帳號:guest(3.138.36.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉禾風
作者(外文):Phung, Hieu-Nghia
論文名稱(中文):通過調整鋁金屬有機骨架形態增強疫苗免疫原性
論文名稱(外文):Enhancement of Vaccine Immunogenicity by Adjusting Morphology of Al-MOFs
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):糜福龍
陳三元
林鈺容
口試委員(外文):Mi, Fwu-Long
Chen, San-Yuan
Lin, Yu-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032708
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:24
中文關鍵詞:疫苗免疫原性金屬有機骨架卵清蛋白 (OVA)抗原
外文關鍵詞:vaccineimmunogenicitymetal organic frameworksovalbumin (OVA)antigen
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
利用粒子作為藥物遞送系統可以增強多種免疫反應,而此增益效果使其具有用於疫苗載體的潛力。在近期的研究中,研究人員發現顆粒的大小和形狀會影響它們與免疫系統的相互作用,但免疫系統如何區分顆粒結構的潛在機制尚未明朗。為了探討這個問題,在本研究中,我們合成了三種不同形狀(spherical, spiky, and spanish-needle)的鋁金屬有機骨架(Al-MOF),此金屬有機框架為一可同時作為免疫佐劑和攜帶抗原(卵清蛋白, OVA)的次單元疫苗,同時我們也會探討三種不同型態的Al-MOF疫苗對於刺激並延長抗原特異性免疫反應的能力。MOFs為金屬離子和有機配位體所構成的多孔材料,由於其卓越的設計靈活性和生物降解性,MOF已在各種生物醫學應用中被用作載體系統以遞送核酸或蛋白質藥物;鋁鹽為常用的免疫佐劑,具有優異的生物相容性以及能有效增強抗原所引起的免疫反應;OVA則是已被廣泛用於免疫研究中的模型抗原。在材料測試方面,我們通過掃描式電子顯微鏡(SEM)、能量色散X射線(EDX)光譜、動態光散射(DLS)和粉末 X 射線衍射儀(PXRD)觀察這三種Al-MOF的形態和特徵,並成功將OVA 加載至此載體中。在細胞實驗方面,Al-MOF的濃度即使達到300 μg/mL,仍然沒有觀測到顯著的細胞毒性。同時,我們也針對巨噬細胞對不同形狀MOF的細胞攝取及其後續的免疫刺激反應進行研究。在未來的研究中,我們擬經由皮下注射的方式將此載體打入小鼠體內,並評估此載體系統的長期抗原特異性免疫反應。

關鍵詞:疫苗, 免疫原性, 金屬有機骨架, 卵清蛋白 (OVA) , 抗原
Abstract
Particles-associated drug delivery systems are promising for vaccination as they can enhance diverse immune responses. Research has shown that the size and shape of particles could affect their interaction with immune systems. However, the underlying mechanism by which the immune system distinguishes the structure of antigen-presenting particulates has yet to be fully understood. To address this issue, three different shapes (spherical, spiky, and Spanish-needle) of the aluminum-based metal-organic framework (Al-MOF) can act synergistically as an adjuvant and a delivery vehicle is synthesized to carry model antigen ovalbumin (OVA), serving as a vaccine. The ability of these three Al-MOF vaccines in antigen presentation and following processing by the immune cells to elicit a potent and prolonged antigen-specific response was accessed. MOFs are a class of porous hybrid materials constructed from metal ions and organic linkers. Owing to their superior design flexibility and intrinsic biodegradability, MOFs have been used as carrier systems to deliver nucleic acids or protein drugs in various biomedical applications. Aluminum salts are frequently used adjuvants due to their excellent biocompatibility and their ability to boost immune responses to various antigens. OVA has been widely used as a model vaccine in immunization studies. The morphology and characteristics of these three Al-MOFs were confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and powder X-ray diffractometer (PXRD). In addition, OVA could be successfully loaded into Al-MOFs. In vitro results showed that no significant cytotoxicity of these three Al-MOFs was detected at concentrations of up to 300 μg/mL. The cell uptake of different shapes of MOFs by macrophages and their ability to activate the subsequent immune responses will be studied. In future works, the subcutaneous tissue of test mice will be established and the prolonged antigen-specific response of such MOFs system will be evaluated.

Keywords: vaccine, immunogenicity, metal-organic frameworks, ovalbumin (OVA), antigen
Table of Contents
摘要 i
Abstract ii
Contents iii
List of Figures v
List of Table vi
List of Abbreviation vii
Chapter 1: Introduction 1
1.1 Subunit Vaccine 1
1.2 Pollen 1
1.3 Research Design 2
Chapter 2: Results and Discussion 4
2.1 Characteristic of Al-MOFs 4
2.2 Cytotoxicity tests 9
2.3 Uptake of Al-MOFs by macrophages 9
2.4 Characteristics of OVA@MOFs 11
2.5 Uptake of OVA@MOFs by macrophages 13
2.6 In vitro degradation of OVA@MOFs 14
2.7 In vitro immune activation of OVA@MOFs 15
2.8 Conclusion 16
Chapter 3: Materials and Methods 17
3.1 Experimental Materials 17
3.2 Preparation and Characteristics of Al-MOFs 17
3.3 Preparation and Characterization of OVA@MOFs 17
3.4 Cell Viability Assay 18
3.5 Activation and Uptake of MOFs to Macrophages 18
References 20

References
(1) Zhou, J.; Kroll, A. V.; Holay, M.; Fang, R. H.; Zhang, L., Biomimetic Nanotechnology toward Personalized Vaccines. Adv. Mater. 2020, 32 (13), e1901255.
(2) Sahdev, P.; Ochyl, L. J.; Moon, J. J., Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharm. Res. 2014, 31 (10), 2563–82.
(3) Gause, K. T.; Wheatley, A. K.; Cui, J. W.; Yan, Y.; Kent, S. J.; Caruso, F., Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS Nano 2017, 11 (1), 54–68.
(4) Edlund, A. F.; Swanson, R.; Preuss, D., Pollen and Stigma Structure and Function: The Role of Diversity in Pollination. Plant Cell 2004, 16 Suppl, S84–97.
(5) Atwe, S. U.; Ma, Y.; Gill, H. S., Pollen Grains for Oral Vaccination. J. Control. Release 2014, 194, 45–52.
(6) Akyuz, L.; Sargin, I.; Kaya, M.; Ceter, T.; Akata, I., A New Pollen-Derived Microcarrier for Pantoprazole Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 937–942.
(7) Mundargi, R. C.; Potroz, M. G.; Park, S.; Shirahama, H.; Lee, J. H.; Seo, J.; Cho, N. J., Natural Sunflower Pollen as a Drug Delivery Vehicle. Small 2016, 12 (9), 1167–73.
(8) Vigh-Conrad, K. A.; Conrad, D. F.; Preuss, D., A Protein Allergen Microarray Detects Specific IgE to Pollen Surface, Cytoplasmic, and Commercial Allergen Extracts. PLoS One 2010, 5 (4), e10174.
(9) Focke-Tejkl, M.; Weber, M.; Niespodziana, K.; Neubauer, A.; Huber, H.; Henning, R.; Stegfellner, G.; Maderegger, B.; Hauer, M.; Stolz, F.; Niederberger, V.; Marth, K.; Eckl-Dorna, J.; Weiss, R.; Thalhamer, J.; Blatt, K.; Valent, P.; Valenta, R., Development and Characterization of a Recombinant, Hypoallergenic, Peptide-Based Vaccine for Grass Pollen Allergy. J. Allergy Clin. Immunol. 2015, 135 (5), 1207-7 e1–11.
(10) Park, J. H.; Seo, J.; Jackman, J. A.; Cho, N. J., Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen. Sci. Rep. 2016, 6, 28017.
(11) Zinkl, G. M.; Zwiebel, B. I.; Grier, D. G.; Preuss, D., Pollen-Stigma Adhesion in Arabidopsis: A Species-Specific Interaction Mediated by Lipophilic Molcules in the Pollen Exine. Development 1999, 126 (23), 5431–40.
(12) Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W., Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30 (37), e1707634.
(13) Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30 (37), e1800202.
(14) Miao, Y. B.; Pan, W. Y.; Chen, K. H.; Wei, H. J.; Mi, F. L.; Lu, M. Y.; Chang, Y.; Sung, H. W., Engineering a Nanoscale Al-MOF-Armored Antigen Carried by a "Trojan Horse"-Like Platform for Oral Vaccination to Induce Potent and Long-Lasting Immunity. Adv. Funct. Mater. 2019, 29 (43), 1904828.
(15) He, P.; Zou, Y.; Hu, Z., Advances in Aluminum Hydroxide-Based Adjuvant Rsearch and its Mechanism. Hum. Vaccin. Immunother. 2015, 11 (2), 477–88.
(16) Hogenesch, H., Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants. Front. Immunol. 2012, 3, 406.
(17) Hutter, E.; Boridy, S.; Labrecque, S.; Lalancette-Hebert, M.; Kriz, J.; Winnik, F. M.; Maysinger, D., Microglial Response to Gold Nanoparticles. ACS Nano 2010, 4 (5), 2595–606.
(18) Vaine, C. A.; Patel, M. K.; Zhu, J.; Lee, E.; Finberg, R. W.; Hayward, R. C.; Kurt-Jones, E. A., Tuning Innate Immune Activation by Surface Texturing of Polymer Microparticles: the Role of Shape in Inflammasome Activation. J. Immunol. 2013, 190 (7), 3525–32.
(19) Wang, W.; Yang, G.; Cui, H.; Meng, J.; Wang, S.; Jiang, L., Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells. Adv. Healthc. Mater. 2017, 6 (15), 1700003.
(20) Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S., Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133 (39), 15506–13.
(21) Zhang, F.; Mundaca-Uribe, R.; Gong, H.; Esteban-Fernandez de Avila, B.; Beltran-Gastelum, M.; Karshalev, E.; Nourhani, A.; Tong, Y.; Nguyen, B.; Gallot, M.; Zhang, Y.; Zhang, L.; Wang, J., A Macrophage-Magnesium Hybrid Biomotor: Fabrication and Characterization. Adv. Mater. 2019, 31 (27), e1901828.
(22) Sharma, G.; Valenta, D. T.; Altman, Y.; Harvey, S.; Xie, H.; Mitragotri, S.; Smith, J. W., Polymer Particle Shape Independently Influences Binding and Internalization by Macrophages. J, Control. Release 2010, 147 (3), 408–12.
(23) Zhao, Q.; Chen, X. Y., Development: A New Function of Plant Trichomes. Nat. Plants 2016, 2 (7), 16096.
(24) Yang, Y. W.; Nie, D.; Liu, Y.; Yu, M. R.; Gan, Y., Advances in Particle Shape Engineering for Improved Drug Delivery. Drug Discov. Today 2019, 24 (2), 575–583.
(25) Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H., Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses In Vitro and In Vivo. ACS Nano 2013, 7 (5), 3926–3938.
(26) Benne, N.; van Duijn, J.; Kuiper, J.; Jiskoot, W.; Slutter, B., Orchestrating Immune Responses: How Size, Shape and Rigidity Affect the Immunogenicity of Particulate Vaccines. J. Control. Release 2016, 234, 124–134.
(27) Kinnear, C.; Moore, T. L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A., Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 2017, 117 (17), 11476–11521.
(28) Storck, S.; Bretinger, H.; Maier, W. F., Characterization of Micro- and Mesoporous Solids by Physisorption Methods and Pore-Size Analysis. Appl. Catal. A-Gen. 1998, 174 (1–2), 137–146.
(29) Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C., Measurement of Protein using Bicinchoninic Acid. Anal. Biochem. 1985, 150 (1), 76–85.
(30) Erickson, H. P., Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 2009, 11, 32–51.
(31) Nakae, S.; Asano, M.; Horai, R.; Iwakura, Y., Interleukin-1 Beta, but not Interleukin-1 Alpha, is Required for T-cell-Dependent Antibody Production. Immunology 2001, 104 (4), 402–9.
(32) Chen, P. M.; Pan, W. Y.; Miao, Y. B.; Liu, Y. M.; Luo, P. K.; Phung, H. N.; Wu, W. W.; Ting, Y. H.; Yeh, C. Y.; Chiang, M. C.; Chia, W. T.; Sung, H. W., Bioinspired Engineering of a Bacterium-Like Metal-Organic Framework for Cancer Immunotherapy. Adv. Funct. Mater. 2020, 30 (42), 2003764.
(33) Korupalli, C.; Pan, W. Y.; Yeh, C. Y.; Chen, P. M.; Mi, F. L.; Tsai, H. W.; Chang, Y.; Wei, H. J.; Sung, H. W., Single-Injecting, Bioinspired Nanocomposite Hydrogel that Can Recruit Host Immune Cells in situ to Elicit Potent and Long-Lasting Humoral Immune Responses. Biomaterials 2019, 216, 119268.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *