yoon, S.; Cho, K. Y., High dielectric, robust composite protective layer for dendrite‐free and LiPF6 degradation‐free lithium metal anode. Advanced Functional Materials 2019, 29 (48), 1905078.
243. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. Journal of The Electrochemical Society 2019, 166 (8), A1501.
244. Liu, P.; Ma, Q.; Fang, Z.; Ma, J.; Hu, Y.-S.; Zhou, Z.-B.; Li, H.; Huang, X.-J.; Chen, L.-Q., Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. Chinese Physics B 2016, 25 (7), 078203.
245. Chi, S.-S.; Wang, Q.; Zhang, P.; Zhu, W.; Li, Z.; Zhang, D.; Wang, H.; Sun, H.-L.; Wang, B., Enabling Good Interfacial Stability by Dual-Salt Composite Electrolyte for Long Cycle Lithium Metal Batteries. Available at SSRN 4254721.
246. Jiang, B.; Xu, H.; Cheng, X.; Li, J.; Wang, H.; Liu, Y., Dual‐Salt Electrolyte with Synergistic Effect for Lithium Metal Batteries with Prolonging Cyclic Performance. ChemElectroChem 2022, 9 (2), e202101251.
247. Song, M.-K.; Cho, J.-Y.; Cho, B. W.; Rhee, H.-W., Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. Journal of power sources 2002, 110 (1), 209-215.
248. Song, M.-K.; Rhee, H.-W., Ultraviolet-cured polyethylene glycol diacrylate/polyvinylidene fluoride blend gel polymer electrolytes. Electrochemical and Solid-State Letters 2001, 4 (7), A105.
249. Qiu, W.-l.; Ma, X.-h.; Yang, Q.-h.; Fu, Y.-b.; Zong, X.-f., Novel preparation of nanocomposite polymer electrolyte and its application to lithium polymer batteries. Journal of Power Sources 2004, 138 (1-2), 245-252.
250. Zeng, Y.; Yang, J.; Shen, X.; Li, R.; Chen, Z.; Huang, X.; Zhang, P.; Zhao, J., New UV-initiated lithiated-interpenetrating network gel-polymer electrolytes for lithium-metal batteries. Journal of Power Sources 2022, 541, 231681.
251. Zeng, X.; Dong, L.; Fu, J.; Chen, L.; Zhou, J.; Zong, P.; Liu, G.; Shi, L., Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries. Chemical Engineering Journal 2022, 428, 131100.
252. Lu, Q.; Yang, J.; Lu, W.; Wang, J.; Nuli, Y., Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochimica Acta 2015, 152, 489-495.
253. Yu, J. Cross-linked PEG/ionic liquid composite membranes for CO2 separation. NTNU, 2018.
254. Shigenobu, K.; Shibata, M.; Dokko, K.; Watanabe, M.; Fujii, K.; Ueno, K., Anion effects on Li ion transference number and dynamic ion correlations in glyme–Li salt equimolar mixtures. Physical Chemistry Chemical Physics 2021, 23 (4), 2622-2629.
255. Dong, D.; Sälzer, F.; Roling, B.; Bedrov, D., How efficient is Li+ ion transport in solvate ionic liquids under anion-blocking conditions in a battery? Physical Chemistry Chemical Physics 2018, 20 (46), 29174-29183.
256. He, X.; Ye, A.; Fu, X.; Yang, W.; Wang, Y., Achieving Low-Energy-Barrier Ion Hopping in Adhesive Composite Polymer Electrolytes by Nanoabsorption. Macromolecules 2022, 55 (16), 7117-7126.
257. Nirmale, T. C.; Karbhal, I.; Kalubarme, R. S.; Shelke, M. V.; Varma, A. J.; Kale, B. B., Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Applied Materials & Interfaces 2017, 9 (40), 34773-34782.
258. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology 2020, 11 (1), 1-13.
259. Zabara, M. A.; Katırcı, G. k.; Ulgut, B., Operando Investigations of the Interfacial Electrochemical Kinetics of Metallic Lithium Anodes via Temperature-Dependent Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry C 2022, 126 (27), 10968-10976.
260. Momma, T.; Yokoshima, T.; Nara, H.; Gima, Y.; Osaka, T., Distinction of impedance responses of Li-ion batteries for individual electrodes using symmetric cells. Electrochimica Acta 2014, 131, 195-201.
261. Zhang, S. S.; Xu, K.; Jow, T., EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta 2006, 51 (8-9), 1636-1640.
262. Azcarate, I.; Yin, W.; Méthivier, C.; Ribot, F.; Laberty-Robert, C.; Grimaud, A., Assessing the Oxidation Behavior of EC: DMC Based Electrolyte on Non-Catalytically Active Surface. Journal of The Electrochemical Society 2020, 167 (8), 080530.
263. Yang, X.-G.; Ge, S.; Liu, T.; Leng, Y.; Wang, C.-Y., A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells. Journal of Power Sources 2018, 395, 251-261.
264. Chen, Z.; Danilov, D. L.; Eichel, R.-A.; Notten, P. H., Li+ concentration waves in a liquid electrolyte of Li-ion batteries with porous graphite-based electrodes. Energy Storage Materials 2022, 48, 475-486.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *